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Abstract
This work presents a physics-driven machine learning framework for the simulation of acoustic scattering problems. The 
proposed framework relies on a physics-informed neural network (PINN) architecture that leverages prior knowledge based 
on the physics of the scattering problem as well as a tailored network structure that embodies the concept of the superposi-
tion principle of linear wave interaction. The framework can also simulate the scattered field due to rigid scatterers having 
arbitrary shape as well as high-frequency problems. Unlike conventional data-driven neural networks, the PINN is trained by 
directly enforcing the governing equations describing the underlying physics, hence without relying on any labeled training 
dataset. Remarkably, the network model has significantly lower discretization dependence and offers simulation capabilities 
akin to parallel computation. This feature is particularly beneficial to address computational challenges typically associated 
with conventional mesh-dependent simulation methods. The performance of the network is investigated via a comprehensive 
numerical study that explores different application scenarios based on acoustic scattering.
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1  Introduction

The fundamental concept of scattering holds a critical role 
in the general area of wave physics including, but not limited 
to, photonics [1, 2], geophysics [3], bio-medicine [4], acous-
tics [5, 6], and particle physics [7, 8]. Within these fields, 
scattering finds applications in the most diverse areas includ-
ing, but not limited to, non-destructive testing [9], metrology 
[10], advanced medical imaging [11, 12], remote sensing 
[13], material characterization [14, 15], and inverse material 
design [6, 16].

Over the years, various numerical approaches have been 
developed to tackle the complex problem of scattering simu-
lations. Finite element methods (FEM) [17, 18], finite differ-
ence methods (FDM) [19], boundary element methods [20], 
and discontinuous Galerkin methods [21] have been among 
the most popular. Out of all these existing techniques, FEM 

distinguished itself for its ability to handle complex geom-
etries and irregular boundaries. However, being a mesh-
based technique, FEM suffers from a strong dependence on 
the discretization parameters. This dependence renders the 
FE models very computationally intensive when applied to 
scattering problems involving a large number of degrees of 
freedom, such as those for high frequency, multiple scatter-
ing, and multiscale applications [22, 23]. In particular, when 
dealing with multiple scattering scenarios, a notable chal-
lenge arises as the scale and number of scatterers increases. 
In these situations, FEM simulations become very compu-
tationally intensive or even intractable (i.e. exceeding the 
resources of available supercomputers). In fact, as the num-
ber of scattering elements increases the mesh requirements 
become more stringent (in order to capture the interactions 
between different scatterers) and the number of degrees 
of freedom increases very rapidly. Further studies have 
developed meshfree approaches like meshless local Petrov-
Galerkin [24], smoothed particle hydrodynamics [25], ker-
nel-based meshless method [26], and element-free Galerkin 
method [27] to address these limitations of FEM. The ability 
of these methods to eliminate the need for complex mesh 
generation, which can be very time-consuming (particu-
larly for problems involving irregular geometries or evolv-
ing domains) offers a significant advantage over mesh-based 
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approaches. However, meshless methods often increase the 
computational costs, compared to mesh-based methods, 
due to the need for large numbers of nodes to accurately 
represent the domain [28]. Moreover, ensuring stability and 
accuracy can be more complex in meshless approaches due 
to the lack of structured elements and their dependence on 
neighbor node connectivity, especially in problems involving 
discontinuities [28, 29].

More recently, the use of machine learning as a tool to 
perform computations has seen a rapid increase, ultimately 
leading to the formulation of several models and techniques 
for a variety of applications. In the field of scattering simula-
tions, examples include supervised learning-based deep neu-
ral networks (DNNs) to estimate optical scattering produced 
by nanoparticles [30], and the solution of the Poisson’s 
equation in 2D domains with simple scatterer shapes [31]. 
Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) have been employed to solve the forward 
finite difference time domain problems [32]. Recent studies 
have also introduced semi-supervised [6] and unsupervised 
[33] deep learning models for material design applica-
tions in acoustics and optics. A major drawback of these 
conventional DNNs is the need for comprehensive labeled 
datasets to achieve effective network training. Furthermore, 
these trained DNNs are inherently incapable of guarantee-
ing physically consistent results. Hence, various engineering 
applications have shifted their focus towards physics-driven 
deep learning models that weakens the data dependence. 
This latter process has led to the development of the con-
cept of physics-driven machine learning [34], which aims at 
integrating the governing physics into conventional DNNs.

In physics-driven machine learning, the integration 
of the physics of the problem into a learning algorithm 
amounts to introducing appropriate biases in the DNN that 
can guide the network prediction towards physically con-
sistent solutions. Among the different approaches that can 
be leveraged to embed the physics of the problem within 
the network [35], one of the most effective and extensively 
studied concept is that of physics-informed neural network 
(PINN) [36]. Since the dynamic behavior of most of the 
applications in the field of engineering is often described 
using governing laws expressed as a system of partial dif-
ferential equations (PDEs), the ability of PINN to approxi-
mate numerical solutions of PDEs finds application in a 
wide range of domains. To-date, the literature shows that 
PINNs can address problems in a variety of fields, includ-
ing fluid mechanics [37, 38], heat transfer [39], and solid 
mechanics [40] and more. Moreover, the use of PINNs 
offers two significant advantages over conventional DNN. 
First, PINNs can train without any need for labeled data-
sets, thus addressing the challenge of generating (either 
computationally or experimentally) extensive training 
data. Second, PINNs can learn to approximate results that 

are consistent with the underlying physics, therefore over-
coming the tendency of conventional DNNs (trained on 
labeled datasets) to produce physically inconsistent pre-
dictions. In addition, and not less important, unlike the 
conventional simulation approaches (e.g. FEM, FDM), 
PINNs reduce discretization dependence.

Recent studies have introduced PINNs for scattering 
applications across different fields. Chen et al.   [41, 42] 
explored the problem of inverse parameter identification 
from optical scattered fields using PINNs. This work inte-
grated the Maxwell equations into a PINN framework in 
order to extract the permittivity of the homogenized mate-
rial based on the known scattered field. These parameters 
are crucial to characterize the scatterers in optical applica-
tions. Lee et al. [43] developed a physics-guided neural net-
work model for the transient analysis of acoustic scattering 
problems due to a single scatterer. The approach presented 
was not fully physics-driven; instead, the model enforced a 
combination of governing equation-based and data-based 
loss functions.

PINNs were also developed as solvers for transient for-
ward problems involving the seismic wave equation [44] 
and the full-wave inversion [45] for geophysical appli-
cations. Song et al.  [46] developed a PINN to solve the 
frequency-domain acoustic wave equation for transversely 
isotropic (TI) media with a vertical axis of symmetry (VTI) 
for geophysics applications. Wang et al.  [47] proposed a 
PINN model targeted to steady-state acoustic applications. 
The studies mentioned above developed PINN models to 
predict the scattered fields due to material heterogenei-
ties whose influence was captured by an explicit material 
parameter within the governing PDE. In other terms, these 
previous studies investigated the scattered field due to scat-
tering sources uniformly distributed across the domain, 
and typically employed homogenization techniques. How-
ever, a more complex and unexplored application of PINNs 
involves simulating the steady-state scattering response due 
to fully-resolved scatterers embedded within the domain. 
In this case, the scattered field is produced due to the wave 
interaction with the embedded scatterers, hence making it a 
function of the scatterer shape. It is important to note that, 
unlike the material parameters within the PDE, there is no 
equivalent parameter within the governing PDE that can 
explicitly account for the effect of the scatterer shape. In 
this latter scenario, the presence of rigid scatterers within 
the unbounded domain introduces additional (both internal 
and external) boundary conditions. These boundary condi-
tions are independent of the governing PDE, and they play 
a crucial role in shaping the behavior of the scattered field. 
The proposed work focuses on a steady-state problem and 
does not address transient problems.

Therefore, the objective of this study is to establish 
a PINN framework capable of solving the scattered field 
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generated by rigid scatterers embedded within an unbounded 
homogeneous domain.

1.1 � Major contributions

The primary goal of this study is to develop a class of 
PINNs tailored to address a wide range of acoustic scatter-
ing problems involving arbitrary shaped scatterers, and high-
frequency excitations. In this context, the term “arbitrary 
shape” indicates a wide range of scatterers with both regu-
lar and irregular shapes, while the term “high frequency” 
indicates wavelengths smaller than the characteristic size 
of the scatterer. More specifically, we focus on the develop-
ment of PINNs to find approximate solutions to steady-state 
harmonic acoustic problems (governed by the Helmholtz 
equation) involving arbitrary-shaped rigid scatterers distrib-
uted in an unbounded (infinite) acoustic domain. The key 
contributions of this study are strictly connected to the two 
essential components of the proposed PINN framework 

1.	 Baseline-PINN (b -PINN): A PINN architecture con-
ceived to simulate acoustic scattering problems involv-
ing either single or (a small number of) multiple rigid 
scatterers of arbitrary shapes. In contrast to some exist-
ing models, such as those in the DeepXDE library [48] 
that are suitable for enforcing one basic internal bound-
ary shape, the baseline-PINN is specifically designed to 
simulate fields generated by arbitrary scatterer shapes 
(introducing boundaries internal to the domain). Fur-
thermore, the b-PINN architecture integrated with a tai-
lored optimization procedure (a combination of gradi-
ent-based and second-order optimization) is well suited 
to simulate steady-state scattered fields at high frequen-
cies (i.e. wavelength much shorter than the characteristic 
scatterer size). It is important to note that the b-PINN 
is also able to solve multi-scatterer configurations 
(although with some limitations on the total number 
of scattering elements). Contrarily to classical solution 
methods (e.g. FEM), in this latter case the performance 
of b-PINN is not limited by the number of degrees of 
freedom. Nevertheless, a limitation is imposed by the 
error propagation within the network [49], as discussed 
below.

2.	 Superposition-PINN (s -PINN): A PINN architec-
ture specifically conceived to address the limitations of 
b-PINNs when applied to large number of scatterers. 
Broadly speaking, the superposition-PINN is based on 
an architecture that leverages multiple b-PINNs. The 
uniqueness of this network lies in its dual-level inte-
gration of the underlying physics: 1) the s-PINN archi-
tecture embodies the superposition principle of linear 
acoustics, and 2) the governing PDE and boundary 
conditions are directly enforced through the network 

loss function. This approach addresses the limitation of 
b-PINNs by providing extensive control over the local 
distribution of scatterers within the multiple scatterer 
domain. Specifically, the s-PINN implements a domain 
partitioning approach such that individual b-PINNs can 
be used to simultaneously handle separate sub-domains. 
In addition, the individual b-PINNs within the overall 
s-PINN architecture naturally enable parallel processing 
by assigning each b-PINN training to separate compu-
tational cores. This parallelization approach can signifi-
cantly reduce the total simulation time for multiple scat-
tering studies as the s-PINN runtime is only dominated 
by the largest b-PINN and is not the sum of the runtimes 
of all the b-PINNs.

It follows that, by virtue of its reduced spatial discretization 
dependence and its parallelization capabilities, the resulting 
physics-driven machine learning-based forward solver has 
the potential to effectively reduce the computational cost 
associated with multiple scattering simulations compared 
to traditional methods (based on the solution of systems of 
differential equations). While PINNs exhibit lower discre-
tization dependence during the training process, the abil-
ity of the trained PINNs to approximate solutions on a new 
discretization makes the prediction process discretization-
independent. However, note that this work focused on the 
development of the methodology and architecture and does 
not implement a parallel version of the proposed model; 
all results herein are obtained via serial computations. The 
primary focus of this work is on introducing the above-
mentioned PINN methodologies to enable certain classes 
of simulations (such as multiple scattering), rather than opti-
mizing the computational performance.

The paper is organized as follows. Section 2 introduces 
some background on PINNs. Section 3 presents the gen-
eral problem setup for single scatterers, elaborates on the 
implementation of the b-PINN, and reports and discusses the 
results of the trained b-PINNs. Thereafter, Sect. 4 presents 
the general problem setup for multiple scattering, elaborates 
on the implementation of the s-PINN, and reports and dis-
cusses the results of the trained s-PINNs.

2 � Basics of physics‑informed neural network 
(PINN)

Multiple approaches can be followed to construct a deep 
learning model capable of simulating the physical response 
of a system. Data-driven deep learning models can capture 
the physical response of the system by optimizing the neural 
network hyperparameters that lead to the minimization of 
the error between the training data and the network predic-
tions. A major drawback of the data-driven approach is that 
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it requires a large volume of training data and the predic-
tions are often physically inconsistent (as the model can only 
capture the physical response represented by the training 
data). On the other hand, physics-informed neural networks 
(PINNs) belong to a class of deep learning algorithms that 
can integrate prior physical information about the problem 
to improve the performance of the learning algorithms. More 
specifically, PINNs can enforce the deep learning algorithm 
to learn the mathematical framework of the problem in the 
form of governing partial differential equations (PDEs) and 
constitutive equations. The two major advantages of using 
PINNs in comparison to conventional DNNs are: 1) PINNs 
present the capability to train without labeled datasets, and 
2) PINNs can learn to predict physically consistent results.

In a general PINN framework, the unknown solution � 
is computationally predicted by a neural network parame-
terized via a set of parameters � = [W,b] , where W and b 
are the sets of weights and biases of the network, respec-
tively. The PINN approximation of the solution is 𝜙̂ such 
that 𝜙̂(𝜃) ≈ 𝜙 . Moreover, the PINN learns to predict 𝜙̂ by 
finding the optimal � by minimizing a loss function L(�)

The PINN loss function can be represented as follows

where wB and wN  are the weighting factors and

(1)�∗ = argmin
�

L(�)

(2)L(�) = wBLB(�) + wNLN(�)

where B represents the boundary condition, N  represents 
the governing PDE, and g represents the boundary data. 
Further, LB(�) and LN(�) are the mean square errors (MSE) 
of the residual of the boundary condition and the governing 
PDE, respectively. Here, xb is an arbitrary point sampled 
from a distribution of Nb boundary training points and xn is 
an arbitrary point sampled from a distribution of Nn domain 
collocation points.

3 � Acoustic scattering in the frequency 
domain

This section introduces the benchmark problem used to test 
the b-PINN architecture. As previously indicated, this prob-
lem is based on the acoustic scattering due to rigid scat-
terers in the frequency domain. Initially, some theoretical 
preliminaries of acoustic scattering and the corresponding 
mathematical formulation are presented. Then, the concept 
of physics-informed neural network (PINN) formulated for 
the specific benchmark problem is introduced. Finally, the 
performance of the proposed network is studied through a 
series of numerical experiments.

3.1 � Problem description

Consider the classical problem of 2D acoustic scattering in 
air due to a single rigid scatterer. Assuming harmonic exci-
tation and steady state conditions, the acoustic scattering 
problem is governed by the Helmholtz equation defined on 
a 2D domain Ω0 ⊂ ℝ

2 as shown in Fig. 1

with the following external boundary conditions enforced 
on Γ1

e
 , Γ2

e
 , Γ3

e
 , and Γ4

e

where ps is the scattered pressure, x = (x, y) is the spatial 
coordinate, the wavenumber k =

2𝜋f

cs
êk is a function of fre-

quency f and the speed of sound cs , with unit normal vector 
êk = [1, 0] , and boundary data gj for j = 1, 2, 3, 4 . The dif-
ferential operator N  represents the governing PDE. The 
external boundary conditions prescribed by the boundary 

(3)

LB(𝜃) =
1

Nb

Nb∑

i=1

|||B(𝜙̂, x
i
b
;𝜃) − gi

|||
2

LN(𝜃) =
1

Nn

Nn∑

i=1

|||N(𝜙̂, xi
n
;𝜃)

|||
2

(4)N(ps) ∶= ∇2ps(x) + k2ps(x) = 0, x ∈ Ω0

(5)
B
1
e
(ps) = g1 x ∈ Γ1

e
, B

2
e
(ps) = g2 x ∈ Γ2

e

B
3
e
(ps) = g3 x ∈ Γ3

e
, B

4
e
(ps) = g4 x ∈ Γ4

e

Fig. 1   Schematic of a 2D square acoustic domain Ω0 of size 
[0, 1]m × [0, 1]m . A rigid internal scatterer defines an internal bound-
ary Γi , while the external boundaries of the domain are Γ1

e
,Γ2

e
,Γ3

e
, 

and Γ4
e
 . The incident pressure ( pi ) and scattered pressure ( ps ) are also 

indicated
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operators Bj
e
 for j = 1, 2, 3, 4 can take one of three possible 

forms: 1) Dirichlet boundary condition Bj
e
= I , 2) Neumann 

boundary condition Bj
e
=

�

�n
 , or 3) impedance boundary con-

dition Bj
e
=

�

�n
+ ikI . To simulate an infinite acoustic 

domain, the Sommerfeld radiation condition (i.e. a throw-off 
boundary) is also enforced by means of the impedance 
boundary condition with gj = 0 (called the absorption 

boundary) on Γ1
e
 , Γ2

e
 , Γ3

e
 , and Γ4

e
.

While Eqs. (4)–(5) introduce the governing PDE and the 
external boundary conditions, the definition of the inter-
nal boundary condition (embedded within Ω0 ) of the rigid 
scatterer also plays a critical role. Moreover, the solution to 
Eq. (4) is determined by the pressure scattered by the rigid 
scatterer Γi and indicated by ps = ℜ𝔢(ps) + iℑ𝔪(ps) . For a 
unit amplitude ( p0 = 1 Pa ) incident plane wave pi = p0e

−ik⋅x 
incident on a rigid scatterer Ω0 , the boundary condition is 
enforced in the form of a Neumann boundary (sound hard 
boundary) as follows

where Bi is the internal boundary operator and n is the sur-
face normal. Equations (4)–(6) provide the mathematical 
description of the forward acoustic scattering problem due 
to a single rigid scatterer Γi.

3.2 � Development of PINN for rigid body acoustic 
scattering

Based on the elements discussed in Sects. 2 and 3.1, a 
b-PINN framework capable of solving the rigid body acous-
tic scattering problem is presented. Note that this section 
introduces the b-PINN parameters and the loss function, 
while a detailed discussion on the network architecture will 
be presented in the following section.

(6)Bi(ps) ∶=
�ps(x)

�n
− ike−ik⋅x = 0 x ∈ Γi

The b-PINN model consists of a neural network taking 
the spatial coordinates x describing the acoustic domain as 
the network input (see Fig. 2a). This deep learning model 
is designed to predict the unknown scattered pressure ps 
using the network parameterized by a set of parameters � . 
The approximate solution provided by the PINN p̂s such 
that p̂s ≈ ps . Moreover, the PINN learns to predict p̂s by 
finding the optimal � via minimization of the loss function 
L(�) . In the case of a single scatterer, the loss function L 
is defined to enforce Eqs. (4)–(6) as follows

where,

where, wBi
 , wBe

 , and wN  are the weighting factors and LBi
 , 

LBe
 , and LN  are the mean square errors (MSE) of the resid-

ual of the rigid internal boundary conditions (Eq. 6), the 
external boundary conditions (Eq. 5), and the governing 
PDE (Eq. 4), respectively. In addition, xj

bi
∈ Γi is the jth 

coordinate from the Nbi
 internal boundary training points, 

(7)L(�) = wBi
LBi

(�) + wBe
LBe

(�) + wNLN(�)

(8)

LBi
(𝜃) =

1

Nbi

Nbi∑

j=1

|Bi(p̂s, x
j

bi
;𝜃)|2

=
1

Nbi

Nbi∑

j=1

|||
𝜕p̂s(x

j

bi
)

𝜕n
− ike

−ik⋅x
j

bi
|||
2

LBe
(𝜃) =

1

Nbe

Nbe∑

j=1

4∑

l=1

|Be(p̂s, x
j,l

be
;𝜃)|2

=
1

Nbe

Nbe∑

j=1

4∑

l=1

|||
𝜕p̂s(x

j,l

be
)

𝜕n
+ ikp̂s(x

j,l

be
)
|||
2

LN(𝜃) =
1

Nn

Nn∑

j=1

|N(p̂s, x
j
n
;𝜃)|2

=
1

Nn

Nn∑

j=1

|||∇
2p̂s(x

j
n
) + k2p̂s(x

j
n
)
|||
2

Fig. 2   a High level schematic 
of the b-PINN architecture to 
simulate acoustic scattering. 
The spatial coordinates x serve 
as the network input, and the 
network is trained to predict 
the scattered pressure p̂s as 
output. b Schematic illustra-
tion of the coordinates used to 
train the b-PINN and sampled 
on the external boundaries 
( Γ1

e
,Γ2

e
,Γ3

e
,Γ4

e
 ), inside the 

acoustic domain ( Ω ), and on the 
rigid internal boundary ( Γi)
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x
j,l

be
∈ Γl

e
 is the jth coordinate on the lth external boundary, 

where l ∈ [1, 2, 3, 4] , from the Nbe
 external boundary training 

points, and xjn ∈ Ω0 is the jth coordinate from the Nn number 
of domain collocation points.

3.3 � Baseline‑PINN architecture

With the loss functions fully defined to integrate the govern-
ing differential equation of the acoustic domain and the cor-
responding boundary conditions, we can address the setup of 
the network architecture. In the following, we first elaborate 
on b-PINN architecture, and later we cover the details for 
network training.

While PINNs are commonly formed using fully connected 
neural network layers, recent studies [50, 51] have devel-
oped physics-driven deep learning models based on deep 
residual networks, also called ResNet architectures. These 
studies highlight the role of ResNets in improving training 
efficiency and prediction accuracy. Based on these previous 
findings, we choose a basic architecture for the PINN based 
on ResNet. Our ResNet architecture has nr residual blocks, 
where each residual block contains nl linear layers of nw neu-
rons. Note that the residual block is an arrangement of lin-
ear neural network layers such that the input to the residual 
block is combined with its output deeper within the block 
for better information flow to the next stage of the DNN. 
Moreover, each linear layer is followed by an adaptive Sine 
activation function. Adaptive activation functions include 
trainable parameters that are dynamically optimized during 
the training process to accelerate convergence and improve 
prediction accuracy in PINNs [52].

A schematic illustration of the proposed architecture is 
shown in Fig. 2a. The architecture passes the input coor-
dinate x = (x, y) of size 2 × 1 through a linear layer of nw 
neurons, then the transformed input is passed through the 
residual blocks to generate p̂s of size 2 × 1 as the output. 
Recall that, while p̂s is a complex number with real and 
imaginary components, DNNs cannot operate with complex 
numbers. Therefore, the two components of p̂s are stored 
as separate real numbers in the output vector, such that 
p̂s = [ℜ𝔢(p̂s),ℑ𝔪(p̂s)] . In addition, as the solution approxi-
mation p̂s contains both real and imaginary parts, the MSE 
losses in Eq. (7) are evaluated separately for the real and 
imaginary components. Automatic differentiation is used to 
calculate the gradients of p̂s with respect to the input coordi-
nate x in the loss function. The PINN architecture described 
above is called the baseline-PINN or b-PINN.

3.3.1 � Training

In this section, we will discuss the network training details 
for the proposed b-PINN. It is important to note that while 
this section introduces the general parameters and their func-
tions in network training, the specific details regarding the 
precise numerical values of these network parameters will be 
described as a part of the numerical experiments presented 
in the next section.

In order to train the b-PINN, the spatial coordinates xbi , 
xbe

 , and xn serve as the input training points on Γi , the train-
ing points on [Γ1

e
,Γ2

e
,Γ3

e
,Γ4

e
] , and the collocation points in 

Ω0 , respectively. Subsequently, the b-PINN is trained on 
mini-batches of the input data by sampling input coordi-
nates x ∈ [xbi , xbe , xn] from their corresponding distribution 
of points as shown in Fig. 2b. The network is trained using 
a two-step optimization process. Initially, we employ the 
Adam optimizer with a learning rate lr and train the net-
work for Ne number of epochs. Subsequently, we switch to 
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno 
(L-BFGS) optimization method, a second-order optimiza-
tion algorithm, to achieve faster convergence in the later 
stages of training. Moreover, the PINN is trained until L(�) 
converges by finding the optimal value of � through back-
propagation via automatic differentiation. The b-PINN is 
trained and implemented in Python 3.8 using Pytorch API 
on NVIDIA A100 Tensor Core GPU with 80GB memory.

3.4 � Numerical experiments and results

This section studies the performance of the proposed 
b-PINN through a series of numerical experiments. More 
specifically, the evaluation focuses on assessing the capabili-
ties of the proposed PINNs in simulating two applications. 
The first application focuses on examining the performance 
of the b-PINN in approximating the scattered acoustic field 
due to an arbitrary rigid scatterer. The second study assesses 
the ability of the b-PINN to perform high-frequency simula-
tions, which is a common limitation of the existing PINNs.

The performance of the PINNs is measured by their abil-
ity to accurately approximate the scattered pressure fields. 
This assessment involves a direct comparison between the 
PINN predictions ( p̂s ) and their corresponding ground truth 
( ps ), which is obtained through finite element analysis. In 
this process, the forward rigid body acoustic scattering prob-
lem is simulated using COMSOL Multiphysics®, a FEM 
software, to evaluate ps . To ensure the accuracy of the for-
ward simulation model in FE, the rigid internal boundary is 
enforced through Neumann boundary conditions and the 
infinite acoustic boundaries are replicated by enforcing 
absorbing boundary conditions using a perfectly matched 
layer (PML). It is also important to note that since we are 
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addressing a steady-state problem, the comparison between 
network predictions and the FEM ground truth is conducted 
at individual frequencies. To achieve this, for a characteristic 
length a0 of a scatterer, forward simulations with a planar 
incident wave input are performed at different frequency (or 
wavelength) ranges corresponding to ka0 < 1 , ka0 ≈ 1 , and 
ka0 > 1 , where the wavenumber k = 2�f

cs
 is a function of fre-

quency f and speed of sound in air cs = 343.21 m∕s . Broadly 
speaking, the frequencies are categorised into three ranges, 
namely, the low-frequency range ( ka0 < 1 ), the mid-fre-
quency range ( ka0 ≥ 1 ), the high-frequency range ( ka01 ). 
Although the current study deals with shapes of different 
sizes, we have evaluated a suitable reference of a0 = 0.1 m 
as an average characteristic length across the different scat-
terer shapes. Based on this, the current study categorizes 
f < 500 Hz  (  ka0 < 1 )  as  low-f requency  range , 
f = 500 Hz − 1 kHz ( ka0 ≥ 1 ) as mid-frequency range, and 
f > 1 kHz ( ka0 >> 1 ) as high-frequency range. Given the 
relative straightforwardness of low-frequency applications 
in the context of a forward solver, this study emphasizes the 
use of the proposed PINNs for simulating rigid acoustic scat-
tering specifically for applications in the mid- and high-
frequency ranges.

Further, we introduce the following metrics to assess the 
overall performance of the networks 

1.	 Relative L2-error: The following error metric is used to 
assess the relative prediction quality in an average sense 

 where, pi
s
 and p̂i

s
 are the ground truth pressure value 

and the predicted pressure value, respectively, at the 
ith location in the corresponding fields. Additionally, N 
represents the number of locations where the pressure 

(9)L2 =

�∑N

i=1
�pi

s
− p̂i

s
�2
�1∕2

�∑N

i=1
�pi

s
�2
�1∕2

fields are compared. The lower the L2-error better the 
network prediction.

2.	 R2-score: The coefficient of determination also called 
the R2-score is used to assess the accuracy of the net-
work prediction. The R2-score measures the average 
variation in the predicted field ( p̂s ) with respect to the 
ground truth field ( ps ) as follows 

 The maximum score of R2
max

= 1 is achieved when the 
prediction matches exactly with the ground truth. Hence, 
the closer the R2-score is to R2

max
 , the higher the predic-

tion accuracy.
3.	 Point-wise error: The following error metric assesses 

the point-wise prediction quality of the pressure field 

 Here, Ep measures the absolute error to provide an error 
map highlighting variation between ps and p̂s fields 
across the spatial domain.

3.4.1 � Application to arbitrary‑shaped rigid scatterers

In this first application, we study the performance of the 
b-PINN by investigating the prediction accuracy of the net-
work for a single scatterer embedded within Ω0 . More spe-
cifically, we choose to train the b-PINN to simulate the for-
ward scattering problem for arbitrary rigid scatterer shapes. 
Table 1 introduces the values of the network parameters 
chosen for this application denoted as Case 1.

Figure 3 illustrates the prediction accuracy of b-PINN for 
three random scatterer shapes. Within Fig. 3A–C, the section 
marked (a) highlights the forward geometry model used for 
the simulation, (b) indicates the corresponding loss vari-
ation with training epochs using both Adam and L-BFGS 
optimizer, and (c) illustrates the prediction accuracy com-
parison for both real and imaginary scattered pressure 

(10)R2 = 1 −

∑N

i=1
(pi

s
− p̂i

s
)2

∑N

i=1
(pi

s
− p̄s)

2

(11)Ep = |ps − p̂s|

Table 1   Summary of key 
network parameters used to 
develop the b-PINN architecture 
for Case 1: arbitrary rigid 
scatterer simulation and 
Case 2: high-frequency 
simulation applications at 
f = 2 kHz, 3.5 kHz , and 5 kHz 

Parameter Case 1 Case 2 Case 2 Case 2
f = 2 kHz f = 3.5 kHz f = 5 kHz

Hidden layer neurons ( nw) 50 50 100 125
Number of residual blocks ( nr) 2 2 2 3
Number of layers in each residual 

block ( nl)
3 3 5 5

Training points on Γi ( Nbi
) 100 100 100 100

Training points on Γe ( Nbe
) 1000 1000 1000 1000

Collocation points in Ω0 ( Nn) 10,000 10,000 10,000 10,000
Learning rate ( lr) 1e-4 1e-4 1e-4 1e-4
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Fig. 3   Case 1- Arbitrary-shaped rigid scatterers: Performance analy-
sis of b-PINN for three scatterers described by an arbitrary shaped 
boundary (see A–C). The simulations in A, B, and C are performed 
for harmonic incident plane waves at f = 500 Hz , f = 500 Hz , and 
f = 1 kHz , respectively. For each sample shape, the subplots a, b, and 
c represent: a the geometry of the acoustic domain and of the embed-

ded rigid scatterer; b plots of the variation in the loss function with 
the training epochs (loss variations obtained using both Adam and 
L-BFGS optimizers are presented); c amplitude maps of the real (top) 
and imaginary (bottom) components of the predicted pressure field 
( ̂ps ), true pressure field ( ps ), and the point-wise error ( E ) between p̂s 
and ps
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components. Note that this is the general format used for 
all the figures in the rest of the numerical experiments as 
well. While Fig. 3A and B compare the prediction accu-
racy for scattered fields simulated by the b-PINN trained 
with Ne = 50, 000 epochs at f = 500 Hz , Fig. 3C illustrates 
the performance of the b-PINN trained with Ne = 80, 000 
epochs in simulating a scattered pressure field at f = 1 kHz . 
The scattered fields generated for the shapes in Fig. 3A and 
B calculates [L2 = 0.0725 , R2 = 0.9937] and [L2 = 0.0749 , 
R2 = 0.9928] , respectively. It is important to highlight that 
both the L2-error and R2-score are evaluated by averaging the 
L2 and R2 values of the real and imaginary scattered pres-
sure components for each simulation. The high R2-score and 
low L2-error for the simulations in Fig. 3A and B highlights 
the ability of the b-PINN to accurately approximate the 
scattered field due to an arbitrary scatterer shape. Further, 
the performance evaluation for the simulation at f = 1 kHz 
in Fig. 3C calculates [L2 = 0.095 , R2 = 0.9909] . This also 
showcases the ability of the b-PINN to accurately simulate 
the wavefield for different incident wave frequencies in the 
mid-frequency range. However, a comparison of the perfor-
mance metrics between the simulations at f = 500 Hz and 
f = 1 kHz indicates a marginally higher prediction error at 
higher frequencies. This can be attributed to the inability of 
the same number of network weights ( nw ) to capture finer 
wavefield features at higher frequencies.

3.4.2 � Application to high‑frequency scattering

This application studies the performance of the b-PINN 
by investigating the prediction accuracy of the network for 
a single scatterer embedded within Ω0 at high frequency. 
More specifically, we choose to train the b-PINN to simu-
late the forward scattering problem for arbitrary rigid scat-
terer shapes at randomly chosen frequencies f = 2 kHz and 
3.5 kHz in the high-frequency range. Table 1 introduces the 
values of some of the essential network parameters chosen 
for this application denoted as Case 2.

In the context of our discussion in the previous section, 
the increase in network prediction error with frequency is 
more evident in the high-frequency range. To address this, 
we observed that an increase in network prediction accu-
racy can be achieved by introducing more nw and adjusting 
Ne . Therefore, the b-PINN is customized for specific fre-
quencies by modulating nw and Ne , as detailed in Table 1. 
Subsequently, the b-PINN is trained to simulate the scat-
tered pressure field for an arbitrary shape at f = 2 kHz with 
nw = 50 and Ne = 100, 000 as shown in Fig. 4A. Similarly, 

the b-PINN is also trained to simulate the scattered pres-
sure field for another arbitrary shape at f = 3.5 kHz with 
nw = 100 and Ne = 200, 000 as shown in Fig. 4B. While 
the performance metrices for Fig. 4A are calculated as 
[L2 = 0.0682,R2 = 0.9953] , the performance metrices for 
Fig. 4B are calculated as [L2 = 0.04675,R2 = 0.9978] . The 
low L2-error and high R2-score for both simulations highlight 
the key ability of the b-PINN to approximate scattered pres-
sure fields in the high-frequency range. Moreover, the con-
stant number of training and collocation points used for all 
the numerical experiments in the mid- and high-frequency 
ranges highlight the discretization-independence of the pro-
posed PINN across frequency ranges. However, it is impor-
tant to highlight that as we move to higher frequencies, the 
scattering simulations use up larger computational resources 
as we have to design deeper networks (Table 1) to capture 
extensive scattered field features at high frequencies.

Furthermore, we conducted simulations at f = 5 kHz by 
training b-PINN for Ne = 200, 000 epochs by sampling from 
10,000 collocation points and computed performance met-
rics to be [L2 = 0.2595,R2 = 0.9327] . As we study very high 
frequencies, i.e. f ≥ 5 kHz ( ka0 ≥ 10 ), it is observed that an 
increased sampling distribution size is essential for better 
performance, thereby needing a finer sampling space to cap-
ture more detailed scattered field features. In summary, this 
study demonstrated the capability of the b-PINN to simulate 
in the high-frequency range. However, the prediction accu-
racy reduces as we transition to very high frequency values, 
as indicated by the high error metrics for the simulation at 
f = 5 kHz.

4 � Multiple acoustic scattering

This section introduces the benchmark problem used to 
develop and test the superposition-PINN or s-PINN archi-
tecture. First, some theoretical and mathematical preliminar-
ies of multiple scattering in acoustics are presented. Then, 
the concept of physics-informed neural network (PINN) for-
mulated for the specific benchmark problem is introduced. 
Finally, the performance of the proposed network is studied 
through a series of numerical experiments.

4.1 � Problem description

A natural extension of the previous acoustic scattering prob-
lem involves the case of multiple rigid scatterers. Consider 
a domain Ω0 including multiple scatterers with rigid inter-
nal boundaries Γ1

i
 , Γ1

i
 , ...ΓNs

i
 . The scattered field radiated 
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outward from each scatterer is p1
s
, p2

s
, ...p

Ns

s  . A sample illus-
tration including four scatterers ( Ns = 4 ) is shown in Fig. 5. 
According to the superposition principle, the scattered pres-
sure field at each point in the acoustic domain is the sum of 
the fields due to each scatterer [53, 54]. According to the 
theory of multiple scattering, the total scattered pressure 
( ps ) within Ω0 is

where pjs is the scattered field radiated outward from the 
jth scatterer. By substituting Eq. (12) in Eqs. (4)–(6), we 
can generalize the governing equations to the case of Ns 
scatterers. Leveraging the properties of linear differential 

(12)ps =

Ns∑

j=1

pj
s

operators, the governing Helmholtz equation for the multiple 
scattering case is

The radiation boundary conditions are enforced on the exter-
nal boundaries Γ1

e
 , Γ2

e
 , Γ3

e
 , and Γ4

e

(13)


(

Ns
∑

j=1
pjs
)

: = ∇2
(

Ns
∑

j=1
pjs(x)

)

+ k2
(

Ns
∑

j=1
pjs(x)

)

≡
Ns
∑

j=1

(

∇2pjs(x) + k2pjs(x)
)

= 0

Fig. 4   Case 2- High frequency: Performance analysis of b-PINN for 
high-frequency applications (see A–B). The simulations in A and B 
are performed for harmonic incident plane waves at f = 2 kHz and 
f = 3.5 kHz , respectively. For each sample shape, the subplots a, b, 
and c represent: a the geometry of the acoustic domain and of the 
embedded rigid scatterer; b plots of the variation of the loss function 

with the training epochs (loss variations obtained using both Adam 
and L-BFGS optimizers are presented)); c amplitude maps of the 
real (top) and imaginary (bottom) components of the predicted pres-
sure field ( ̂ps ), true pressure field ( ps ), and the point-wise error ( E ) 
between p̂s and ps
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The Neumann boundary conditions are imposed on the rigid 
internal boundaries of each scatterer

where Γi represents the ensemble of rigid internal boundaries 
such that Γi = Γ1

i
∪ Γ2

i
... ∪ Γ

Ns

i
 . In summary, Eqs. (13)–(15) 

provide the mathematical description of the forward multiple 
scattering problem.

4.2 � Development of PINN for multiple scattering

Based on the discussions in Sects. 2 and 4.1, this section 
presents a neural network framework, with a parameter set � , 
capable of solving the multiple scattering problem in acous-
tics. For the multiple scattering case, the loss function L is 
defined to enforce Eqs. (13)–(15) as follows

where, L′
Bi

 , L′
Be

 , and L′
N

 are the mean square errors (MSE) 
of the residual of the rigid internal boundary conditions 
(Eq. 15), the external boundary conditions (Eq. 14), and the 
governing PDE (Eq. 13), with w′

Bi

 , w′
Be

 , and w′
N

 as the cor-
responding weighting factors. Here,

(14)
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(15)

Bi

( Ns∑

j=1

pj
s
(x)

)
∶=

�

�n

( Ns∑

j=1

pj
s
(x)

)
− ike−ik⋅x = 0 x ∈ Γi

∶=

Ns∑

j=1

�p
j
s(x)

�n
− ike−ik⋅x = 0

(16)L(�) = w�
Bi
L
�
Bi
(�) + w�

Be
L
�
Be
(�) + w�

N
L
�
N
(�)

4.3 � Superposition‑PINN architecture

The b-PINN architecture (Fig. 2a), introduced in Sect. 3, is 
capable of calculating the scattered pressure field due to 
either single or multiple scatterers by minimizing the loss 
functions presented in Eq. (7) (for the single scattering case) 
and in Eq. (16) (for the multiple scattering case). In a mul-
tiple scattering scenario, our numerical results revealed that 
the prediction accuracy of the b-PINN decreases as the num-
ber of scatterers increases (see the comparative study in 
Sect. 4.4). This reduction in accuracy, accompanied also by 
an increase in computational time, could be attributed to the 
limited ability of the single network b-PINN to minimize L . 
Indeed, when the number of scatterers increases, the high 
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Fig. 5   Schematic of 2D square acoustic domain Ω0 of size 
[0, 1]m × [0, 1]m embedded with multiple scatterers. The domain rep-
resents rigid internal boundary Γi = Γ1

i
∪ Γ2

i
∪ Γ3

i
∪ Γ4

i
 and external 

boundaries Γ1
e
,Γ2

e
,Γ3

e
, and Γ4

e
 . Further, the incident pressure ( pi ) and 

scattered pressure ( ps ) are also indicated
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prediction error observed during the initial network training 
phase, as characterized by high L′

Bi
 values in L , propagates 

across the spatial domain. Consequently, there is a limited 
ability to control the error propagation while using a single 
network. To address this issue, we introduce a complemen-
tary PINN architecture, that leverages the superposition 
principle in linear acoustics; in the following, this network 
will be referred to as the superposition-PINN or s-PINN.

The main goal of the s-PINN architecture is to overcome 
the limitations of the b-PINN when used in the context of 
multiple scattering. The basic concept at the foundation of 
s-PINN is to leverage a domain decomposition approach 
such that separate b-PINNs can be used simultaneously to 
obtain the response in each scatterer sub-domain. Subse-
quently, the scattered fields approximated by the individual 
b-PINNs are integrated using the superposition principle. 
Using this domain decomposition approach, each b-PINN 
within the s-PINN is constrained to simulate only a spe-
cific subset of the scatterers, thereby preventing high error 
propagation within each b-PINN. In a multiple scattering 
scenario, an increase in the total number of scatterers is 

accommodated by introducing additional b-PINNs without 
increasing the maximum number of scatterers each b-PINN 
can handle. Consequently, the s-PINN is not affected by the 
inaccuracies due to the error propagation. However, the scal-
ability of s-PINN depends on the number of b-PINNs that 
can be simulated simultaneously on a given hardware con-
figuration. The rest of this section elaborates on the imple-
mentation of the s-PINN.

We define a scatterer sub-domain as an acoustic domain 
Ω0 including ns scatterers, which represent a subset of the 
total number of scatterers N′

s
 . The number of scatterers in a 

scatterer sub-domain is typically ns ≥ 1 , but it should be 
chosen so that the b-PINNs can provide predictions with the 
desired accuracy without deteriorating the computational 
cost to train the network. Fig. 6 illustrates a s-PINN archi-
tecture to simulate a lattice of N�

s
= 16 rigid scatterers 

divided across four sub-domains, each containing ns = 4 
rigid scatterers. The s-PINN learns to approximate the total 
scattered field by simultaneously training all the b-PINNs. 
A s-PINN with j b-PINNs is parameterized by a training 
parameter set � such that � = �1 ∪ �2... ∪ �j , where �j denotes 
the parameter set corresponding to the jth b-PINN. Further, 

Fig. 6   A schematic representation of the s-PINN architecture to simu-
late acoustic scattering in domains with multiple scatterers. In par-
ticular, this framework simulates a 4 × 4 lattice by simultaneously 
training four b-PINNs, each containing four rigid scatterers. Every jth 
b-PINN is trained to predict the scattered pressure p̂js for the corre-
sponding input coordinates xj by finding the optimal parameter set �j 

through minimization of the total loss L(�) which is a function of the 
loss components Lj(�j) evaluated by the individual b-PINN. Finally, 
based on the concept of superposition in linear acoustics, the scat-
tered pressure is evaluated as the sum of the scattered pressures simu-
lated by the individual b-PINNs, i.e. p̂s = p̂1

s
+ p̂2

s
+ p̂3

s
+ p̂4

s
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the optimal � is obtained by minimizing the superposition 
theorem-based total loss L defined in Eq. (16). Note that Ns 
in Eq. (16) is generalized as the number of b-PINNs within 
the s-PINN. Although Ns was defined as the total number of 
scatterers in Sect. 4.1, in s-PINN Ns can be less than or equal 
to the total number of scatterers, i.e. Ns ≤ N′

s
 . After training, 

each b-PINN learns to predict the corresponding scattered 
field p̂js , where the index j represents jth sub-domain. There-
after, based on Eq. (12), the total scattered pressure ( p̂s ) due 
to the N′

s
 scatterers is evaluated as the superposition of the 

scattered fields predicted by Ns b-PINNs, i.e. p̂s =
∑Ns

j=1
p̂
j
s.

To further clarify the basic principle of s-PINN, we 
present the example in Fig. 6. Consider the 4 × 4 lattice 
of scatterers ( N�

s
= 16 ) as described above. The s-PINN 

contains Ns = 4 b-PINNs corresponding to an equal num-
ber of sub-domains, each containing ns = 4 rigid scatter-
ers. In this approach, individual b-PINN is responsible for 
simulating the scattered field due to a subset of four scat-
terers within Ω0 , as depicted in Fig. 6. Alternatively, each 
b-PINN enforces the rigid internal boundary condition for 
the selected number of scatterers ( ns = 4 ), as highlighted in 
bold within the scatterer sub-domains input to the individual 
b-PINNs in Fig. 6. The proposed approach can effectively 
address the challenges of simulating multiple scattering by 
reducing the error propagation within each b-PINN. This 
is a significant improvement compared to training a single 
b-PINN to simulate the scattered field due to all 16 rigid 
scatterers. Finally, by applying the superposition theorem 
in linear acoustics, the trained s-PINN can estimate the total 
scattered pressure field p̂s as the summation of the scattered 
fields p̂1

s
, p̂2

s
, p̂3

s
, p̂4

s
 approximated by the b-PINNs corre-

sponding to the scatterer sub-domains with input coordinates 
x
1, x2, x3, x4 , i.e. p̂s = p̂1

s
+ p̂2

s
+ p̂3

s
+ p̂4

s
.

Comparison to other domain decomposition based 
approaches

Since s-PINN is introduced as a domain decomposition 
approach, we briefly compare s-PINN to other methods in 
this category. The extended physics-informed neural net-
work (XPINN) [55] is likely the most representative method 
leveraging a domain decomposition-based framework, In 
XPINN, the governing equations and continuity conditions 
at the sub-domain interfaces are directly enforced. Unlike 
XPINN, the s-PINN enforces dual-level integration of 
underlying physics as it implicitly interconnects the sub-
domains through the network architecture that implements 
the superposition theorem and enforces the governing equa-
tions. This concept differs from XPINN, which interconnects 
sub-domains by enforcing the continuity conditions at the 
interfaces along with the governing equations in a single 
loss function. The key differences in the implementation 
of XPINN and the s-PINN are summarized as follows: 1) 
Larger networks: XPINN requires larger networks to handle 
finer training discretization due to the need for additional 
sample points on the sub-domain interfaces. Moreover, care-
ful network hyperparameter tuning is necessary. 2) Complex 
network loss implementation: Implementing network loss 
with additional terms capturing the interface continuity is 
more challenging compared to the straightforward imple-
mentation of s-PINN. The use of multiple terms in the loss 
function introduces several challenges: (i) The additional 
loss terms represent competing objectives that must be mini-
mized simultaneously. (ii) Each additional loss term adds 
to the complexity of the optimization landscape, making it 
highly non-convex. This complexity makes it harder for the 
optimization algorithm to converge to a global minimum. 
(iii) The loss terms often operate on different scales, necessi-
tating the use of dynamic weighting factors to balance them 
effectively. 3) Careful domain separation: XPINN training 

Fig. 7   a Schematic illustration 
of the coordinates sampled 
on the external boundaries 
( Γ1

e
,Γ2

e
,Γ3

e
,Γ4

e
 ), inside the 

acoustic domain ( Ω ), and rigid 
internal boundary ( Γi ) for train-
ing a s-PINN with 4 scatterer 
sub-domains. b The meshed 
geometry for a sample lattice 
with multiple rigid scatterers 
enforcing PML boundaries for 
finite element (FE) analysis
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requires careful splitting into sub-domains without overlaps, 
whereas s-PINN only separates the different scatterers, not 
the entire domain.

4.3.1 � Training

The s-PINN learns by simultaneously training Ns b-PINNs. 
Every jth b-PINN is trained with the spatial coordinates xj

bi
 , 

xbe
 , and xn as the input training points on Γj

i
 , the training 

points on [Γ1
e
,Γ2

e
,Γ3

e
,Γ4

e
] , and the collocation points in Ω0 , 

respectively. Subsequently, the b-PINN is trained on mini-
batches of the input data by sampling input coordinates 
x
j ∈ [x

j

bi
, xbe , xn] from their corresponding distribution of 

points. For example, Fig. 7a illustrates the sampling strategy 
for a s-PINN with Ns = 4 b-PINNs. Note that within the 
inputs to every jth b-PINN, only the coordinates of the Γi of 
the rigid scatterers vary, while the Γe and Ω0 remain the same 
for all b-PINNs. The s-PINN is also trained with a learning 
rate lr using the Adam optimizer followed up with the 
L-BFGS optimization method. Moreover, the s-PINN is 
trained until L′

Bi
 , L′

Be
 , and L′

N
 converges by finding the opti-

mal value of � = �1 ∪ �2...�j for all the b-PINNs through 
backpropagation.

The s-PINN is trained and implemented in Python 3.8 
using Pytorch API on NVIDIA A100 Tensor Core GPU with 
80GB memory.

4.4 � Numerical experiments and results

This section explores and evaluates the performance of the 
proposed s-PINN architecture through a series of numerical 
experiments. The ability of the s-PINN to address multiple 
scattering scenarios is thoroughly examined, with a specific 
focus on its effectiveness in simulating the scattered acoustic 
pressure fields within acoustic lattice structures. Acoustic 
lattices (such as those at the basis of acoustic metamaterials) 
play an important role in practical applications because they 
are typically used to achieve wavefront manipulation and 
control. These structures often employ scatterers in peri-
odic arrangements forming grids or lattices. The specific 
characteristics of the individual scatterers (e.g. shape, size, 
etc.) and of the grid (e.g. spacing, arrangement, etc.) are 
critical to determine the equivalent medium properties of the 
resulting assembly. These properties can be targeted and tai-
lored to manipulate the acoustic wavefront as it propagates 
through the material. The periodic lattice example is selected 
to present the characteristics of the s-PINN.

As introduced in Sect. 3.4, the performance assessment 
of PINNs involves a direct comparison between the PINN 
predictions ( p̂s ) and their corresponding ground truth ( ps ), 
which is obtained through finite element analysis. In this 

process, the forward rigid body acoustic scattering problem 
is simulated using COMSOL Multiphysics® to evaluate ps . 
The FEM simulation setup for a sample multiple scattering 
scenario is shown in Fig. 7b.

In these numerical experiments, we investigate the perfor-
mance of the proposed networks when simulating acoustic 
lattices in the mid-frequency range. Specifically, we assess 
the performance of both the b-PINN and s-PINN for the 
same multiple scattering simulations. Additionally, we com-
pare the performances of both networks to emphasize the 
significance of the superposition network. Note that while 
the s-PINN architecture can be implemented using parallel 
computations, the multiple scattering simulations presented 
below are not evaluated using a parallel implementation.

4.4.1 � Multiple scattering simulation using b‑PINN

The schematics in Fig. 8 illustrate the prediction accuracy 
of the b-PINN for multiple scattering simulations. Fig. 8A 
highlights the prediction assessment for a multiple scatter-
ing problem with two scatterers. Here, in addition to the 
network parameters represented in Table 2, the b-PINN is 
trained for Ne = 40, 000 epochs with a step learning rate of 
lr = 1e − 3 for the first 20, 000 epochs and lr = 1e − 4 for 
the rest of the training with Adam Optimizer (Fig. 8A(b)). 
The comparison between p̂s and ps in Fig. 8A evaluates 
[L2 = 0.072,R2 = 0.9942] , indicating a good prediction 
accuracy of the b-PINN for a multiple scattering prob-
lem with two scatterers. Further, the b-PINN is trained to 
simulate a multiple scattering problem with four scatterers 
embedded in Ω0 as shown in Fig. 8B(a). Here, the b-PINN 
is trained for Ne = 50, 000 epochs with a step learning rate 
of lr = 1e − 3 for the first 20, 000 epochs and lr = 1e − 4 
for the rest of the training with Adam Optimizer. A direct 
comparison between the p̂s and ps fields in Fig. 8B(c) pre-
sents low accuracy in the b-PINN approximation for mul-
tiple scattering with four scatterers. Moreover, the error 

Table 2   Summary of key network parameters used to develop the 
b-PINN and s-PINN architecture for multiple scattering simulation 
due to a 4 × 1 scatterer lattice at f = 500 Hz

Parameter Case 3 b-PINN Case 3 s-PINN

4 × 1 lattice PINN1 PINN2 PINN3 PINN4

nw 100 100 100 100 100
nr 2 2 2 2 2
nl 5 4 4 4 4
Nbi

100 100 100 100 100
Nbe

1000 1000 1000 1000 1000
Nn 10,000 10,000 10,000 10,000 10,000
lr 1e-3, 1e-4 1e-3, 1e-4
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metrics values [L2 = 0.2816,R2 = 0.8319] , also indicate 
a high prediction error. This inaccuracy can be directly 
attributed to the inability of the b-PINN to handle the spe-
cific four scatterers configuration. More specifically, the 
b-PINN finds it challenging to learn to approximate the 
simulated field due to four scatterers as indicated by the 
fact that the value of the training loss reaches a plateau 
(see Fig. 8B(b)). A subsequent analysis reveals that this 
high prediction error is directly caused by the rigid scatter-
ers boundaries as indicated by the high LBi

(�) values. This 
observation reinforces our assumption that as the number 
of scatterers increases, the high prediction error observed 
during the initial network training phase propagates across 
the spatial domain throughout the entire training process. 

Therefore, while the b-PINN demonstrates good perfor-
mance and prediction accuracy when simulating a few 
scatterers, it encounters limitations when solving mul-
tiple scattering problems with an increasing number of 
scatterers.

4.4.2 � Multiple scattering simulation using s‑PINN

As the s-PINN is designed to address the limitations of 
the b-PINN in the context of multiple scattering simula-
tions, we first compare the performance of the two net-
works (i.e. s-PINN and b-PINN). Specifically, we compare 
the performance of the b-PINN (see Fig. 8B) and s-PINN 
(see Fig.  9A) for a 4 × 1 acoustic lattice simulated at 
f = 500 Hz . Similar to the other schematics shown in this 

Fig. 8   Case 3- b-PINN: Illustration of the performance analysis of 
b-PINN for multiple scattering applications in A–B. The simulations 
in A and B are performed for planar wavefields at f = 500 Hz inci-
dent on four scatterers and four scatterers, respectively. In each case, 
schematic: a Represents the geometry of the acoustic domain embed-
ded with a rigid scatterer. b Plots the variation in the loss function 

with training epochs. Note that the plots include the loss variation 
using both Adam and L-BFGS optimizers. c Amplitude maps of the 
real (top) and imaginary (bottom) components of the predicted pres-
sure field ( ̂ps ), true pressure field ( ps ), and the point-wise error ( E ) 
between p̂s and ps
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Table 3   Summary of key 
network parameters used to 
develop the s-PINN architecture 
for multiple scattering 
simulation due to a 4 × 4 
scatterer lattice at f = 500 Hz 
and f = 1 kHz

Parameter Case 3 s-PINN Case 3 s-PINN

4 × 4 lattice ( f = 500 Hz) ( f = 1 kHz)

PINN1 PINN2 PINN3 PINN4 PINN1 PINN2 PINN3 PINN4

nw 100 100 100 100 125 125 125 125
nr 2 2 2 2 3 3 3 3
nl 4 4 4 4 4 4 4 4
Nbi

100 100 100 100 100 100 100 100
Nbe

1000 1000 1000 1000 1000 1000 1000 1000
Nn 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
lr 1e-3, 1e-4 1e-3, 1e-4

Fig. 9   Case 3- s-PINN: Illustration of the performance analysis of 
s-PINN for multiple scattering applications in A–B. The simulations 
in A and B are performed for planar wavefields incident on scatterer 
lattices with scatterers arranged in 4 × 1 grid with circular scatterers 
at f = 500 Hz and 4 × 1 grid with arbitrary scatterers at f = 1 kHz , 
respectively. In each case, schematic: a represents the geometry of the 

acoustic domain embedded with a rigid scatterer. b Plots the variation 
in the loss function with training epochs. Note that the plots include 
the loss variation using both Adam and L-BFGS optimizers. c Ampli-
tude maps of the real (top) and imaginary (bottom) components of the 
predicted pressure field ( ̂ps ), true pressure field ( ps ), and the point-
wise error ( E ) between p̂s and ps
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section, the (a), (b), and (c) parts of Fig. 8B for b-PINN 
and Fig. 9A for s-PINN represent the simulated domain, 
loss variation, and network prediction accuracy, respec-
tively. A direct comparison of the variation in training 
losses between the b-PINN and the s-PINN highlights the 
ability of the s-PINN to learn to approximate the scat-
tered fields for multiple scattering simulations. Further, 
the s-PINN predictions return [L2 = 0.0694,R2 = 0.9946] , 
which represents a 75% increase in the prediction accuracy 
compared to the b-PINN prediction for the same simula-
tion domain. Subsequently, we have performed additional 
simulations to further validate the performance of s-PINN 
for multiple scatters of arbitrary shapes. Fig. 9B provides 
the results illustrating the performance of s-PINN for 
an acoustic scatterer lattice arranged in 4 × 1 grid with 
arbitrary scatterer shapes at f = 1 kHz . The comparison 
between predictions and ground truth provides the fol-
lowing parameters [ L2 = 0.082 , R2 = 0.9929 ]. The E plot 
along with low L2-error and high R2-score demonstrates 
the ability of s-PINN to accurately simulate multiple scat-
tering due to arbitrary scatterer shapes.

Note that Table 2 presents the values of key network 
parameters selected for each b-PINN within the s-PINN 
to simulate the 4 × 1 scatterer lattice. Here, the s-PINN is 
trained with a total number of N�

s
= 4 scatterers using Ns = 4 

b-PINNs each with ns = 1 scatterer. Moreover, this s-PINN 
is trained for Ne = 12, 500 epochs with a step learning rate 
of lr = 1e − 3 for the first 2500 epochs and lr = 1e − 4 for the 
rest of the training with Adam Optimizer. Although the indi-
vidual b-PINN within the s-PINN is designed with lower nl 
and Ne compared to when trained with a single b-PINN, the 
much higher prediction accuracy of the s-PINN indicates the 
remarkable ability of the network architecture to enforce the 
superposition principle along with the minimization of the 
governing PDE and boundary conditions on individual scat-
terer sub-domains. Another possible comparison is between 
a b-PINN and s-PINN to solve the same multiple scattering 
problem with the same total number of network weights or 
parameters. However, it was proven by Jagtap et al. [49, 
55] that using the same number of total weights in a single 
network (similar to b-PINN) cannot manage cases with high 
initial error propagation as well as a domain decomposition-
based multiple network (similar to s-PINN) with the same 
number of weights. This is because the high initial error in 
the total loss is influenced by the increase in the number of 
internal boundaries, making it challenging for the optimizer 
to reduce the total loss, which is biased by this high error 
term. This high initial error propagates through the network 
training regardless of the increase in network parameters. 
In contrast, this issue can be managed by reducing the ini-
tial error in prediction by allowing separate sets of network 
parameters to handle different sub-scatterer domains.

As the above results established the superior performance 
of the s-PINN over the b-PINN for multiple-scattering simu-
lations, in the following we investigate the ability of s-PINN 
to simulate more complex multiple scattering cases. Table 3 
records the values of the key network parameters used to 
develop the s-PINN for a more elaborate scattering scenario. 
Specifically, Fig. 10A indicates the network performance 
assessment for a 4 × 4 lattice with a total number of N�

s
= 16 

scatterers simulated at f = 500 Hz by using Ns = 4 b-PINNs 
each with ns = 4 scatterers. The comparison of the predic-
tions and ground truth in Fig. 10A(c), and of the metrics 
[L2 = 0.1076,R2 = 0.9861] highlights the good prediction 
accuracy of the s-PINN. Moreover, this s-PINN is trained for 
Ne = 40, 000 epochs with a step learning rate. In addition, 
we also simulate the 4 × 4 scatterer lattice at f = 1 kHz and 
study the performance at higher frequencies as shown in 
Fig. 10B with a step learning rate for Ne = 120, 000 epochs. 
Based on the prediction comparison in Fig. 10B(c), the accu-
racy metrics are evaluated as [L2 = 0.0883,R2 = 0.9913] . 
The low L2-error and high R2-score highlight the perfor-
mance of s-PINN when simulating complex multiple scat-
tering problems at different frequencies in the low- and 
mid-frequency ranges. Note that as we move into the high-
frequency range, the prediction accuracy of the current 
s-PINN begins to deteriorate due to the inability of the cur-
rent network to capture finer wavefield features with existing 
spatial sampling. Therefore, although the proposed network 
model has lower discretization dependence in comparison to 
mesh-based approaches like FEM, the high-frequency simu-
lations require finer discretization to capture more accurate 
results.

5 � Conclusions

This study presented a physics-informed machine learn-
ing framework designed to simulate 2D acoustic scattering 
from arbitrary-shaped objects embedded in an unbounded 
domain. The framework encompassed two distinct physics-
informed neural network (PINN) models, referred to as 
the baseline-PINN (b-PINN) and the superposition-PINN 
(s-PINN). The b-PINN was developed to perform acoustic 
scattering simulations when in presence of either a single or 
a small number of rigid scatterers. The two key attributes of 
the b-PINN are its ability to simulate the scattered field due 
to arbitrary-shaped rigid scatterers and to address acoustic 
scattering problems with incident wavelengths shorter than 
the characteristic scatterer sizes (i.e. towards the geometric 
scattering regime). However, while the b-PINN can han-
dle multiple scattering, it was shown that its applicability 
is restricted to scenarios with only a few rigid scatterers 
due to error propagation. To overcome this limitation, an 
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alternative configuration, denominated the superposition 
PINN, was developed.

While the s-PINN builds upon the basic b-PINN archi-
tecture, it overcomes the error propagation issue by using 
a domain partitioning approach. Multiple copies of the 
b-PINN used to simulate individual parts of the domain and 
then they are combined together by means of an architecture 
that embodies the superposition principle of linear acoustics. 
In addition to its ability to simulate multiple scattering prob-
lems, the results highlighted the discretization-independent 
nature of the proposed network that enables handling simu-
lations of arbitrarily shaped scatterers and a wide range of 
frequencies using the same spatial discretization. Further-
more, the (yet unproven) potential of s-PINN to facilitate 
parallel computations by assigning sub-domain simulations 
to separate computational nodes could significantly reduce 

the total computational time for complex multiple scattering 
simulations. These properties propel the s-PINN as a capable 
forward solver that can address the challenges associated 
with the high computational cost in traditional mesh-based 
methods like finite element method (FEM) for complex mul-
tiple scattering simulations.

In contrast to the existing data-driven DNNs, the pro-
posed PINN framework is trained by explicitly enforcing the 
governing equations and boundary conditions of the prob-
lem. This approach enables it to generate accurate and physi-
cally consistent solutions without relying on labeled datasets 
for network training, thereby reducing the data generation 
cost by 100%. Furthermore, the performance of the proposed 
network models was evaluated by comparing their predic-
tions to FEM ground truth for various acoustic scattering 
applications. The numerical investigations highlighted the 

Fig. 10   Case 3- s-PINN: Performance analysis of s-PINN for multi-
ple scattering applications. The simulations in A and B are performed 
under planar wavefields incident on a lattice of 4 × 4 scatterers at 
f = 500 Hz and f = 1 kHz , respectively. a schematic representing 
the geometry of the acoustic domain embedded with a rigid scatterer. 

b Plots the loss function with training epochs. Note that the plots 
include the loss variation using both Adam and L-BFGS optimizers. c 
Amplitude maps of the real (top) and imaginary (bottom) components 
of the predicted pressure field ( p̂s ), true pressure field ( ps ), and the 
point-wise error ( E ) between p̂s and ps
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ability of the network models to accurately simulate acoustic 
scattering scenarios across applications involving arbitrary 
scatterer shapes, high frequencies, and lattices of scatterers. 
Additional areas needing more research and development 
exist in the s-PINN architecture. As an example, s-PINN has 
the potential to be set up and trained using parallel computa-
tions, therefore its implementation and performance should 
be explored. In addition, the current s-PINN architecture 
becomes ineffective at capturing multi-scatterered fields 
with nonlinear behavior due to substantially higher acoustic 
pressure amplitudes, e.g., shock waves. Therefore, develop-
ing a PINN architecture to handle multiple scattering phe-
nomenon while accommodating the corresponding nonlinear 
behavior is an interesting area of potential future research.
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