
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +1 35

E-mail addr
Journal of Sound and Vibration 313 (2008) 224–245

www.elsevier.com/locate/jsvi
Non-linear free periodic vibrations of open cylindrical
shallow shells

P. Ribeiro�

IDMEC/DEMEGI, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Received 10 January 2007; received in revised form 19 October 2007; accepted 14 November 2007

Available online 10 January 2008
Abstract

This paper is concerned with the non-linear free periodic vibrations of thin, open, cylindrical and shallow shells vibrating

in the geometrically non-linear regime. A multi-degree-of-freedom model with hierarchical basis functions is adopted and

the principle of the virtual work is used to define the time domain equations of motion. These equations are transformed

into the frequency domain by the harmonic balance method and are finally solved by an arc-length continuation method.

Shells of different thicknesses and of different curvature radius are analysed, and the variation of the non-linear natural

frequencies of these shells with the vibration amplitude are investigated in some detail. The variation of the mode shapes

with the vibration amplitude is demonstrated. It is found that both softening and hardening spring effects occur and that

the number of couplings between vibration modes is rather large in undamped shells.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem here considered is the free periodic oscillation of open cylindrical shells with large
displacements. Unlike in linear systems, the natural modes of vibration of geometrically non-linear shells are
constituted by amplitude-dependent mode shapes and amplitude-dependent natural frequencies of vibration.
Therefore, the analysis of free periodic oscillations is quite more complex than in the linear case and all
published studies resort to approximations of some sort.

If the shells are shallow, that is with large length-to-raise ratio, it is possible to use equations in Cartesian
coordinates which are very similar to the ones of flat panels, but with additional terms in order to account for
the initial curvature. Due to their relative simplicity, the application of shallow shell theories to investigate free
periodic vibrations are rather popular. Leissa and Kadi [1] followed a shallow shell theory in order to study
the effect of the curvature upon the natural vibration frequencies of thin shells of rectangular planform and
supported by shear diaphragms. The analysis was extended to the non-linear regime by means of the Galerkin
procedure and numerical integration in time; most of the shells studied presented initially a softening spring
effect, which was followed by hardening spring. It was assumed that the non-linear mode shape does not vary
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.11.029

1 22 508 1716; fax: +1351 22 508 1445.

ess: pmleal@fe.up.pt

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.11.029
mailto:pmleal@fe.up.pt


ARTICLE IN PRESS
P. Ribeiro / Journal of Sound and Vibration 313 (2008) 224–245 225
with amplitude and the model had one generalised coordinate for each displacement component. In Ref. [2]
the free vibrations of simply supported shallow shells of rectangular planform were investigated. It was
assumed that the transverse oscillations have a sinusoidal form with half a wave in the x and y directions, and
Airy stress function was employed; furthermore, harmonics either than the first and third were neglected in the
time series. Softening followed by hardening was found in most of the shells analysed. In Ref. [3] the effect of
the thickness and the curvature upon the large-amplitude free vibrations of shallow shells supported by
shear diaphragms was studied. A model with one degree of freedom per displacement component was used as
in Ref. [1], but first-order shear deformation theory was followed. It was concluded, as in Refs. [1,2], that most
shells present soft spring behaviour for small vibration amplitude, followed by hardening spring. More works
have been published where a one-degree-of-freedom model was used to study free vibrations of shells (for
example, Refs. [4,5]).

Publications also exist where several degrees of freedom were employed to define the spatial models of
shells. A first-order shear deformation, p-version finite element with hierarchic basis functions for moderately
thick, isotropic shallow shells was presented in Ref. [6] and a preliminary investigation was carried out. The
goals of the latter research were to show that the p-version finite element method requires a small number of
degrees of freedom and that the mode shapes change with the amplitude of vibration. It was possible to
achieve these goals assuming that the oscillations remain harmonic, but this is a severe restriction, particularly
for shells of smaller curvature radius. Modal formulations for large-amplitude free vibration of shells were
suggested in Ref. [7], where first-order shear deformation theory was also followed. The authors concluded
that, even for moderate deflections, the higher modes contribution can be quite large. In Ref. [8] the forced
vibrations of simply supported panels were investigated. Direct time integration and an arc-length
continuation method were employed and internal resonances were found. In Ref. [9] vibrations of circular
cylindrical open shells subjected to harmonic excitation were numerically and experimentally analysed. The
effect of geometric imperfections on the trend of non-linearity and on natural frequencies was investigated.
Moreover, the phenomenon of one-to-one internal resonance has been detected and investigated numerically
on one of the panels studied.

Readers interested in wider reviews on vibration of circular cylindrical shells and shallow shells should
consult Refs. [10,11].

The goals of the present paper are to examine the periodic geometrically non-linear vibrations of isotropic,
linear elastic, thin, open circular cylindrical shallow shells, to study the frequency and mode shape dependence
on the vibration amplitude and to illustrate the internal resonances that occur between non-linear modes.
To derive the mathematical model a procedure similar to the one presented in Ref. [6] is followed.
However, because only rather thin panels are here considered, a Kirchhoff-type model is adopted instead of
the first-order shear deformation model followed in Ref. [6]. Modal coordinates are employed in order to
reduce the number of equations. However, several linear modes are included, since severe reduction of the
number of coordinates would not only restrain the ability to describe the variation of the non-linear
mode shapes with the vibration amplitude, but also fail to correctly predict their interaction. The harmonic
balance method is applied to transform the equations of motion into the frequency domain, using a truncated
series with a constant term and three harmonics, and the resulting equations are solved by a continuation
method.
2. Formulation

The equations of motion are obtained by employing the principle of the virtual work, following a
procedure which is common in p-version finite element models [6,12–17]. It is assumed that the shells are
thin, elastic, isotropic, shallow and that their projection in a plane is rectangular (Fig. 1). Their undeformed
geometry is defined from a reference plate by introducing an initial displacement wi(x, y), which is small in
comparison with the spans. Therefore, the curvilinear coordinates commonly employed in shells can be
directly replaced by the Cartesian coordinates x and y, and the Lamé parameters are A ¼ B ¼ 1 [18,19].
The strain–displacement relations of shallow shells are only slightly more complicated than the ones
of plates.
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Fig. 1. Cylindrical shallow shell with rectangular planform.
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In a three-dimensional, rectangular coordinate system, which is orientated so that R is the principal
curvature radius—Fig. 1—the middle surface of the shallow shell is expressed as

wiðx; yÞ ¼ �
1

2

y2

R

� �
. (1)

The dimensions a and b, which are the lengths of the projection of the shell in a plane, are represented in
Fig. 1; the constant thickness will be represented by h.

Since only thin shells will be analysed, the transverse shear deformation is neglected and it is assumed that
normals to the middle surface suffer no extension. Hence, the displacement components u and v, of a particle
along the x and y directions are functions of the middle surface membrane displacements u0, v0, and of the
rotations of the normal to the middle surface about the x- and y-axis, being the latter simply yy ¼ �w0

;x and
yx ¼ w0

;y. w0 is the middle surface component of displacement along the z direction, defined in relation to the
initial configuration given by Eq. (1). The comma indicates partial differentiation and the superscript ‘‘0’’
represents the middle surface. The displacement components of a particle located at (x, y, z) are therefore
given by

uðx; y; z; tÞ ¼ u0ðx; y; tÞ � zw0
;xðx; y; tÞ, (2)

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zw0
;yðx; y; tÞ, (3)

wðx; y; z; tÞ ¼ w0ðx; y; tÞ. (4)

It is here assumed that the middle plane displacement components—u0, v0 and w0—depend on the
coordinates x, y and on the vector of generalised displacements qðtÞT ¼ quðtÞ

T; qvðtÞ
T; qwðtÞ

T
� �

(the symbol bc
indicates a row vector) as follows:

u0ðx; y; tÞ

v0ðx; y; tÞ

w0ðx; y; tÞ

8><
>:

9>=
>; ¼

Nuðx; yÞT 0 0

0 Nvðx; yÞT 0

0 0 Nwðx; yÞT

2
64

3
75

quðtÞ

qvðtÞ

qwðtÞ

8><
>:

9>=
>;, (5)

where qu(t), qv(t) are the vectors of generalised membrane displacements and qw(t) is the vector generalised of
transverse displacements. The matrix of shape functions N(x, y) is constituted by vectors of bi-dimensional
membrane and transverse shape functions, which are, respectively, the following:

Nuðx; yÞT ¼ Nvðx; yÞT ¼ fg1ðxÞg1ðyÞ; g1ðxÞg2ðyÞ; . . . ; gpi
ðxÞgpi

ðyÞg, (6)

Nwðx; yÞT ¼ ff 1ðxÞf 1ðyÞ; f 1ðxÞf 2ðyÞ; . . . ; f p0
ðxÞf p0

ðyÞg. (7)

The vectors g, f, are the vectors of membrane and transverse, one-dimensional displacement shape
functions; pi and po, are the numbers of gi and fi, respectively, displacement shape functions employed. In
what concerns the transverse displacements, a set of hierarchic basis functions constituted by Legendre
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polynomials in the Rodrigues’ form has been extensively applied [6,12–16] and will also be employed here.
A set of polynomials called the g set, also used in Refs. [6,12–16] will be employed for the membrane
displacements.

The geometrically non-linear strain–displacement relations are similar to the ones of Von Kármán for
plates, but with additional terms to include the effects of the initial curvature

�x

�y

�xy

8><
>:

9>=
>; ¼

u0
;x þ

w0

R1
þ

w02

;x

2
� zw0

;xx

v0;y þ
w0

R2
þ

w02

;y

2
� zw0

;yy

u0
;y þ v0;x þ w0

;xw0
;y � 2zw0

;xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (8)

The constitutive equations for linear elastic isotropic materials are used.
The time domain equations of motion are derived by equating the sum of the virtual work of the inertia

forces and of the elastic restoring forces to zero, as was done in Ref. [6]. These equations of motion have the
following form:

M11
u 0 0

0 M22
v 0

0 0 M33
w

2
664

3
775

€quðtÞ

€qvðtÞ

€qwðtÞ

8>><
>>:

9>>=
>>;
þ

KL11
u 0 KL13

us

0 KL22
v KL23

vs

KL31
su KL32

sv KL33
ss þ KL33

b

2
664

3
775

quðtÞ

qvðtÞ

qwðtÞ

8>><
>>:

9>>=
>>;

þ

0 0 KNL13
2

0 0 KNL23
2

2KNL13T
2 2KNL23T

2 KNL33
4 þ KNL33

2s þ 2KNL33T
2s

2
664

3
775

quðtÞ

qvðtÞ

qwðtÞ

8>><
>>:

9>>=
>>;
¼

0

0

0

8>><
>>:

9>>=
>>;
. ð9Þ

Matrices M11
u and M22

v are the membrane inertia matrices and matrix M33
w is the transverse inertia matrix.

Matrices of type KL
ij
k are constant stiffness matrices; in particular, matrices KL11

u and KL22
v are membrane

stiffness matrices, matrix KL33
b is the bending stiffness matrix; matrices KL13

us ; KL
23
vs and KL32

sv are due to

coupling between the transverse deflection and the membrane deflection, which occurs because of the shell

curvature; matrix KL33
ss is due to the transverse deflection and to the shell curvature. There are four stiffness

matrices that depend on the generalised transverse displacements qw, originating non-linear terms. These are

the matrices KNLi3
2 , i ¼ 1, 2, and KNL33

2s which depend linearly on qw, and matrix KNL33
4 , which is a quadratic

function of qw. It is pointed out that a more correct notation of all terms that depend on qw(t), as for example

KNL13
2 , would be KNL13

2 ðqwðtÞÞ, but this notation was not used for the sakes of simplicity and readability

(actually, for the same reason qw(t) is sometimes written simply as qw, etc.).
When the boundaries are fixed, the middle surface membrane displacements are smaller than the transverse

displacements, particularly if the shell is not deep. It is widely accepted that in thin plates the membrane inertia
may in most cases be neglected with a small accuracy loss. However, it is debatable whether the membrane
inertia of shallow shells can be neglected or not [1,7]. Only shallow shells with immovable clamped boundaries
will be analysed and a few numerical tests carried out in the time domain indicated that it is reasonable to
neglect membrane inertia in this case. This approach will be partially validated in Section 3.2 by computing the
natural frequencies using models with and without membrane inertia.

Neglecting the membrane inertia and using Eq. (9), the generalised membrane displacements are
expressed as

quðtÞ ¼ �KL
11�1

u ðKL13
us þ KNL13

2 ÞqwðtÞ;

qvðtÞ ¼ �KL
22�1

v ðKL23
vs þ KNL23

2 ÞqwðtÞ:
(10)
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Thus, the following condensed time domain equations of motion are obtained:

M33
w €qwðtÞ þ KL33

ss þ KL33
b � KL13

suKL
11�1

u KL13
us � KL32

sv KL
22�1

v KL23
vs

h i
qwðtÞ

þ KNL33
2s þ 2KNL33T

2s � KL31
suKL

11�1

u KNL13
2 � KL32

sv KL
22�1

v KNL23
2 � 2KNL13T

2 KL11�1

u KL13
us

h

�2KNL23T

2 KL22�1

v KL23
vs

i
qwðtÞ þ KNL33

4 � 2KNL13T

2 KL11�1

u KNL13
2 � 2KNL23T

2 KL11�1

v KNL23
2

h i
�qwðtÞ ¼ 0. ð11Þ

The number of degrees of freedom in Eq. (11) is n ¼ p2
o. Although the model above requires a moderate

number of degrees of freedom for accuracy, this number will be further reduced by applying a standard modal
condensation procedure. To this effect, the linear modes of vibration are computed solving the eigenvalue
problem:

KL33
ss þ KL33

b � KL31
suKL

11�1

u KL13
us � KL32

sv � KL22�1

v KL23
vs

h i
� o2M23

w

� �
/ ¼ 0 (12)

and a rectangular matrix Un�m, whose columns are vectors that represent the first m linear mode shapes, is
defined. The equations of motion are transformed into a reduced set of m equations in modal coordinates qm,
as follows:

qwðtÞ ffi Un�mqmðtÞ, (13)

UTM33
w U€qmðtÞ þUT KL33

ss þ KL33
b � KL31

suKL
31�1

su KL13
us � KL32

sv KL
22�1

v KL23
vs

h i
UqmðtÞ

þUT KNL33
2s þ 2KNL33T

2s � KL31
suKL

11�1

u KNL13
2 � KL32

sv KL
22�1

v KNL23
2 � 2KNL13T

2 KL11�1

u KL13
us

h

�2KNL23T

2 KL22�1

v KL23
vs

i
UqmðtÞ þUT KNL33

4 � 2KNL13T

2 KL11�1

u KNL13
2 � 2KNL23T

2 KL11�1

v KNL23
2

h i
�UqmðtÞ ¼ 0,

3M€qmðtÞ þ KlqmðtÞ þ KnlqmðtÞ ¼ 0, ð14Þ

The harmonic balance method is now applied in order to obtain a set of algebraic equations which depend
on the fundamental frequency of vibration and on the coefficients of each harmonic. An appropriate choice
of the number of harmonics in the truncated Fourier series is important: it should not be so small
that it introduces errors or so large that it leads to unnecessary and cumbersome algebraic derivations.
In the choice of truncated Fourier series, it should be taken into account that only undamped periodic
motions will be analysed and that quadratic and cubic non-linear terms are present in the equations of
motion (14). The latter condition advises one to consider the constant term, odd and even harmonics in the
Fourier series (15); the former implies that sine terms are not necessary. A large number of numerical tests
employing numerical integration of the equations of motion in the time domain were carried out; some of
these tests are shown in Ref. [17]. Spectra of the time domain responses were obtained and, although
in a limited number of tests higher order harmonics appeared, in the majority of cases the constant term
and the first three harmonics were the only significant ones. Consequently, the modal coordinates will be
expressed as

qmðtÞ ¼
1

2
wc0 þ

Xk

i¼1

wci cos ðiotÞ (15)

and k will be made equal to three. Inserting the truncated series (15) into Eq. (14) and applying the harmonic
balance method, one obtains a set of algebraic equations which depend on the fundamental frequency of
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vibration and on the coefficients of each harmonic:

�o2

0 0 0 0

0 M 0 0

0 0 4M 0

0 0 0 9M

2
6664

3
7775þ

1
2Kl 0 0 0

0 Kl 0 0

0 0 Kl 0

0 0 0 Kl

2
6664

3
7775

0
BBB@

1
CCCA

wc0

wc1

wc2

wc3

8>>><
>>>:

9>>>=
>>>;
þ

Fc0

Fc1

Fc2

Fc3

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;
. (16)

Eq. (16) can also be understood as frequency domain equations of motion. The coefficients of the harmonics
form a vector wC

T
¼ {wc0, wc1, wc2, wc3}

T. The vector qm(t) is an even function of time and the non-linear
terms—Fc0, Fc1, Fc2, and Fc3—are defined by

Fci ¼
2

T

Z T

0

Knl qmðtÞ cosðiotÞdt; i ¼ 0; 1; 2; 3. (17)

The application of Eqs. (16) and (17) is equivalent to select the coefficients of each harmonic.
Solving Eq. (16) is equivalent to find the vector wC

T
¼ {wc0, wc1, wc2, wc3}

T and the frequency o2, that make
the following vector F equal to the null vector:

F ¼ �o2

0 0 0 0

0 M 0 0

0 0 4M 0

0 0 0 9M

2
6664

3
7775þ

1
2
Kl 0 0 0

0 Kl 0 0

0 0 Kl 0

0 0 0 Kl

2
6664

3
7775

0
BBB@

1
CCCA

wc0

wc1

wc2

wc3

8>>><
>>>:

9>>>=
>>>;
þ

Fc0

Fc1

Fc2

Fc3

8>>><
>>>:

9>>>=
>>>;
. (18)

This is an eigenvalue problem where one of the matrices depends on the eigenvector, a problem that may be
solved by an arc-length continuation method [14,20]. This method is essentially a Newton–Raphson
procedure, but instead of using the frequency or the amplitude of vibration as a parameter, the distance
between two points of the backbone curve is employed, which allows one to pass turning points. In each step,
both o and wC are not know.

Solving Eq. (18) frequency and shapes of vibration that depend on the amplitude of vibration displacement
are obtained. We say that the pair frequency/mode shape represents a non-linear mode of vibration of the
undamped shell. In what concerns the shapes of vibration, one can distinguish three cases. The first one—that
was not found here in the numerical applications, but was found before in plates [15]—is the case where there
is no internal resonance and only one vector wci, i ¼ 1, 2, 3, 4, is different from zero. In this case, we would
have obtained an approximation to the true non-linear mode shape, but where, unlike what happens in reality,
the shape does not change during a given motion. In the second case, found in the numerical applications
shown here, there is still no internal resonance, but at least two wci, i ¼ 1,2,3,4 are different from zero. It is
easy to see from Eq. (15) that in this case the present model results in a (non-linear mode) shape that changes
during a specified motion: it is not ‘‘self-similar at all times’’ [21]. Finally, we have the case of internal
resonance where two modes are coupled [22].

It is recalled that there is a number of publications on the variation of mode shapes with amplitude, as for
example the influential Refs. [23,24]. Moreover, the so-called ‘‘non-linear normal modes’’ gave rise to a
number of publications after important works like [25,26]. Clearly, the approach followed in this paper uses
iterative methods and does not provide expressions for the non-linear modes that one can use in model
reduction.

3. Numerical results and discussions

3.1. Validation

Partial validation of the approach here developed was conducted by comparing the linear and non-linear
natural frequencies of the present model with results obtained by other authors. In Table 1 frequency
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Fig. 2. Non-linear natural frequency versus amplitude for a cylindrical shell: —, present solution; � , solutions from Ref. [3].

Table 1

First four-frequency parameters of a completely free cylindrical shell (a/h ¼ 100, a/b ¼ 1, R1/a ¼ 2, R2 ¼N, n ¼ 0.3)

References Mode number

1 2 3 4

Ribeiro, p-version FSDT [16] 13.466 22.063 34.767 48.596

Bardell et al., [27] Ansys 100� 100 13.403 21.473 34.148 48.913

Bardell et al. [27] HFEM, po ¼ pi ¼ 10 13.403 21.473 34.147 48.908

Leissa and Narita [28] 13.508 22.073 34.868 48.703

Present, po ¼ pi ¼ 10 13.508 22.072 34.868 48.703

P. Ribeiro / Journal of Sound and Vibration 313 (2008) 224–245230
parameters in the linear regime are given; the parameters are defined as O ¼ ob2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, where D is the

flexural rigidity, Eh3=ð12ð1� n2ÞÞ. The present code gives similar values to the ones published.
Proceeding to the non-linear regime, a comparison is carried out with Kobayashi and Leissa [3] and with

Przekop et al. [7]. The case study is a cylindrical shell supported by shear diaphragms, such that the boundary
conditions for a thin shell are the following:

v0ðx; y; tÞ ¼ w0ðx; y; tÞ ¼ 0; w0
;yðx; y; tÞ ¼ 0; Nxðx; y; tÞ ¼ 0; Mxðx; y; tÞ ¼ 0 at x ¼ �

a

2
,

u0ðx; y; tÞ ¼ w0ðx; y; tÞ ¼ 0; w0
;xðx; y; tÞ ¼ 0; Nyðx; y; tÞ ¼ 0; Myðx; y; tÞ ¼ 0 at y ¼ �

b

2
.

The geometric characteristics respect the following relations: Rx/a ¼ 0.1, h/a ¼ 0.01, b/a ¼ 1; and the
Poisson coefficient is v ¼ 0.3. Fig. 2 presents the frequency ratio o=ol1—where ol1 represents the natural
frequency of the first bi-symmetric linear mode—in function of the non-dimensional maximum positive
deflection wmax/h for a cylindrical shallow shell. A single mode model was employed, as in Refs. [3,7], and the
values here obtained agree with the ones given in Ref. [3]. Visual comparison with the figure given in Ref. [7]
also indicates close agreement.
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Table 2

Shells curvature radius and thickness

Shell 1 Shell 2 Shell 3 Shell 4

Curvature radius b/R ¼ 0.4 b/R ¼ 0.2 b/R ¼ 0.4 b/R ¼ 0.2

Thickness (m) h ¼ 0.001 h ¼ 0.001 h ¼ 0.0025 h ¼ 0.0025

Table 3

Convergence of linear natural frequencies (rad/s) of Shell 1, bi-symmetric modes

Mode Number of shape functions

po ¼ 6, pi ¼ 10a po ¼ 6, pi ¼ 10b po ¼ 6, pi ¼ 12a po ¼ 6, pi ¼ 12b po ¼ 8, pi ¼ 14a po ¼ 8, pi ¼ 14b

1 1138.96 1137.62 1138.95 1137.61 1138.95 1137.61

2 1914.86 1913.62 1911.35 1910.12 1911.28 1910.05

3 2476.97 2475.86 2476.54 2475.43 2476.53 2475.42

4 2966.94 2965.53 2961.28 2959.88 2961.08 2959.68

5 3480.34 3479.20 3353.24 3352.12 3337.79 3336.69

6 3817.94 3817.08 3814.89 3814.02 3814.64 3813.78

7 3875.83 3875.11 3840.06 3839.27 3835.50 3834.71

8 4147.45 4146.71 4140.24 4139.58 4130.22 4129.80

9 4254.13 4253.82 4160.89 4160.48 4148.35 4147.69

10 4398.28 4397.97 4335.39 4334.86 4313.98 4313.44

11 4504.96 4504.34 4412.67 4412.33 4408.70 4408.37

12 5295.77 5295.57 5241.97 5241.60 5225.68 5225.29

aWithout membrane inertia.
bWith membrane inertia.
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3.2. Properties of shells and analyses of convergence

Four panels will be now studied, in order to analyse the variation of the non-linear natural frequencies with
the initial curvature radius and thickness, properties given in Table 2. The relation between the curvature and
the projected length is within the accepted limit for a shell to be considered shallow, which is either 0.4 or 0.5,
depending on the source [1,19,28]. The ratio between the thickness and the projected length is either
h/b ¼ 0.002 or 0.005, i.e., the shells are very thin so that thin shell theory applies even if high-order modes are
present in the motion. The material properties are E ¼ 7� 1010N/m2, r ¼ 2778 kg/m3 and n ¼ 0.33, which are
typical properties of aluminium. E is the Young modulus, r the mass density and n the Poisson ratio. The
shells have quadrangular planform (a ¼ b), with side length equal to 0.5m and are fully clamped.

The designation ‘‘main branch’’ is used for a branch of periodic free vibration solutions, which starts at zero
vibration amplitude and either at a linear natural frequency or at a linear natural frequency divided by an
integer. The continuation method will be started at the first bi-symmetric (i.e. symmetric with respect to planes
xz and yz) linear mode. Using models with symmetric and antisymmetric transverse shape functions to carry
out preliminary analyses of Shells 1–4, only bi-symmetric transverse modes were found in this main branch of
solutions. This behaviour is similar to the one encountered in plates [15], where coupling between symmetric
and antisymmetric modes only occurred in bifurcated branches. Taking those numerical experiences as a valid
indication, the models employed in the analyses that follow only contain symmetric f functions. Both
symmetric and antisymmetric g shape functions are still required for the membrane displacements.

The third harmonic is the highest harmonic present in the Fourier expansion (15) of the generalised
coordinates and a hardening spring effect may occur. If we intend to study the periodic vibrations until a
fundamental non-linear frequency equal to 1:25ol1; then all the linear modes with natural frequencies smaller
than 1:25� 3� ol1 should be included in the model and these modes ought to be computed with reasonable
accuracy. Tables 3–6 show the linear natural frequencies computed with various models, either full (eigenvalue
problem that results from Eq. (9) without non-linear terms) or reduced by neglecting the membrane inertia,



ARTICLE IN PRESS

Table 4

Convergence of linear natural frequencies (rad/s) of Shell 2, bi-symmetric modes

Mode Number of shape functions

po ¼ 6, pi ¼ 10a po ¼ 6, pi ¼ 10b po ¼ 6, pi ¼ 12a po ¼ 6, pi ¼ 12b po ¼ 8, pi ¼ 14a po ¼ 8, pi ¼ 14b

1 865.639 865.36 865.64 865.359 865.638 865.359

2 1722.83 1722.60 1722.46 1722.228 1722.453 1722.222

3 1749.72 1749.47 1749.71 1749.46 1749.71 1749.46

4 2073.23 2073.13 2073.15 2073.05 2073.15 2073.04

5 2170.26 2170.20 2168.78 2168.71 2168.72 2168.65

6 2579.44 2579.26 2578.31 2578.13 2578.27 2578.09

7 2711.99 2711.92 2711.49 2711.42 2711.47 2711.40

8 2878.58 2878.45 2877.65 2877.52 2877.62 2877.49

9 3587.97 3587.76 3521.59 3521.36 3502.15 3501.93

10 3644.18 3644.00 3642.97 3642.80 3642.92 3642.75

11 4019.62 4019.58 4007.94 4007.90 3993.34 3993.30

12 4098.92 4098.74 4043.57 4043.36 4026.84 4026.64

aWithout membrane inertia.
bWith membrane inertia.

Table 5

Convergence of linear natural frequencies (rad/s) of Shell 3, bi-symmetric modes

Mode Number of shape functions

po ¼ 6, pi ¼ 10a po ¼ 6, pi ¼ 10b po ¼ 6, pi ¼ 12a po ¼ 6, pi ¼ 12b po ¼ 8, pi ¼ 14a po ¼ 8, pi ¼ 14b

1 2047.66 2044.98 2047.66 2044.97 2047.66 2044.97

2 3782.53 3781.28 3782.43 3781.18 3782.43 3781.18

3 3960.62 3958.38 3960.62 3958.38 3960.62 3958.37

4 4450.55 4449.73 4450.53 4449.72 4450.53 4449.72

5 4994.35 4992.90 4991.79 4990.33 4991.69 4990.24

6 6129.77 6129.18 6129.04 6128.45 6128.99 6128.40

7 6283.29 6281.37 6281.61 6279.69 6281.55 6279.62

8 6799.69 6798.40 6797.95 6796.65 6797.88 6796.59

9 8877.80 8875.62 8767.85 8765.53 8722.48 8720.21

10 8937.86 8936.12 8935.82 8934.08 8935.70 8933.96

11 9592.47 9592.15 9573.50 9573.13 9535.98 9535.61

12 10151.3 10149.4 10059.8 10057.7 10021.0 10019.0

aWithout membrane inertia.
bWith membrane inertia.
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Eq. (12). Rather accurate values are obtained with the po ¼ 6, pi ¼ 10 models without membrane inertia, and
these will be the original models employed. In what concerns the modal reduction, we can see that 10 modes of
Shell 1 have frequencies lower than 1:25� 3� ol1: 10 linear modes are used in the modal reduction. In the
other shells not so many modes would be required, but 10 modes will also be employed.
3.3. Backbone curves and shapes of vibration

To define the backbone curves, the amplitude of the ith harmonic at point (xp, yp) is computed as

wi ¼ Nwðxp; ypÞ
T
n Un�mwci m. (19)
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Table 6

Convergence of linear natural frequencies (rad/s) of Shell 4, bi-symmetric modes

Mode Number of shape functions

po ¼ 6, pi ¼ 10a po ¼ 6, pi ¼ 10b po ¼ 6, pi ¼ 12a po ¼ 6, pi ¼ 12b po ¼ 8, pi ¼ 14a po ¼ 8, pi ¼ 14b

1 1663.23 1662.75 1663.23 1662.75 1663.23 1662.75

2 2337.87 2337.67 2337.87 2337.67 2337.87 2337.67

3 2759.03 2758.85 2759.02 2758.85 2759.02 2758.85

4 3603.74 3603.32 3603.74 3603.32 3603.74 3603.31

5 4778.28 4777.75 4777.68 4777.15 4777.62 4777.10

6 5128.63 5128.53 5128.43 5128.33 5128.39 5128.29

7 6093.91 6093.41 6093.52 6093.02 6093.48 6092.98

8 6237.83 6237.52 6237.31 6237.00 6237.27 6236.96

9 8706.60 8706.17 8705.90 8705.47 8688.80 8688.22

10 8759.54 8758.99 8730.92 8730.33 8706.66 8706.22

11 8946.33 8946.25 8941.27 8941.19 8902.02 8901.93

12 10023.5 10023.1 9999.83 9999.31 9964.85 9964.33

aWithout membrane inertia.
bWith membrane inertia.
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W0 is additionally multiplied by 1
2
so that it represents the offset of w0(x, y, t) from zero (see Eq. (15)). The

displacement with respect to the reference plate, wi(x, y) which is given by Eq. (1), is neither included in the
representation of W0 nor in the sections of mode shapes shown later.

Fig. 3 shows the backbone curves of Shell 1, which were traced by starting the continuation method
at the first linear bi-symmetric mode of vibration (o=ol1 ¼ 1; near zero vibration amplitude). There is a
softening spring effect from the linear solution until o=ol1 � 0:95; accompanied by a visible increase of the
absolute amplitudes at (x, y) ¼ (0, 0) of all harmonics except the second, which is almost zero. The first
harmonic dominates in this region. At o=ol1 � 0:95 there is a singular point [29], followed by a hardening
spring effect, where, at (x, y) ¼ (0, 0), the amplitudes of the constant term, first harmonic and second
harmonic slightly increase and the third harmonic markedly increases; more singular points occur after.
The constant term and the three harmonics considered in the series are, in different proportions, present
in all solutions.

It is advisable to compute the backbone curve at another location, because, as shown in the appendix,
some modes have low vibration amplitude at (0, 0). Hence, the backbone curve was also computed
at (x, y) ¼ (0, b/3). Fig. 4 shows that the second harmonic is rather meaningful also in the range of
frequencies 0:95oo=ol1o1.

It is also very informative to plot the shapes assumed by the different harmonics. In Fig. 5 we can see some
sections of these shapes at particular points of the backbone curve, points which are defined by the non-linear
frequencies of vibration and vibration amplitudes. These sections were defined using Eq. (19), but with xp ¼ 0
and yp varying from 0 to b/2. Furthermore, the sections were normalised such that the amplitude is equal to
one at point (x, y) ¼ (0, 0) or at the point of maximum amplitude displacement in the sole case of the second
harmonic. The amplitudes of displacement achieved by each harmonic at (x, y) ¼ (0, 0) are given in the figure
legend.

In conclusion, analysing the ensemble of computed data one finds out that from o=ol1 ¼ 1 to � :95 the
shell experiences oscillations where the first harmonic dominates, with a shape that is similar, but not equal, to
the first linear mode (it is stressed that this shape changes both with the maximum vibration amplitude and
during the period of oscillation). The singular point at o=ol1 � :95 is due to the transfer of energy to higher
order modes of vibration, which are connected with the second and third harmonics. The second harmonic
becomes at this stage dominated by the second mode, but other modal coordinates appear, which is
understandable because the second non-linear mode is different from the linear one. Interaction between
modes also occurs at other points (for example at solutions with a dimensional frequency o=ol1 � 1; but finite
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Fig. 3. Backbone curve of Shell 1 (a/h ¼ 500, a/b ¼ 1, b/R ¼ 0.4) at (x, y) ¼ (0, 0): +, constant term; J, first harmonic; &, second

harmonic; B, third harmonic.
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amplitude of vibration, and at o=ol1 � 1:11), causing the amplitudes of each harmonic to increase or decrease
as modes gain or loose influence.

It is noticeable that the backbone curve is more complex than any of the backbones found in plates in
former studies, Ref. [15], and that the number of interactions detected between modes in a short frequency
span is greater in shells than in plates (please note that even more solutions could be found here, had we
included antisymmetric functions and explored all bifurcation points). This behaviour is explained by the
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Fig. 4. Backbone curve of Shell 1 (a/h ¼ 500, a/b ¼ 1, b/R ¼ 0.4) at (x, y) ¼ (0, b/3): +, constant term; J, first harmonic; &, second

harmonic; B, third harmonic.
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quadratic and cubic terms that appear in the condensed equations of motion of shallow shells—the condensed
equations of plates only have cubic non-linear terms—and by the stronger relation between membrane and
transverse displacements in the case of shells.
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Fig. 5. Sections, x ¼ 0, of normalised shapes of Shell 1: (a) constant term, (b) first harmonic, (c) second harmonic, (d) third harmonic:
J, o=ol1 � 1 and W0/h ¼ �1.3� 10�3, W1/h ¼ �.104, W2/h ¼ �1.75� 10�4, W3/h ¼ 2.45� 10�2; &, o=ol1 ¼ 0:97 and

W0/h ¼ �9.5� 10�2, W1/h ¼ �0.926, W2/h ¼ �3.62� 10�4, W3/h ¼ 6.52� 10�2; þo=ol1 ¼ :95 and W0/h ¼ �.155, W1/h ¼ �1.20,

W2/h ¼ 2.36 E�2, W3/h ¼ 0.113; —, o=ol1 ¼ :989 and W0/h ¼ �.184, W1/h ¼ �1.33, W2/h ¼ 0.158, W3/h ¼ 0.604; B, o=ol1 ¼ 1:05
and W0/h ¼ �0.589, W1/h ¼ �2.014, W2/h ¼ �0.196, W3/h ¼ 1.047; - -, o=ol1 ¼ 1:24 and W0/h ¼ �0.730, W1/h ¼ 3.41� 10�2,

W2/h ¼ 8.62� 10�2, W3/h ¼ 1.45.
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Fig. 6. Shapes of Shell 1 when o=ol1 ¼ 0:989; at different instants: (a) t ¼ 0, (b) t ¼ T/10, (c) t ¼ T/5, (d) t ¼ 3T/10, (e) t ¼ 4T/10 and

(f) t ¼ T/2.

P. Ribeiro / Journal of Sound and Vibration 313 (2008) 224–245 237



ARTICLE IN PRESS

Fig. 7. Backbone curve of Shell 2 (a/h ¼ 500, a/b ¼ 1, b/R ¼ 0.2): +, constant term; J, first harmonic; &, second harmonic; B, third

harmonic.
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Fig. 8. Backbone curve of Shell 3 (a/h ¼ 200, a/b ¼ 1, b/R ¼ 0.4): +, constant term; J, first harmonic; &, second harmonic; B, third

harmonic.
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Fig. 9. Backbone curve of Shell 4 (a/h ¼ 200, a/b ¼ 1, b/R ¼ 0.2): +, constant term; J, first harmonic; &, second harmonic; B, third

harmonic.

P. Ribeiro / Journal of Sound and Vibration 313 (2008) 224–245240
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For each particular solution, summing the contributions of the harmonics a shape that changes
along the vibration period is obtained. An example where the variation of the shape of Shell 1 with time is
particularly noticeable is the one shown in Fig. 6. In this figure, the dimensional fundamental frequency is
o=ol1 ¼ 0:989 and the amplitude of the first harmonic at the central point is �1.33 h. The shapes of the shell
are represented at six instants between t ¼ 0 and T/2 s, where T represents the period of vibration, after T/2
the shapes would repeat in reverse order until arriving at the initial one at t ¼ T. As written before, the initial
curvature given by Eq. (1) is not represented. The variation of the shape for a given periodic motion is
particularly visible in the case of internal resonance, but it is again stressed that the model employed allows to
approximately compute non-linear mode shapes—without internal resonance—that change along the
vibration period.

Fig. 7 shows the backbone curve of Shell 2, which has a greater initial curvature radius than Shell 1,
i.e., Shell 2 is shallower. A wealth of solutions was found, both hardening and softening behaviours
are apparent, but hardening dominates. At (x, y) ¼ (0, 0) some solutions only involve the constant term
and the second harmonic, others only involve the constant term and the third harmonic, and others
involve all harmonics and the constant term. Although the iterations were started at the first linear
mode, harmonic motion, higher order modes and strongly non-harmonic oscillations soon appear.
Actually, in several solutions the magnitudes of the second and third harmonics are higher than the
amplitude of the first harmonic. The differences in the backbone curve of this shell and the deeper Shell 1 are
striking and, due to the modal interactions, cannot be simply analysed considering softening versus hardening
spring effects.

Fig. 8 shows the backbone curves of Shell 3, a shell which is similar to Shell 1 but thicker. The initial
behaviour is hardening, but, as happened with the two previous shells, turning points and several solutions
were found in a short frequency span. At (x, y) ¼ (0, 0) most solutions involve all harmonics and the constant
term, but different harmonics dominate in different solutions. Similarly to Shell 2, some solutions appeared
where the first and second harmonic are identically zero, whilst the constant term and the third harmonic
are finite.

The last backbone curve here presented (Fig. 9) is the one of Shell 4, a shell which has the thickness of
Shell 3, but larger curvature radius. As with the other three shells, many solutions were found in a short
frequency span. Starting from the linear solution, the first harmonic dominates and there is a softening spring
effect. Later, hardening spring occurs. The constant term is present in all solutions, in some solutions the first
and second harmonics are zero.
4. Final comments

The free periodic non-linear vibrations of cylindrical, open shallow shells were studied with a
model that employs a truncated Fourier series to express the time dependence of the solution
and is implemented reduction where using linear modes. In spite of these approximations, the model is
multi-degree-of-freedom and allows to describe: (1) mode shape variations with maximum vibration
amplitude, (2) mode shape variation during a given periodic motion and (3) motions where internal re-
sonance occurs.

Solutions were found that are dominated by one harmonic; however, several harmonics are
generally present. The initial curvature and the thickness of the shell determine if the first linear mode
is followed by hardening or softening. Internal resonances are apparently very common in undamped shells
and the appearance of different modes in the oscillations may swiftly change softening to hardening or
vice versa.
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Appendix. Linear mode shapes of shell 1

See Fig. A1.
Fig. A1. Linear bi-symmetric modes ordered according to growing linear natural frequencies: (a) mode 1, (b) mode 2, (c) mode 3,

(d) mode 4, (e) mode 5, (f) mode 6, (g) mode 7, (h) mode 8, (i) mode 9, (j) mode 10.
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Fig. A1. (Continued)
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Fig. A1. (Continued)
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