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The hierarchical "nite-element (HFEM) and the harmonic balance methods
(HBM) are used to investigate the geometrically non-linear free and steady-state
forced vibrations of uniform, slender beams. The beam analogue of von KaH rmaH n's
non-linear strain}displacement relationships are employed and the middle plane
in-plane displacements are included in the model. The equations of motion are
developed by applying the principle of virtual work and are solved by
a continuation method, 1 : 3 and 1 : 5 internal resonances are discovered and their
consequences are discussed. The convergence properties of the HFEM are
analyzed and it is demonstrated that the HFEM model requires far fewer degrees of
freedom than the h-version of the FEM models presented in the literature.
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1. INTRODUCTION

As the displacement amplitude of a beam with "xed ends increases, the sti!ness
increases due to the e!ect of the membrane forces. Therefore, the non-linear normal
mode [1] is, in general, amplitude dependent [2, 3] and the resonance frequency
changes with the vibration amplitude. Consequently, the natural frequencies may
become commensurable and conditions may exist for strong interaction of the
modes involved. As a result energy is interchanged between those modes and the
response is multi-modal. This phenomena is known as internal resonance [4, 5].

Nayfeh and Balachandran [6] reviewed theoretical and experimental studies on
the in#uence of modal interactions on the non-linear response of harmonically
excited structural systems. The authors concluded that di!erent experiments have
shown the existence of internal resonances and that these are responsible for
&&interesting, unusual and dangerous phenomena'', as, for example, the instability of
the planar motions of a symmetric beam resulting from a harmonic planar force.
22-460X/99/290591#34 $30.00/0 ( 1999 Academic Press
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The "nite-element method (FEM) is based on approximating the solution of
a problem by means of admissible functions. The h-version of the "nite-element
method, in which better approximations are achieved by re"ning the mesh, and the
harmonic balance method have been applied to study the e!ect of internal
resonances in the non-linear vibration of beams. In reference [7] the response curve
due to a harmonic excitation was constructed using the Newton method and the
phase angle as a parameter. A 1 : 3 internal resonance was detected in
a clamped-hinged beam and resulted in looping characteristics of the response
curve. Lewandowski [8}10] applied the Newton method and used the arc-length as
a parameter, to describe the backbone curves (amplitude of vibration } resonance
frequency relations) of simply supported, hinged-clamped and two-span beams,
and the frequency response function (FRF) curves of simply supported, one- and
two-span beams. 1 : 3 internal resonances were found and resulted in secondary
branches or in an increase of the curvature of the backbone curves and FRF curves.

Generally, the solution of the non-linear equations of motion can only be
obtained approximately and iteratively, with a reconstruction of the model in each
iteration. The superposition principle is not applicable in non-linear problems and
multiple solutions can exist. Consequently, a non-linear dynamic analysis is much
more complicated than a linear one and the time needed to obtain the solution
increases considerably with the number of degrees of freedom (d.o.f.). This number
tends to become particularly high if, as is the case in the presence of internal
resonances, high-order modes and di!erent frequencies are involved in the response
of the structure. Hence, an accurate model with a reduced number of degrees of
freedom is very bene"cial.

In the p-version of the FEM, the accuracy of the approximation is improved by
increasing the number of shape functions over the elements, keeping the mesh
constant. If the set of functions, corresponding to an approximation of lower order
p, constitutes a subset of the set of functions corresponding to the approximation of
order p#1, then the p-version of the FEM is called the &&hierarchical "nite element
method'' (HFEM). The HFEM has, amongst others, the following advantages over
the h-version of the FEM:

(i) the HFEM's linear matrices possess the embedding property [11] and the
non-linear matrices of an approximation of lower order can be used in the
derivation of the non-linear matrices of the improved approximation.

(ii) Simple structures can be modelled using just one element, or
&&super-element'', thus there are no inter-element continuity requirements and the
assemblage of the elements is avoided.

(iii) The HFEM tends to give accurate results with fewer d.o.f. than the h-version
of the FEM [11}18]. This is particularly true for smooth solutions, since "ne mesh
generation is advantageous in the vicinity of singular points [19].

As a consequence of these properties, the HFEM model of a structure potentially re-
quires less time to be produced and to be solved than an h-version of the FEM's model.

In this paper, a HFEM model of isotropic beams is presented and the free and
steady-state forced vibrations of simply supported (ss) and clamped}clamped (cc)
beams are studied. Results are compared with other published ones and it is
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demonstrated that the HFEM model requires far fewer d.o.f. than the h-version of
the FEM models. 1 : 3 and 1 : 5 internal resonances are found and the variation of
the non-linear mode shape during the period of vibration and with the amplitude of
vibration is shown.

2. BEAM EQUATIONS OF MOTION

A beam, its local and global co-ordinate systems are shown in Figure 1. m is
a non-dimensional element, or local, co-ordinate; x, y and z are global co-ordinates.
The full beam is going to be modelled with only one element, therefore, the relation
between m and x is given by

m"
2x
¸

. (1)

The beam is assumed to be elastic and isotropic, with small uniform thickness h.
The e!ects of transverse shear deformations and rotatory inertia are neglected. The
transverse de#ection, w, is large compared with the beam thickness * leading to
geometrical non-linearity* but is very small compared with the length, ¸, of the
beam (w@¸). With these conditions the beam analogue of von KaH rmaH n's plate
theory [20] can be applied. The in-plane displacement, u, and the transverse
displacement w, at a point of the beam are hence given by

u (x, z, t)"u0 (x, t)!zw0
,x
,

w(x, z, t)"w0 (x, t), (2)

in which u0 and w0 are the values of the displacement components u and w at the
middle plane: &&,

x
'' denotes the derivative with respect to x. For convenience of

notation, the superscript 0 will be omitted in u0 and w0. Henceforth, u and w stand
for the middle plane displacements.

The strain}displacement relationship may be expressed in the form

e
x
"e0

x
#zi

x
, (3)

where e0
x

is the non-linear in-plane strain at the middle plane of the beam, de"ned
by

e0
x
"u

,x
#1

2
(w

,x
)2. (4)
Figure 1. Beam, local and global co-ordinate systems
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and i
x

is the beam curvature given by

i
x
"!w

,xx
(5)

The vector MdN, formed by the displacement components u and w, may be expressed
as the combination of the hierarchical shape functions:

MdN"G
u
wH"[N]MqN, (6)

[N]"C
g
1
g
22

g
pi

0
0

f
1
f
22

f
po
D"C

xNuy
0

0
xNwyD , (7)

xNuy"xg
1
(x) g

2
(x) 2 g

pi
(x)y , (8)

xNwy"xf
1
(x) f

2
(x) 2 f

po
(x)y , (9)

MqNT"xMq
u
NTMq

w
NTy"xq

u
(1) q

u
(2) 2 q

u
(p

i
) q

w
(1) q

w
(2) 2 q

w
(p

o
)y ,

(10)

where [N] is the matrix of shape functions, xNuy and xNwy are, respectively, the
in-plane and the out-of-plane shape function vectors, MqN is the vector of
generalized nodal displacements, Mq

u
N and Mq

w
N are respectively the generalized

displacement vectors in the x and z directions, p
i
is the number of in-plane shape

functions and p
o

is the number of out-of-plane shape functions. Only the shape
functions that satisfy the geometric boundary conditions are included in the model.
The set of shape functions used is derived from Rodrigues' form of Legendre
polynomials [12, 13] and are shown in Appendix A. The in-plane shape functions
are given by

g
r~2

"

INT(r@2)
+
n/0

(!1)n (2r!2n!5) !!
2nn! (r!2n!1) !

mr~2n~1, r'2 (11)

and the out-of-plane shape functions are given by

f
r~2

"

INT(r@2)
+
n/0

(!1)n (2r!2n!7) !!
2nn! (r!2n!1) !

mr~2n~1, r'4, (12)

where r!!"r(r!2)2(2 or 1), 0!!"(!1)!!"1 and INT(r/2) denotes the integer
part of r/2. These shape functions satisfy fully clamped boundary conditions. To
analyze beams with di!erent boundary conditions, other shape functions * for
example third-order polynomials * are added to the model.

The strain (3) can be expressed as

e
x
"x1 zyMeN, (13)
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where

MeN"G
u
,x

!w
,xx
H#G

w2
,x
/2

0 H"G
ep
0

eb
0
H#G

ep
L
0H"Me

1
N#Me

2
N. (14)

In equation (14), the strain is divided into linear, Me
1
N, and geometrically non-linear,

Me
2
N or ep

L
, strains. The linear strain Me

1
N, is subdivided into the linear membrane ep

0
,

and bending, eb
0
, strains. With this approach, common in plates [21], the sti!ness

matrix is clearly divided into parts related to the di!erent strains.
Using equation (6), ep

0
and eb

0
may be expressed as

ep
0
"xNu

,x
yMq

u
N, (15)

eb
0
"!xNw

,xx
yMq

w
N. (16)

The geometrically non-linear membrane strain, ep
L
, is de"ned as

ep
L
"1

2
(w

,x
)2 (17)

and may be expressed in the form

ep
L
"1

2
Mq

w
NTxNw

,x
yTxNw

,x
yMq

w
N. (18)

The constitutive equation of an isotropic beam is

p
x
"Ee

x
, (19)

where E is Young's modulus.
The stress and moment resultants (per unit width) are de"ned by

¹
x
"P

z

p
x
dz, (20)

M
x
"P

z

p
x
z dz. (21)

Substituting equations (13) and (19) into equations (20, 21) results in

G
¹

MH"C
A
B

B
DD MeN"[E]MeN, (22)

where [E] is the elastic matrix; A, B and D are the extension, coupling and bending
coe$cients given by

A, B, D"P
z

(1, z, z2)E dz. (23)
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For isotropic beams, A, B and D are the following scalar quantities:

A"Eh, B"0, D"Eh3/12"EI/b, (24)

I is the second moment of area of the cross-section of the beam and B"0 re#ects
the absence of coupling between extension and bending.

For undamped systems, the principle of virtual work states that

d=
in
#d=

V
#d=

ex
"0, (25)

where d=
in
, d=

V
and d=

ex
are respectively the work done by the inertia, internal

and external forces due to a virtual displacement MddN, which is given by

MddN"G
du
dwH"[N] MdqN. (26)

Making use of D'Alembert's principle, the following expression for the virtual
work of the inertia forces results:

d=
in
"!ohb P

L

MddNTMdG N d¸"!MdqNT[M] MqK N, (27)

[M]"ohb P
L

[N]T[N] d¸, (28)

where o is the mass per unit volume of the material that constitutes the beam, b is
the width of the beam, [M] represents the mass matrix and MqK N"d2MqN/dt2.

The variation d=
V

may be expressed as

d=
V
"!bP

L

(Mde
1
NT#Mde

2
NT ) [E] (Me

1
N#Me

2
N) d¸. (29)

The linear sti!ness matrix [K
1
] and the non-linear sti!ness matrices [K

2
], [K

3
]

and [K
4
] are de"ned by

b P
L

Mde
1
NT[E]Me

1
N d¸"MdqNT[K

1
] MqN, (30)

bP
L

Mde
1
NT[E]Me

2
N d¸"MdqNT[K

2
] MqN, (31)

bP
L

Mde
2
NT[E]Me

1
N d¸"MdqNT[K

3
] MqN, (32)

bP
L

Mde
2
NT[E]Me

2
N d¸"MdqNT[K

4
] MqN; (33)
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[K
3
] and [K

2
] are related by [K

3
]"2[K

2
]T [13]. Using equations (30)} (33),

equation (29) is rewritten as

d=
V
"!MdqNT ([K

1
]#[K

2
]#[K

3
]#[K

4
])MqN. (34)

If PM
j
(t) represents a concentrated force acting at the point x"x

j
and PM

d
(x, t)

represents a distributed force, the virtual work of the external forces is given by

d=
ex
"P

L

[PM
j
(t)d(x!x

j
)#PM

d
(x, t)]dw(x, t) d¸"Mdq

w
NTMP1 (t)N, (35)

where MP1 (t)N represents the vector of generalized external applied forces and
d(x!x

j
) represents a spatial Dirac delta function given by

d (x!x
j
)"0, xOx

j
,

P
L

0

d(x!x
j
) dx"1 (36)

so that PM
j
(t)d (x!x

j
) has units of distributed force (N/m).

Mass proportional hysteretic damping is used. This depends on the damping
factor b, which is given by

b"u2l1
]a, (37)

where ul1
represents the fundamental linear frequency and a the loss factor [22].

The mass matrix [M] is formed by [M
p
] and [M

b
], which are the in-plane and

bending mass matrices. The linear sti!ness matrix [K
1
] is formed by the in-plane,

[K
1p

], and bending, [K
1b

], linear sti!ness matrices. The in-plane inertia can be
neglected for slender beams [23] and Mq

u
N is eliminated. The damping contribution

due to the axial stress is also negligible compared to that due to the bending stress
[24]. The equations of motion are thus of the following form:

[M
b
] MqK

w
N#

b
u

[M
b
] Mq5

w
N#[K

1b
]Mq

w
N#[Knl] Mq

w
N"MP1 N, (38)

[Knl]"[K
4
]!2[K

2
]T[K

1p
]~1[K

2
]. (39)

The non-linear sti!ness matrix [Knl] is a quadratic function of the generalized
transverse displacements, Mq

w
N. [K

2
] and [K

4
] represent the non-zero part of the

respective non-linear sti!ness matrices de"ned in equations (31) and (33).
Only harmonic excitations of the form MP1 N"MPN cos(ut) will be applied and the

steady-state response Mq
w
(t)N is expressed as

Mq
w
(t)"

2k~1
+

i/1,3

Mw
ci
N cos(iut)#Mw

si
N sin(iut), (40)

where k is an integer that represents the number of harmonics used.
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This equation is inserted into the equations of motion (38) and the HBM is
employed [4]. This method, in which the coe$cients of the same harmonic
components are compared, can be easily implemented in a program produced with
the symbolic manipulator Maple [18, 25]. The resulting equations of motion in the
frequency domain are of the form

MFN"(!u2[M]#[C]#[KL]#[KNL(MwN)])MwN!MPN"M0N, (41)

where [M] represents the mass matrix, which is a function of [M
b
], [C] the

damping matrix, which is a function of b[M
b
], [KL] the linear sti!ness matrix,

function of [K
1b

], and [KNL(MwN)] the non-linear sti!ness matrix, which is
a function of [K

2
] and [K

4
] and depends quadratically on the generalized

displacements MwNT"xw
c1

w
s1

w
c3

w
s3

2 w
si
y. The total number of d.o.f. of the

HFEM model, n, is n"2kp
o
, with damping, and n"kp

o
, without damping.

3. THE CONTINUATION METHOD

In forced vibration, the solutions of the equations of motion in the non-resonant
region are calculated by Newton's method [21]. In free harmonic vibration,
a simple iterative method based on a consecutive solution of an eigenvalue problem
[13}15, 26, 27], named linearized updated mode (LUM) as in reference [26], is
utilized.

However, in forced vibration and in the vicinity of resonance frequencies,
multiple solutions exist and convergence is not always achieved with the Newton
method alone. Also in multi-harmonic free vibration convergence is di$cult with
the LUM method [27]. Therefore, a continuation method is utilized in most of the
analysis. This method is outlined in the following paragraphs, details are given in
references [8}10, 18].

The continuation method is composed of two main loops. In the external loop
a predictor to the solution is de"ned. The prediction of the vector of generalized
co-ordinates is obtained by using the two last determined vectors of the curve, MwN

i
and MwN

i~1
, as follows:

MwN
i`1

"MwN
i
#DMwN

i`1
, DMwN

i`1
"(MwN

i
!MwN

i~1
)
dwaux

Dw
. (42)

dwaux is the amplitude of the "rst increment vector, DMwN
i`1

, and Dw is the
amplitude of the vector (MwN

i
!MwN

i~1
). A prediction for the square of the

frequency of vibration, u2
i`1

, is calculated using the equations

u2
i`1

"u2
i
#Du2

0
, (43)

Du2
0
"$s/(MdwNT

1
MdwN

1
)1@2. (44)

The sign in equation (44) is chosen following that of the previous increment, unless
the determinant, DJ D, of the Jacobian of MFN, [J], has changed sign. In the last case
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a sign reversal is applied. s is the arc-length and MdwN
1

is de"ned by the following
equation [18]:

[J]MdwN
1
"[M]MwN

i`1
. (45)

The approximated solution is corrected in an internal loop. The corrections MdwN
and du2 are obtained by applying Newton's method to equation (41):

[J]MdwN![M]MwN
i`1

du2"!MFN . (46)

Variations in the frequency were considered in (46) and, consequently, one more
equation is needed. This is obtained by constraining the distance between the two
successive points of the frequency response function (FRF) curve, the arc-length s,
to a "xed value:

s2"EDMwN
i`1

E2. (47)

The iterations in the internal loop are repeated until the inequalities

D du2/u2
i`1

DSerror1, (48)

EMdwNE EMwN
i`1

ESerror2, (49)

EMFNESerror3, (50)

are satis"ed.

4. APPLICATIONS

4.1. BEAM PROPERTIES

The HFEM model will be applied to a cc and to a ss beam with the following
geometric and material (aluminium DTDSO 70) properties: h"2 mm, b"20 mm,
¸"580 mm, I"(1/12)bh3"1)333(3)]10~11 m4, r"JI/X"5)7735]10~4 m,
E"7]1010 N/m2, o"2778 kg/m3, where r represents the radius of gyration and
X the area of the beam's cross-section.

4.2. FREE VIBRATION

4.2.1. Clamped}clamped beam
The linear modes of a beam clamped at both ends are symmetric or

antisymmetric. In the harmonic solution, these symmetries are used to reduce the
number of d.o.f. of the model. There is no di!erence between the "rst four linear
natural frequencies obtained with p

o
"5 and the analytical ones [28] (Table 1).

With "ve out-of-plane shape functions, p
o
"5, and "ve in-plane shape functions,

p
i
"5, convergence of the non-linear harmonic solution is achieved (Table 2; w

m



TABLE 1
Natural linear frequencies cc beam (rad/s)

Mode 1 2 3 4

Exact [28]* 192)8 531)3 1041)6 1722
HFEM 192)8 531)3 1041)6 1722

*The data in reference [28] is provided with four signi"cant digits

TABLE 2
Non-dimensional (u/ul1

) ,rst natural frequency

w
m
/h 1)75 2

p
o
"p

i
"5 1)6117 1)7530

p
o
"p

i
"7 1)6117 1)7530

Figure 2. First resonance frequency of cc beam: r HFEM; ] experimental.
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*This has been veri"ed in all applications and in the literature. However, it was not proved.

represents the maximum amplitude of vibration) and the harmonic HFEM's results
are close to experimental ones [29] (Figure 2). Consequently, "ve out-of-plane and
"ve in-plane shape functions were used in the harmonic model.

In the two and three harmonic solutions, in order to detect possible couplings
between modes of di!erent types of symmetry, symmetric and antisymmetric shape
functions (p

o
"7 and p

i
"10) were used in the HFEM model.

The relations between the "rst linear frequencies and the fundamental linear
frequency are ul2

/ul1
"2)756 and ul3

/ul1
"5)404. When the beam is vibrating in

its "rst non-linear mode shape the hardening spring e!ect in#uences mainly the
fundamental non-linear frequency.* Thus, the second frequency is never equal to



TABLE 3
Natural frequencies (u/ul1

) of cc beam

w
m
/h* 0)5 1)0 1)5 2)0 2)25

One harmonic 1)0651 1)2377 1)4771 1)7530 1)8994
Two harmonics 1)0649 1)2351 1)4699 1)7453 1)9280
Three harmonics 1)0648 1)2370 1)4754 1)7631 1)9227

w
m
/h* 2)50 2)75 3)00 3)25 *

One harmonic 2)0481 2)2021 2)3570 2)5137
Two harmonics 2)0957 2)2919 2)5926 2)8946 *

Three harmonics 2)1052 2)3204 2)6122 2)9791 *

*For two and three harmonics the value of w
m
/h is approximated (error(0)6% and (0)16%,

respectively).

Figure 3. Backbone curves of cc beam. Amplitudes=
1

and=
3

calculated at x"0.
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three or "ve times the "rst one. It can be equal to twice ul1
, but a system

represented by the equations of motion (41), with MP1 N equal to zero or harmonic
with mean value zero, does not admit an excitation of the second harmonic [4, 30],
because only odd harmonics are present in the frequency spectrum of the vibration.
However, the third resonance frequency can be equal to three and "ve times the
"rst one. Therefore, internal resonances of order 1 : 3 and 1 : 5 due to coupling
between modes 1 and 3, are possible.

Table 3 compares the "rst resonance frequency obtained with one, two (the "rst
and the third) and three (the "rst, the third and the "fth) harmonics, for di!erent



Figure 4. Mode shapes of the "rst harmonic of cc beam. 2linear mode, ** u/ul1
"1)2351,

*u/ul1
"1)7453, } } u/ul1

"2)5926, *} u/ul1
"3)8709.

602 P. RIBEIRO AND M. PETYT
amplitudes, w
m
, at the point x"0. With the continuation method, because the

arc-length is a parameter instead of the amplitude of vibration, the values of w
m
/h

are approximated. After w
m
/h"2, the results obtained with one harmonic are

increasingly inaccurate. For the amplitudes studied the two harmonics
approximation is accurate.

Figures 3(a) and 3(b) represent the backbone curves calculated with two
harmonics. =

1
and =

3
are the amplitudes of the "rst and third harmonics

respectively. In Figures 4 and 5 the mode shapes associated with di!erent
maximum amplitudes of vibration displacement are shown. The third harmonic has
a growing role in the vibration of the beam, Figure 3(b), and is increasingly more
a!ected by the third mode of vibration than by the "rst (Figure 5). Figure 6 *
which was computed at t"2nm¹, where m is an integer and ¹ represents the
period of vibration * demonstrates that the shape assumed by the beam is
signi"cantly a!ected by the third harmonic. This is particularly true after
u/ul1

:1)8 (u"347)83 rad/s, w
m
/h"2)0264).

If the "rst harmonic vibrates at u"347)83 rad/s then the third one will have
a frequency of 1043)5 rad/s, which is very near to the third linear natural frequency
(Table 1). Therefore, a 1 : 3 internal resonance occurs, the "rst mode couples with
the third and as a result the importance of the third harmonic increases. Due to the
mode coupling, the shape of the beam changes signi"cantly during the period of
vibration. An example of this variation can be seen in Figure 7, where the shape
assumed by the beam is plotted at di!erent instants along half a period of vibration.

The backbone curves represented in Figures 8}10 were calculated with three
harmonics.=

1
,=

3
and=

5
represent respectively the amplitudes of the "rst, third



Figure 5. Mode shapes of the third harmonic of the cc beam. * } =
1
/h@1, u/ul1

:1, } }
u/ul1

"1)2351, *u/ul1
"1)7453, ** u/ul1

"2)5926, ) ) ) u/ul1
"3)8709.

Figure 6. Shape of cc beam at t"2nm¹: - ) u/ul1
"1)0001, } } u/ul1

"1)2351,
*u/ul1

"1)7453, ** u/ul1
"2)5926, *} u/ul1

"3)8709.
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Figure 7. Vibration of cc beam at u/ul1
"3)84.
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Figure 8. Backbone curve of cc beam de"ned by=
1
/h and u/ul1

.**"rst main branch, ###

secondary branch, ) ) ) ) ) ) ) second main branch.

Figure 9. Backbone curve of cc beam de"ned by =
3
/h and u/ul1

. ** "rst main branch,
### secondary branch, ) ) ) ) ) ) ) second main branch.
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Figure 10. Backbone curve of beam de"ned by=
5
/h and u/ul1

. * "rst main branch, ###

secondary branch, ) ) ) ) ) ) ) second main branch.
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and "fth harmonics calculated at x"0)25]¸. A modal coupling between the "rst
and the third modes, due to a 1 : 5 internal resonance, was found. It resulted in
a bifurcation point and in a secondary branch that links the "rst main branch with
the second main branch. A bifurcation point exists as well in this last branch. The
determinant of the matrix [J] changed sign between the two successive points of
the main branches that enclose the respective bifurcation points.

The "rst main branch calculated with three harmonics is similar to the one
calculated with two harmonics (and until u/ul1

:2, it is similar to the one
calculated with only one harmonic, Table 3). The second main branch is, for the
frequencies analyzed, related only to the third mode and to the "fth harmonic. The
secondary branch is de"ned mainly by the "rst and "fth harmonics. In this branch,
the "rst harmonic is related to the "rst mode, the "fth harmonic to the third mode
and the third harmonic to both the "rst and "fth modes [Figures (11a}c)]. Both the
secondary branch and the second main branch were overlooked by the two
harmonics solution.

4.2.2. Simply supported beam

In this section, the free vibration of a ss beam is studied using two harmonics in
expression (40), in order to, by comparison with published results, validate
the HFEM model and show that it requires less d.o.f. than the h-version of the
FEM.



Figure 11. Mode shapes of cc beam at point u/ul1
"1)1339 of secondary branch.
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The relation between the "rst two linear frequencies of the ss beam is
ul2

/ul1
"4)000, and consequently modal coupling between the "rst (symmetric)

and the second (antisymmetric) modes is possible. This means that both the
symmetric and antisymmetric out-of-plane and in-plane shape functions should be
used in the model. Moreover, comparing with the cc case, two additional shape
functions had to be introduced* the shape functions f

1
and f

2
shown in Appendix

A * so that the boundary conditions were satis"ed.
In Table 4, the value of the fundamental linear frequency is compared with the

values from the literature [8, 28, 31]. The value of j calculated in reference [8] with
12 d.o.f. is larger * and therefore not so accurate (the HFEM linear solutions
converge from above [11]) * than the HFEM one calculated with 4 d.o.f. if the



TABLE 4
Fundamental linear frequency parameter j"u2

l m¸
4/EI, ss beam

Exact [28] FEM [31] FEM [8] HFEM

(eight elements-32 d.o.f.) (six elements-12 d.o.f.) (1 element-4 d.o.f.*)

97)409 97)409 97)419 97)409

*six d.o.f., if symmetries are not used to reduce the number of d.o.f. m * mass per unit length.

TABLE 5
Comparison of (u/ul1

) of ss beam: two harmonics

w
m
/r u/ul1

u/ul1
w
m
/r u/ul1

w
m
/r u/ul1

HFEM w
m
/r u/ul1

HFEM
Exact [23] [8] 14 d.o.f. 16 d.o.f
[32] 46 d.o.f. 24 d.o.f. (8 d.o.f.*) (9 d.o.f.*)

1)0 1)0892 1)0892 1)0087 1)0906 0)0995 1)0891 1)0014 1)0894
2)0 1)3177 1)3178 1)9738 1)3106 2)0021 1)3185 2)0001 1)3180
3)0 1)6256 1)6255 2)9808 1)6198 3)0012 1)6268 3)0033 1)6275

*If symmetries are used to reduce the number of d.o.f. of HFEM model.

Figure 12. Backbone curve of ss beam de"ned by=
1
/r and u/ul1

. From above: "rst main branch,
secondary branch, second main branch.
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Figure 13. Backbone curve of ss beam de"ned by =
3
/r and u/ul1

. From above: second main
branch, secondary branch, "rst main branch.

Figure 14. Linear mode shape (!), "rst (! ) ) and third harmonics ( . . ) at=
1
/r:6)09. Di!erence not

visible.
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Figure 15. Mode shapes of the secondary branch.

Figure 16. Vibration of ss beam at u/ul1
"1)693, secondary branch.
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Figure 16. Continued
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symmetry of the system is used, and with 6 d.o.f. otherwise. In reference [31], 32
d.o.f. were used to obtain the same result as with 4 (6) d.o.f. with the HFEM. In
Table 5, the HFEM non-linear resonance frequencies are compared with published
ones [8, 23, 32], w

m
is the amplitude of vibration displacement at x"0. Again, the

HFEM model required fewer d.o.f. than the h-version of the FEM. Results of
HFEM models with 14 and 16 d.o.f. are shown in order to demonstrate the
convergence of the solution.

Figure 12 shows the backbone curve of a simply supported beam, de"ned by the
non-dimensional amplitude of the "rst harmonic at the middle of the beam,=

1
/r,



Figure 17. Non-linear mode shapes of the second main branch.
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and by the non-dimensional non-linear resonance frequency, u/ul1
. There is

a main branch, with a shape initially parabolic and tending to rectilinear, that starts
at the linear frequency. There was also found to be a secondary branch, which
bifurcates from the main branch for a non-dimensional frequency in the range
1)439(u/ul1

(1)442. The determinant of the matrix [J] changed sign between
these two successive points.

The "rst non-linear resonance frequency, u
nl1

, around which occurs the "rst
bifurcation point is equal to ul2

/2)78, where ul2
is the second natural linear

frequency. As the amplitude of vibration increases, the second non-linear natural
frequency also increased (u

nl2
'u

nl2
). Then, at a point for which

1)439(u/ul1
(1)442, the "rst non-linear resonance frequency is nearly equal to

one-third of the second non-linear resonance frequency, u
nl1

:u
nl2

/3, and an
internal resonance exists: there is a strong coupling and a transfer of energy
between the "rst and the second mode. This internal resonance results in a bifurca-
tion point, which is very close to the one found in reference [8] at
1.446(u/ul1

(1.451.
Finally, there is another branch, which begins at u/ul1

"1)333 and crosses the
secondary branch at u/ul1

:1)82. This branch was found in reference [33], using
an analytical method which gives a qualitative information.

In Figure 13, the backbone curve de"ned by=
3
/r and u/ul1

is presented.=
3

is
the amplitude of the third harmonic calculated at x"0)25]¸ (near the point of
maximum amplitude of the second mode shape). This "gure shows that, in the main



Figure 18. FRF near "rst resonance frequency of cc beam calculated with: s p
o
"5, #p

o
"7,

h p
o
"9, at point x"0)25]¸. In all cases p

i
"10.

Figure 19. FRF near "rst resonance frequency of cc beam calculated with: s p
i
"8, #p

i
"10,

h p
i
"12, at point x"0)25]¸. In all cases p

o
"7.
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Figure 20. FRF near "rst resonance frequency of cc beam calculated with p
i
"10 and: s p

o
"5,

#p
o
"7, h p

o
"9, e p

o
"11 (x"0)25]¸).

Figure 21. FRF near second resonance frequency of cc beam calculated with p
o
"7 and: s p

i
"10,

#p
i
"12, h p

i
"14, e p

i
"16 (x"0)25]¸).
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Figure 22. Amplitude of "rst harmonic (at x"0) due to point harmonic excitation of 0.03 N
amplitude, applied in the middle of cc beam: # harmonic solution, s two-harmonics solution:
a"0)01, p

o
"7, p

i
"10.
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branch, the third harmonic has a very small in#uence on the vibration
characteristics of the beam. However, the third harmonic has a signi"cant weight
the secondary branch and the second main branch, is almost only de"ned by the
third harmonic.

In the "rst main branch, the non-linear modes associated with the "rst harmonic
and the third harmonic (almost zero in this branch) are identical to the "rst linear
mode shape (Figure 14), agreeing with reference [3].

Figures 15(a}c) display some non-linear mode shapes associated with points of
the secondary branch. The "rst harmonic has always a shape similar to the "rst
mode shape of a simply supported beam. The third harmonic has a shape that is
mainly a mixture of the "rst and second modes, but, as one proceeds along the
branch, it quickly approaches the second mode shape of a simply supported beam.
Also, proceeding from the bifurcation point, the weight of each harmonic in the
de"nition of the complete mode shape of vibration changes: the "rst harmonic
gradually vanishes and the third harmonic gradually increases [Figures 12, 13 and
15(c)]. Thus, in the secondary branch, the resultant shape of the de#ected beam is
asymmetrical, starting from a symmetrical mode shape at the "rst branch point and
"nishing in an antisymmetrical mode shape at the second bifurcation point. As in
Figure 6, Figure 15(c) was computed at t"2nm¹, with m an integer.



Figure 23. Amplitude (at x"0) of third harmonic due to point harmonic excitation of 0.03 N
amplitude, applied in the middle of cc beam. a"0)01, p

o
"7, p

i
"10.

Figure 24. FRF due to a point excitation of 0)134 N: experimental #, HFEM (p
o
"6, p

i
"8,

a"0)038) h stable, s unstable. Values at point x"0.
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Figure 25. Antisymmetric excitation.
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Figure 16 shows the variation of the mode shape of the beam during a half
of the period of vibration and for a particular frequency of vibration. This varia-
tion is only meaningful in the secondary branch, where both harmonics are
important.

In Figure 17, the non-linear mode shape associated with the second main branch
is displayed. This non-linear mode is de"ned solely by the third harmonic and is the
same for any amplitude of vibration displacement. It is equal to the "rst
antisymmetric or second mode shape of a hinged}hinged beam: hence it starts at
113)367 rad/s (113)367]3"340)1, which is the second linear normal frequency).

4.3. STEADY-STATE FORCED VIBRATION

4.3.1. Clamped}clamped beam
In order to study the consequences of 1 : 3 internal resonances in the steady-state

forced vibration of the clamped}clamped beam, a model with two harmonics, the
"rst and the third was used. As was veri"ed in Section 4.2.1, two harmonics are
enough to study 1 : 3 internal resonances. Damping was calculated by expression
(37), with a"0)01.

Figures 18}20 show the variation of the amplitudes of the "rst, =
1
, and third,

=
3
, harmonics of the cc beam as functions of the frequency of excitation. These

amplitudes are given by

=
1
"Jw2

c1
#w2

s1
, (51)

=
3
"Jw2

c3
#w2

s3
, (52)

where w
c1

, w
s1

, w
e3

and w
c3

are, in this order, the amplitudes of the cosine and sine
terms of the "rst and third harmonics. Thus, =

1
and =

3
are always positive. In

order to excite symmetric and antisymmetric modes, an asymmetric excitation was
applied. This was a point harmonic force at x"¸/4; the response is calculated also
at this point.

Around the "rst mode, both harmonics are well approximated with "ve
out-of-plane and eight in-plane shape functions (Figures 18 and 19).

Around the second resonance frequency and at the largest amplitudes of
vibration displacement, the FRF curve of the "rst harmonic has a very di!erent
shape from the usual curve derived in harmonic vibration. The fourth linear natural



Figure 26. Amplitude of "rst harmonic (at x"¸/4) due to antisymmetric excitation: # unstable
solution, s stable solution. a"0)01, p

o
"10, p

i
"10.
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frequency, ul4
, is approximately equal to 3)24ul2

(Table 1). Therefore, when
u

nl2
increases, there is a point when u

nl4
/ul2

:3 and the fourth mode is excited
due to a 1 : 3 internal resonance between the second and fourth modes.
Consequently, at least seven out-of-plane shape functions (nine, if very good
accuracy is required) and 14 in-plane shape functions are necessary to describe the
FRF in the vicinity of the second resonance frequency (Figures 20 and 21).

In the absence of internal resonance, "ve out-of-plane shape functions (three
symmetric and two antisymmetric), i.e. 20 d.o.f., give good results for the "rst two
modes. If internal resonance occurs, then more d.o.f. are necessary to study the "rst
two mode (28 or 36 d.o.f., depending on the accuracy desired).

In Figures 22 and 23, the frequency response curves due to a point force of
amplitude P"0)03 N, applied the middle of the beam are shown. The maximum
amplitude of the "rst harmonic is smaller when calculated with two harmonics than
when calculated with one harmonic. The third harmonic amplitude increases



Figure 27. Amplitude of third harmonic (at x"¸/4) due to antisymmetric excitation: # unstable
solution, s stable solution. a"0)01, p

o
"10, p

i
"10.
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signi"cantly after u/u
nl1

'1)8. At this point, u
nl3

/u
nl1

"3 and the third mode is
excited. Thus, some of the energy that in the one harmonic solution is absorbed
between the "rst mode, in the two harmonics solution is divided by the "rst and
third modes.

In Figure 24, the HFEM solutions are compared with experimental results [34]
and the agreement is excellent. Due to the absence of internal resonances, a one
harmonic approach gives very accurate results.

4.3.2. Simply supported beam

In order to clearly demonstrate the existence of a 1 : 3 internal resonance between
the "rst and second modes, the simple supported beam was excited with an
antisymmetric force system, as shown in Figure 25 with P"0)008 N. Figure 26
show the consequences of a 1 : 3 internal resonance: a loop in the ascending part of
the FRF curve and another loop in the descending part of the FRF curve. The
results obtained agree with the ones published in references [9, 10]. Figure 27
shows that these loops are associated with a strong local excitation of the third
harmonic. The "rst-order stability of the solutions was analyzed by using the sign of
DJ D [9, 10].
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5. CONCLUSIONS

Geometrically non-linear multi-harmonic free and steady-state forced vibrations
of cc and ss isotropic beams were studied by the hierarchical "nite-element method.

1 : 3 and 1 : 5 internal resonances were found in free vibration. They result in an
accentuated change of the curvature of the backbone curve or in secondary
branches. 1 : 3 internal resonances were discovered in forced vibration and resulted
in loops of the frequency response function curves.

Internal resonances of order n exist if the ratio of the linear frequencies associated
with the interacting modes of vibration is approximately equal to n (ulk2

/ulk1
:n,

where the subscripts k1 and k2 represent two di!erent modes). When analyzing
a certain mode of vibration and when the non-linear frequency becomes
a submultiple of another natural frequency, it is necessary to include another
harmonic in the time series. Below that point, the solution with only one harmonic
produces data that is su$ciently accurate, as was con"rmed by comparison with
experimental results. The coupling with higher order modes also implies that more
d.o.f. are necessary in the spatial model for accuracy.

The non-linear mode shape changes with the amplitude and frequency of
vibration because of two di!erent causes. The "rst, is the variation of the sti!ness of
the beam with the amplitude of vibration, due to the membrane forces. In this case,
the alteration in the non-linear mode shape is moderate. The second cause of
alteration is modal coupling. If there is commensurability of natural frequencies
and internal resonance occurs, then the non-linear vibration of the beam is de"ned
by the sum of the coupled modes vibrating at commensurable frequencies, and the
mode shape varies signi"cantly during the period of vibration.

The HFEM model was favourably compared with FEM models presented in the
literature. With the HFEM, convergence was achieved with fewer d.o.f. which
signi"cantly reduces the computational time. This turns out to be of great importance
if one wants to analyze higher order modes or when higher order modes couple with
lower order modes due to internal resonance, if several harmonics must be included
in the time series or if a structure composed of several beams is to be studied.
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APPENDIX

Out-of-plane shape functions:

f
1
"(1/8)!(1/8)m!(1/8)m2#(1/8)m3,

f "!(1/8)!(1/8)m#(1/8)m2(1/8)m3.

2
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In-plane shape functions:
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