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Abstract

We have developed artificial neural networks (ANNs) for simultaneous analysis of Rutherford backscattering spectrometry and elas-
tic recoil detection analysis data. The ANNs developed were applied to a highly complex problem, namely the analysis of multilayered
silica–titania films doped with Ag and Er, where 11 parameters are required to describe the samples. Extensive optimization of network
architecture, connectivity and pre-processing is presented. The optimized ANN was applied to experimental data leading to accurate
results.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Rutherford backscattering spectrometry (RBS) is a
nuclear analytical technique that allows one to determine
elemental concentration profiles [1]. Depending on the
experimental details, it can probe layers from 1 nm to tens
of lm thick. It is fully quantitative and does not require
standards. As such, it is widely used in the analysis of mate-
rials for applications in the most diverse fields. It is not
sensitive to hydrogen, a common contaminant in samples.
A complementary ion beam analysis technique, elastic
recoil detection analysis (ERDA), is usually employed to
quantify the amount of hydrogen.

Given a sample structure and the measurement setup, it
is fairly easy to calculate the expected theoretical spectrum
0168-583X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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for both techniques. The inverse problem is however ill-
posed, leading to different approaches to data analysis.
The most common is still interactive and iterative compar-
ison of the data with a simulation, which is refined until a
good visual agreement is obtained [2,3]. Systematic treat-
ments based on Bayesian inference with the Markov chain
Monte Carlo method have been successfully utilized [4–7],
but are difficult to use, computationally expensive (data
analysis can take orders of magnitude longer than data col-
lection), and are thus still inadequate to handle large quan-
tities of data.

We have previously used artificial neural networks
(ANNs) for automated analysis of Rutherford backscat-
tering (RBS) data [8,9]. ANNs can be used as regression
machines, designed for a specific problem containing simi-
lar data [10]. In the ANNs first developed by us, only a sin-
gle spectrum could be analyzed from each sample. This is a
limitation since in cases where more than one spectrum had
been collected, they had to be analyzed separately, leading
to loss of correlated information and hence to a reduction
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Fig. 1. (a) RBS and (b) ERDA data collected for sample 1. The
differentiated data are also shown, scaled by a factor of 10.
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in accuracy. Furthermore, when complementary RBS and
ERDA data are collected, simultaneous and self-consistent
analysis of all data is essential.

A second limitation is that the ANNs previously devel-
oped were dedicated to relatively simple systems, involving
very few parameters to be determined. This situation is
common in some cases, for instance where the required
parameters are only the implanted dose and depth. In these
cases, the information from which those parameters are
retrieved is contained entirely in the implant peak [8],
and the rest of the spectrum can be essentially ignored.
In complex multilayered multielemental samples, the infor-
mation is distributed in the whole spectrum (or spectra, if
more than one is collected), and a large number of outputs
may be required.

In this paper, we present an ANN for the analysis of
RBS and ERDA spectra collected from the same sample.
We apply the ANN to a highly complex case, namely the
analysis of silica–titania-based sol–gel films doped with
erbium and silver. Different annealing treatments lead to
extensive diffusion and redistribution of the Ag to the sur-
face and bottom of the films, and also to hydrogen loss in a
surface region. Extensive work on optimization of network
architecture and pre-processing of the input data is done.
The best ANNs developed perform practically as well,
and in some cases better, than standard analytic data anal-
ysis codes.

2. Experimental data

Silica–titania films doped with erbium and silver were
produced by spin-coating on Si substrates. The films have
an H contamination, which is not homogeneous in depth:
a surface layer has a reduced or enhanced H concentration,
due to diffusion. The samples were subjected to different
annealing procedures. The experimental details are given
elsewhere [11].

RBS and ERDA experiments were done using a
1.925 MeV 4He+ beam. The details of the measurements
have been given elsewhere [12]. A total of 17 different
samples was measured. Most of them had both Ag and
Er dopants. A few had no Ag, a few had no Er, and one
had neither Ag nor Er. Due to the different annealing
procedures, some of the samples developed a thin Ag layer
between the film and the Si substrate. In a few of those
samples, a thin Ag film also appeared on the surface.

The RBS and ERDA data of sample 1 are shown in
Fig. 1. The RBS spectrum carries all the information about
the Si, Ti, O, Ag and Er. Furthermore, the Ag and Er sig-
nals are extensively superimposed on each other, and exist
in the channel range 350–460 only. The signal of the lighter
elements O, Si and Ti are at channels smaller than 350. The
ERDA spectrum carries all the experimental information
on the H.

The data were analyzed with a general-purpose data
analysis code, NDF [13], that calculates analytic spectra
based on standard algorithms [14]. NDF uses tabulated
values for the energy loss of ions in the samples [15].
Energy straggling due to the statistical nature of the energy
loss process, to the energy and angular spread of the ana-
lyzing beam, geometric straggling cause by finite size of
the beam spot and detector and multiple scattering is calcu-
lated with the code DEPTH [16,17]. The background due
to plural scattering [18] is expected to be small in these sam-
ples and was disregarded. The background due to pulse
pileup in the MCA was calculated with the algorithm given
in [19].

3. ANN architecture and connectivity

ANNs can approximate any arbitrary unknown func-
tion [10]. They are particularly well suited to high-dimen-
sional non-linear regression analysis with noisy signals
and incomplete data [20]. In the case of RBS and ERDA
data, the signal (position and height) of each element
depends on all other elements in a non-linear way. Exper-
imental data are by nature noisy. Also, the problem of find-
ing a compositional depth profile from the data is ill-posed:
for each element present in the sample, information on a
different depth range is available; the sensitivity for some
elements can be either zero or very small; in the general
case, the yield in one case cannot be assigned a priori to
a given element, with extensive superposition of signals.
Therefore regularisation constraints must be imposed
(experience of a well-trained physicist being the method
most often used). One should also notice that it is not
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possible to obtain a closed-form formula to calculate an
RBS or ERDA spectrum with a degree of accuracy remo-
tely suitable for data analysis.

A feedforward neural network consists of an array of
input nodes connected to an array of output nodes through
the nodes of successive intermediate layers. Each connec-
tion between nodes has a weight, initially random, which
is adjusted during a training process. The output of each
node of a specific layer is a function (in this work a sigmoid
was used [8]) of the sum of the weighted signals coming
from the previous layer. The crucial points in the construc-
tion of an ANN are the selection of inputs and outputs, the
architecture of the ANN, that is, the number of layers and
of nodes in each layer, the connectivity of the ANN, that is,
the way the nodes are connected to each other and finally,
the training algorithm.

The ANN architecture can be represented by (N, I1, . . . ,
In,M), where N is the number of inputs and M the number
of outputs and Ii the number of nodes in each intermediate
hidden layer. In this case, the inputs can be, for instance,
the yield in each channel (i.e. in each multichannel bin).
The outputs are: the thickness tfilm of the silica–titania film;
the Si, Ti, O, H, Ag and Er concentrations in the film; the
thickness tAg_top and tAg_bottom of the top and bottom Ag
layers; the thickness of the surface layer with changed H
concentration, which we call the H depletion thickness
tdepletion; and a H depletion factor fdepletion, which is the
ratio between the H concentration in the H depleted layer
and in the rest of the film. This makes a total of 11 outputs,
which is unusually large in ANNs, and is a consequence of
the complexity of the problem. Note that for the silica–tita-
nia film, the concentration parameters are not independent,
since they must add up to 100 at.%. Nevertheless, they were
treated by the ANN as independent, and then normalised
to 100 at.%. The layer areal density is independent of the
elemental concentrations, because relative concentrations,
not absolute, were used.

We used supervised learning with the backpropagation
algorithm [8,10]. The training is done by presenting a large
set of examples, the training set, for which the inputs and
corresponding outputs are known. The difference between
the ANN prediction and the known output values is mini-
mized by adjusting the connection weights. The quality of
the prediction is verified by testing the ANN with an inde-
pendent set of data, the test set. Root mean square errors
erms are calculated for both sets. This is also calculated
for the real data, taking as reference the results given by
NDF. Training is repeated until no improvement in the test
set can be found.

The training and test sets were generated by constructing
theoretical spectra corresponding to a very broad range of
sample parameters (outputs), to which realistic Poisson
noise was added. The parameter range in the training and
test sets was tfilm 2 [1300,2000] (1015 at/cm2), Si 2 [6, 45]
(at.%), Ti 2 [0, 50] (at.%), O 2 [33, 85] (at.%), H 2 [0, 42]
(at.%), Ag 2 [0,1] (at.%), Er 2 [0,8] (at.%), tAg_top

2 [0, 10] (1015 at/cm2), tAg_bottom 2 [0,10] (1015 at/cm2),
tdepletion 2 [200, 800] (1015 at/cm2), fdepletion 2 [0.25, 5] (for
this parameter only, the distribution was not uniform, but
instead a larger density of examples in the [0.25,2] range,
where most experimental cases were expected to be, was
used). These ranges are much broader than expected in real
samples. The inputs were each normalised to lie in the [0,1]
interval, which facilitates the training.

We developed ANNs with different types of inputs. In
one case, the inputs were simply the yield values without
any pre-processing. In another case, pre-processing of the
spectra was done by differentiating them using cubic fitting
splines and adaptive smoothing weights with prescribed
third end point derivatives f000(x0) = f000(xn) = 0 [21]. This
procedure leads to differentiated data with minimized fluc-
tuations due to statistical uncertainties. The objective of
using the differentiated data as inputs is to enhance relevant
small signals and eliminate slowly changing backgrounds,
which can lead to better performance of the ANN [9].
We show in Fig. 1 the differentiated spectra of sample 1.

Furthermore, the relevant region of the raw data has 360
channels for the RBS spectra and 180 for the ERDA spec-
tra, which leads to 540 inputs. As each channel has an
energy width smaller than the energy resolution of the
experiment, compression of the data can lead to smaller,
and thus more efficient, ANNs, without loss of informa-
tion. We trained ANNs with the inputs uncompressed,
and compressed by adding 4, 8 or 16 channels together,
and otherwise the same architecture.

In ion beam analysis, the signal of each element cannot,
in principle, be analyzed independently from the other
ones, because, for instance, relevant quantities such as
stopping powers require knowledge of the signal from all
the elements. However, if each given signal was analyzed
independently, assuming for instance equal concentrations
for all other elements, a first approximation to the real val-
ues would be obtained. Those first approximations could
be used all together to obtain a more refined result.

The function of the first hidden layers is to perform a
non-linear transformation of the inputs into a form more
easily treated by the following layers. We developed two
different types of network connectivity. In the first case, full
connectivity from all nodes in one layer to all nodes in the
next layer was used. This is the traditional perceptron mul-
tilayer, used in the vast majority of ANNs. In this case, it
corresponds to analyzing all spectra simultaneously.

In the second case, we consider different clusters of
nodes in the input data. Each cluster is connected only to
a given set of nodes in the first hidden layer. Other clusters
are not connected to that set of nodes. In this way, a first
treatment of each group of signals is made, with the results
being integrated in a second step. Pre-processing occurs in
the first hidden layer, with the advantage of substantially
reducing the total number of connections, which reduces
the complexity of the problem and facilitates efficient train-
ing of the network [22].

Although the signal of the different elements depends on
the other elements as well, some properties of the samples



Table 2
Results for cluster-linked networks with 4-channel compression yield
values as inputs

Architecture erms Training
time (s)Train set Test set Experimental set

136,50,11 0.0631 0.0608 0.3296 2909
136,70,11 0.0656 0.0641 0.3408 5968
136,70,50,11 0.0338 0.0330 0.2004 7007
136,70,30,11 0.0360 0.0343 0.4068 6922
136,50,30,11 0.0341 0.0328 0.1148 6822
136,50,20,11 0.0412 0.0391 0.1566 4882
136,50,15,11 0.0393 0.0375 0.4476 3800
136,40,30,11 0.0372 0.0358 0.1712 3208
136,40,20,11 0.0420 0.0401 0.1556 2960
136,40,15,11 0.0420 0.0400 0.3400 2837
136,30,20,11 0.0429 0.0405 0.4651 2274
136,30,15,11 0.0445 0.0420 0.3418 2188

Twenty thousand examples were used in the training.

Table 3
Results for cluster-linked networks with 8-channel compression yield
values as inputs

Architecture erms Training
time (s)Train set Test set Experimental set

68,50,11 0.0755 0.0732 0.3947 2067
68,70,11 0.0715 0.0694 0.4303 2916
68,70,50,11 0.0359 0.0346 0.2431 5245
68,70,30,11 0.0379 0.0367 0.3647 4545
68,50,30,11 0.0341 0.0325 0.1672 3806
68,50,20,11 0.0393 0.0377 0.4517 3638
68,50,15,11 0.0409 0.0389 0.3313 3404
68,40,30,11 0.0357 0.0342 0.2373 3389
68,40,20,11 0.0434 0.0414 0.2807 2795
68,40,15,11 0.0472 0.0450 0.3433 2100
68,30,20,11 0.0453 0.0434 0.4646 1754
68,30,15,11 0.0551 0.0527 0.3731 1573

Twenty thousand examples were used in the training.
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and of the experimental data can be used: first, the ERDA
spectrum carries all the information on the H; second, the
Ag and Er are impurities with small concentration, so they
have a very small influence on the signal from the other ele-
ments; third, the major elements in the silica–titania film
are the Si, Ti and O, and the signals of these elements are
superimposed. We thus chose three clusters: the ERDA
spectrum, corresponding to the H signal; the low energy
range of the RBS spectrum (channels 100–350), corre-
sponding to the O, Si and Ti signals; and the high energy
range of the RBS spectrum (channels 350–460), corre-
sponding to the Ag and Er signals.

Finally, we would like to note that the basic algorithms
behind feedforward ANNs trained with backpropagation
are simple to implement and extremely well documented
in the vast literature on the subject. The difficulty of devel-
oping a ANN for a given problem lies on developing a
ANN architecture and connectivity that leads to efficient
training and high accuracy of the results. This optimisation
must be made for each new problem to be solved. Once
that knowledge is obtained, to write the corresponding
ANN computer code is a trivial task.

4. Results and discussion

4.1. Network optimization

Results for cluster-linked ANNs without compression
and with different levels of compression are shown in
Tables 1–4. The training times indicated were all obtained
with the same computer and are thus directly comparable.
There is an optimal network size, with two hidden layers
with around 50 and 30 nodes, respectively. Smaller ANNs
lead to higher errors as they are too small to handle this
complex problem. Large ANNs have larger errors because
they are harder to train, and may have higher generaliza-
tion errors.

For a given architecture, training is faster with a smaller
number of inputs, as expected for a smaller network with
Table 1
Results for cluster-linked networks with uncompressed yield values as
inputs

Architecture erms Training
time (s)Train set Test set Experimental set

542,50,11 0.0549 0.0498 0.2768 32,333
542,70,11 0.0490 0.0472 0.3223 68,442
542,70,50,11 0.0295 0.0288 0.1934 72,192
542,70,30,11 0.0313 0.0308 0.2520 70,152
542,50,30,11 0.0282 0.0272 0.1501 56,604
542,50,20,11 0.0345 0.0333 0.2671 33,917
542,50,15,11 0.0370 0.0358 0.4254 31,237
542,40,30,11 0.0372 0.0352 0.2919 21,623
542,40,20,11 0.0374 0.0355 0.4651 21,338
542,40,15,11 0.0382 0.0370 0.3278 20,941
542,30,20,11 0.0383 0.0365 0.4108 15,700
542,30,15,11 0.0429 0.0406 0.4309 15,254

Twenty thousand examples were used in the training.
fewer nodes and fewer connections. More interestingly,
the errors erms obtained for the train and test sets are con-
sistently smaller with raw data (i.e. no compression) and
Table 4
Results for cluster-linked networks with 16-channel compression yield
values as inputs

Architecture erms Training
time (s)Train set Test set Experimental set

34,50,11 0.1123 0.1089 0.4717 1267
34,70,11 0.1093 0.1053 0.4531 1589
34,70,50,11 0.0561 0.0540 0.3281 4283
34,70,30,11 0.0632 0.0601 0.3712 3823
34,50,30,11 0.0626 0.0601 0.3531 2313
34,50,20,11 0.0624 0.0606 0.2164 1452
34,50,15,11 0.0691 0.0659 0.4540 1309
34,40,30,11 0.0620 0.0601 0.1998 1401
34,40,20,11 0.0687 0.0655 0.4448 1244
34,40,15,11 0.0701 0.0682 0.2781 1066
34,30,20,11 0.0735 0.0714 0.3747 940
34,30,15,11 0.0813 0.0781 0.2289 841

Twenty thousand examples were used in the training.
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increase only slightly after using 4- and 8-channel compres-
sion. However, for a 16-channel compression the errors
increase markedly. The reason is that the energy resolution
in the RBS spectra corresponds to roughly 13 channels. In
a compression smaller than 13 channels, each point corre-
sponds to more than one energy resolution, and there is at
worst a small loss of information. On the other hand, a
compression larger than 13 channels added together leads
to a severe loss of information and thus to worse errors
by the ANN.

For the experimental data the best error values were
obtained using a 4-channel compression, which is the best
compromise between smaller ANNs and information loss
due to the compression. In particular, the best results were
obtained for the architecture (136,50,30,11), and thus it
will be used in further tests.

First, we tested the influence of the size of the training
and test sets in the results obtained. We show in Tables 5
and 6 the errors obtained with a (136,50,30,11) ANN
trained with data sets with different sizes (the test set was
10% of the data), for cluster-linked and fully linked net-
works, respectively. Better results are obtained when larger
data sets are used in the training. The reason is that the
ANN considered is still fairly large, with 4270 connections,
and requires a large number of examples to achieve good
generalization capabilities. On the other hand, this leads
to a large increase in the time required for the training. This
increase is more than linear, which is due to the highly non-
linear properties of ANNs. Note that using fewer examples
than connections leads to errors that would be acceptable if
the ANN goal was to provide good initial guesses for use in
some local minimisation scheme, or if high numerical accu-
racy was not required. Furthermore, the test set was gener-
ated randomly, and in principle better training could be
Table 5
Results for cluster-linked (136,50,30,11) networks with 4-channel com-
pression yield values as inputs

# Data erms Training
time (s)Train set Test set Experimental set

1000 0.1189 0.1076 0.5214 202
2000 0.0863 0.0954 0.4434 404
5000 0.0559 0.0551 0.3091 1016
10,000 0.0477 0.0477 0.2513 2199
20,000 0.0341 0.0328 0.1148 6822

Different number of examples were used in the training of each ANN.

Table 6
Results for fully linked (136,50,30,11) networks with 4-channel compres-
sion yield values as inputs

# Data erms Training
time (s)Train set Test set Experimental set

2000 0.0956 0.1059 0.4530 404
20,000 0.0396 0.0388 0.3723 19,348

Different number of examples were used in the training of each ANN.
achieved with a small test set if carefully chosen examples
were used. Finally, the problem is highly non-linear and
the parameters are correlated. For instance, the position
of the back Ag signal depends on the thickness of the sil-
ica–titania film, and the height of the signal of each element
depends on all other elements.

We show in Fig. 2 the evolution of the test and experi-
mental errors as a function of the training epochs, for
(136,50,30,11) cluster-linked and fully linked ANNs. At
each epoch the entire training set is presented to the
network. The cluster-linked network not only achieved a
lower error, but it also has a faster rate of improvement.
One should also note that for the same number of training
iterations, the computer time required is much larger for
fully linked ANNs. This clearly shows that an effective
pre-processing is occurring in the first hidden layer in the
cluster-linked network, leading to more efficient training
and an increased efficiency of the network.

Finally, we note that using differentiated data, for the
RBS data, for the ERDA data, or for both, did not lead
to any improvement in the results. The raw data have a
clear structure that the ANN is capable of utilizing to
achieve the final results.

4.2. Network performance

We show in Figs. 3–7 the results obtained for all the
experimental spectra available. As seen in Fig. 3, the
ANN performed excellently in determining the thick-
ness of the sol–gel film, being capable, in most cases, of
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recognizing differences in thickness larger than 2 · 1016 at/
cm2. Indeed, the low energy part of the RBS data carry
redundant information, since the width of the O, Si and
Ti signals can all be used to determine this parameter.
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The results for the concentration of all elements in the
sol–gel film are shown in Fig. 4. In general the ANN results
match closely the reference values obtained with NDF. In
particular, the results for hydrogen are excellent. This is
explained by the fact that the hydrogen concentration is
almost directly obtained from the yield of the ERDA
spectrum, which carries information exclusively about the
hydrogen. On the other hand, the ANN overestimates the
Er concentration by a fairly constant amount. This may
be explained by the fact that the Er signal is the smallest
present in the data, and even a small background, due
for instance to pileup [19], can lead to a significant error.
This is confirmed by the results obtained for the test set,
where the ANN performs well. Also, if a manual back-
ground subtraction procedure is applied to the experimen-
tal spectra before being input to the ANN, the ANN results
improve. This shows that the bias observed for the Er is not
intrinsic to the network, but indeed due to the background
present in the experimental data.

The results obtained for the top and bottom silver layers
are shown in Fig. 5. For the bottom layer, the ANN results
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Fig. 6. Results for the H depletion factor and H depletion thickness of
real samples (solid squares), obtained with a cluster-linked (136,50,30,11)
ANN. Results for some test set examples are also shown (open circles).
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Fig. 7. (a) RBS and (b) ERDA data collected for one sample 5, together
with simulations done with NDF and for the ANN output.
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are quite good considering the very small thickness of this
layer. For the top Ag layer, the ANN performance is
worse. This is probably due to superposition of the signal
of this layer and the background due to the Er signal. From
the five samples where this top layer exists, the ANN only
gives a non-zero output for three. On the other hand, it
correctly gives a zero output for the 12 samples where this
layer does not exist. All in all, the ANN discrimination
capability is around 0.2 · 1015 at/cm2 for this parameter.

The results obtained for the H depletion layer are shown
in Fig. 6. While the trend is fairly well reproduced for the
depletion factor, the results for the depletion thickness
seem to be very bad: in fact, the ANN results seem to be
uncorrelated with the reference values given by NDF. Sev-
eral considerations are required to understand this. First of
all, the resolution in the ERDA experiment is around
200 · 1015 at/cm2, and any difference smaller than this
value cannot be distinguished. Second, an hydrogen deple-
tion factor equal to one means that there is no depletion
layer, and thus there is no sensitivity to its thickness; for
depletion factors close to one, the sensitivity is very small,
and the NDF reference results, which come from a fit to the
data, do not mean much. Only seven samples had a deple-
tion factor outside the 0.8–1.2 range. The results obtained
for the test set also show a high dispersion, although
slightly smaller than for the experimental data. Finally,
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the NDF analysis considered simultaneously the RBS and
ERDA spectra of the same sample. This means that a good
overall fit may be achieved with a sub-optimal fit to the
ERDA data. On the contrary, in cluster-linked ANNs the
ERDA data is first considered independently of the RBS
data. This may, in some cases, lead to a better fit to the
ERDA data than obtained with NDF. This is illustrated
in Fig. 7, where we show the data of sample 5, together
with simulations considering the NDF reference values
and the ANN outputs. The NDF results indicate a deple-
tion factor 0.95 and a depletion thickness 762 · 1015 at/
cm2, while the ANN outputs are 0.78 and 386 · 1015 at/
cm2. It is clear that, while the two simulations of the
RBS data are not distinguishable at first sight, the ANN
simulation of the ERDA spectrum is superior. On the con-
trary and as mentioned above, the ANN overestimates the
Er concentration.

5. Conclusions

We developed artificial neural networks capable of ana-
lyzing multiple ion beam analysis spectra collected from the
same sample. The ANNs developed are capable of using
the information present in all the data to produce accurate
final results, in some cases better than those obtained with
standard data analysis codes.

The ANNs were successfully applied to a highly com-
plex problem: determination of the thickness and composi-
tion of silica–titania sol–gel thin films doped with Ag and
Er subject to different annealing treatments, which lead
to extensive Ag diffusion towards the bottom and surface
of the film, and also to a surface layer of the film with chan-
ged H concentration. A total of 11 outputs were required
to represent the sample structure, which is an unusually
high number in ANN analysis.

A cluster-linked neural network architecture was pro-
posed. In this architecture, different sections of the data
are connected to a subset of nodes in the first hidden layer
that are exclusively dedicated to that data section. A thor-
ough study of network architecture, connectivity and effec-
tiveness of pre-processing was made. Effective automatic
pre-processing (as opposed to a priori pre-processing) is
achieved with cluster linking, leading to very efficient and
easy to train networks. We found that cluster-linked net-
works performed better than classic fully linked ANNs.

Acknowledgments

The authors thank the financial support of FCT under
grant POCTI/CTM/40059/2001. The algorithms and codes
used in this work can be obtained from the authors.
References

[1] J.R. Tesmer, M. Nastasi (Eds.), Handbook of Modern IBA, MRS,
Pittsburgh, 1995.

[2] L.R. Doolittle, Nucl. Instr. and Meth. B 9 (1985) 344.
[3] M. Mayer, Nucl. Instr. and Meth. B 194 (2002) 177.
[4] R. Fischer, M. Mayer, W. von der Linden, V. Dose, Phys. Rev. E 55

(1997) 1.
[5] V.M. Prozesky, J. Padayachee, R. Fischer, W. von der Linden, V.

Dose, R.A. Weller, Nucl. Instr. and Meth. B 136–138 (1998) 1146.
[6] N.P. Barradas, C. Jeynes, M. Jenkin, P.K. Marriott, Thin Solid Films

343–344 (1999) 31.
[7] P. Neumaier, G. Dollinger, A. Bergmeier, I. Genchev, L. Görgens, R.
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