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THEBIGGERPICTURE Machine learning-empowered autonomous experiments are transforming the future
of scientific research and discovery. We developed a post-experimental analysis approach based on deep
kernel active learning-driven autonomous scanning probe microscopy workflow that can be utilized in any
physical imaging automated experimental platform with various imaging spectroscopic methods. This
approach offers automated experiment interpretation and the ability to extend to human interventions in
automated experiments. Human operators make high-level decisions while machine learning analyzes
data and makes low-level decisions, providing a real-time combination of expertise and efficiency in con-
ducting experiments.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The broad adoption of machine learning (ML)-based autonomous experiments (AEs) inmaterial characteriza-
tion and synthesis requires strategies development for understanding and intervention in the experimental
workflow. Here, we introduce and realize a post-experimental analysis strategy for deep kernel learning-
based autonomous scanning probe microscopy. This approach yields real-time and post-experimental indi-
cators for the progression of an active learning process interacting with an experimental system. We further
illustrate how this approach can be applied to human-in-the-loop AEs, where human operators make high-
level decisions at high latencies setting the policies for AEs, and the ML algorithm performs low-level, fast
decisions. The proposed approach is universal and can be extended to other techniques and applications
such as combinatorial library analysis.
INTRODUCTION

Over the last several years, thematerials science community has

been firmly riveted by the introduction and optimization of

automated experiments in the areas of material synthesis and

characterization. For materials synthesis, multiple approaches

including pipetting robots,1,2 self-driving labs,3–5 and high-

throughput synthesis workflows have been proposed.6–11 For

materials characterization, several groups have been developing

automated and autonomous experiment (AE) approaches in

areas including scanning transmission electron microscopy

(STEM),12–15 scanning probe microscopy (SPM),16–25 neutron

diffraction,26,27 and X-ray scattering.28
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The central concept in AE is the workflow,29,30 defined as

the sequence of steps and operations performed by auto-

mated laboratories or measurement tools. Generally, a work-

flow can combine steps performed by human and non-human

agents. For example, for many microscope operations (e.g.,

tuning microscope parameters) can be performed automati-

cally, but specific decisions for physical discoveries (e.g.,

selection of measurement regions) are currently performed by

human operators. Similarly, in materials synthesis, the optimi-

zation of the specific synthesis conditions can be performed

via an automated synthesis platform, but the selection of

the endmembers for determining materials’ properties is often

manual.
National Laboratory and The Author(s). Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Until now, most of these automated efforts have been based

on human-designed workflows, with the role of any machine

learning (ML) algorithm limited to (often greedy) optimization of

the consecutive process steps. In this process, each step of

the workflow is optimized individually, whereas possible correla-

tions between individual steps are ignored. The recent advances

in approaches such as deep kernel active learning (DKL) are

enabling the development of single-step, beyond-human work-

flows, as exemplified by the property discovery in scanning

probe20,23,31 and electron microscopy.14

The broad deployment of both human-based and non-human

workflows for AE necessitates the development of a methodol-

ogy to monitor the progression of active learning processes in-

teracting with experimental physical systems and to tune the

AE progression on a timescale affordable for humans. This in-

cludes both developing tools for the explainability of the AE in

real time and post experiment, as well as the creation of frame-

works that allow human intervention on timescales and decision-

making levels amenable to human scientists.

Here we introduce the concept of post-experimental analysis

of AE and human-in-the-loop interventions. We demonstrate this

approach for SPM with DKL, but this concept is equally appli-

cable for STEM and other Gaussian process-driven materials

synthesis and characterization in automated labs and theory

exploration over large chemical spaces.10,32–35

RESULTS

We consider the general process of post-experimental analysis

for AE and introduce key concepts necessary in this case. The

central element of experimental active learning is the ML agent

iteratively interacting with the experimental system, both per-

forming the experimentation and updating the state of the ML

agent. Initially, theML agent’s state is defined by priors and infer-

ential biases (e.g., a hypothesis list, invariances, pre-trained net-

works) formed based on human input. Throughout the experi-

ment, the state of the agent is updated in response to the

incoming information from the active data generation process

(i.e., microscope). Based on the current state and prior informa-

tion, the agent makes decisions that are communicated to the

microscope. This iterative cycle continues until the experimental

budget is exhausted or the predefined goal is achieved. At the

end of the experiment, the change in the state of the agent rep-

resents the knowledge gained during the experiment. Corre-

spondingly, we define the AE post-experimental analysis as

the analysis of the decision-making at each experiment step,

comparing the decisionsmade by the agent in the real-time state

and the decisions made by the fully trained agent. It is also

important to note that the AE post-experimental analysis assess-

ment can include a human component; i.e., based on the real-

time experimental results and the AE progression, the human

operator can choose to change the nature of the information

available to the agent or policies that guide the decision-making

and explore the experimental path.

Here, we discuss the AE post-experimental analysis for a spe-

cific case of a DKL AE workflow for SPM. Traditionally, SPM is

operatedbyhumanoperatorswithacertainsmall numberof stages

amenable to automation. A typical SPM imaging workflow starts

with sample selection, samplepreparationand loading, andmicro-
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scope tuning. With the sample loaded and microscope initiated, a

human operator initiates overview and spectroscopy scans, mak-

ing subsequent decisions based on results at each step. As a

consequence of numerous operations performed by human oper-

ators manually, the experiment is a laborious and time-intensive

process. Furthermore, the decision-making process by humanop-

erators is often biased depending on human interest, intention,

knowledge, etc., and it is often slow because it is challenging for

a human to understand high-dimensional datasets and their rela-

tionship in a short time frame. In contrast, ML algorithms can

analyze high-dimensional datasets quickly; e.g., deep learning

can learn a relationship between thousands of structural image

patches and spectroscopic properties. Bayesian methods36,37

exemplified DKL by allowing an active learning process,31 making

decisionsbasedonpastacquired information.When implementing

aworkflowwithDKL inanoperatingSPM,20,23,31,38 themicroscope

can perform the measurement, process data, make decisions

to move the probe, and initiate image scan and/or spectra mea-

surement automatically without human intervention. This largely

surpasses the speedofmeasurements carriedout by humanoper-

ators, accelerating physics discovery. However, tuning this pro-

cess requires understanding the decisions made by the ML agent

and adjusting the policies that guide these decisions. Here we

discuss the DKL process and the AE post-experimental analysis.

The DKL analysis is based on a pre-acquired dataset with known

ground truth; here, using a pre-acquired dataset allows us to

compare different experimental paths. However, the methodolo-

gies developed here can be straightforwardly implemented on

active microscopes. We also note that the same logic can be

applied to other experiments as well, e.g., molecular design, pro-

cessing trajectory optimization, etc.

We have chosen band excitation piezoresponse spectroscopy

(BEPS) data of a PbTiO3 (PTO) thin film as model ground truth

data.31 The PTO thin film was grown on a (001) KTaO3 substrate

with a SrRuO3 conducting layer. The band excitation piezores-

ponse force microscopy39 (BEPFM) imaging of this film is shown

in Figures 1A–1C. The black domains in Figure 1A amplitude im-

age are a domains with in-plane polarization, and the bright do-

mains are c domains with out-of-plane polarization, indicating

the presence of typical a-c domain structures in this PTO film.

The dark and bright domains in Figure 1B phase image show

the antiparallel c+ and c� out-of-plane polarized domains. In

addition, the resonance frequency image in Figure 1C also

shows the ferroelastic a-c domains. In our earlier work, we re-

vealed a mutual interaction among the image channels in

BEPFM via causal physical mechanism analysis.40 We also im-

plemented DKL in operating SPM for AEs to explore the struc-

ture-property relationship in this sample,23,31 and we discovered

the relationship between ferroelectric domain structure and po-

larization-voltage hysteresis loop.

Here, we use this grid BEPS data acquired in our previous

work31 as a model to illustrate DKL analyses and to establish

an AE post-experimental analysis workflow: these grid spectros-

copy data provide us with a low-resolution image showing do-

main structure and corresponding spectroscopy of polariza-

tion-voltage hysteresis at each pixel. The BEPS data are

shown in Figures 1D–1F. Figure 1D is the image showing the

ferroelectric domain structure, Figure 1E shows two example

patches that will be used as structural data in DKL analyses,



Figure 1. Band excitation piezoresponse

force microscopy (BEPFM) and spectros-

copy (BEPS) results of model sample PbTiO3

(A–C) BEPFM amplitude, phase, and frequency

images showing ferroelectric and ferroelastic

domain structures in PTO thin film.

(D–F) BEPS results of PTO thin film. (E) and (F) show

two example domain structures and correspond-

ing spectroscopic behaviors. Note that the struc-

tural image patch is sampled throughout the whole

image in (D). (D)–(F) are reproduced with permis-

sion from Liu et al.31
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and Figure 1F shows two example polarization-voltage hystere-

ses corresponding to these patches.

In the DKL experiment shown in Figure 2, the agent has access

to the global image (e.g., Figure 2B). The global image can be

sampled at the individual location [xi, yi] to return the local image

patch showing known structure (e.g., squared regions in Fig-

ure 2B) and allows for local spectroscopy measurement (e.g.,

the spectrum shown in Figure 2C) at the same location. The (im-

age patch, spectrum) pair represents the feature (input) and

target (output) of the DKL process, where at the initial stage, all

the features and a small number of targets are available. During

the active learning process, the algorithm (1) identifies the next

feature (i.e., location [xi+1, yi+1]) to measure, (2) provides the co-

ordinates to the microscope, (3) receives new data and appends

it to the target list, and (4) updates the model with the expanded

list of targets. The general task of the exploratory DKL algorithm

is to learn the relationship between features and targets by iter-

atively selecting the next sampling location and attempting to

arrive at this in the smallest number of steps. For a ferroelectric

material, this can be learning the relationship between the local

domain structure (patch) and local hysteresis loop (spectrum).

To arrive at the structure-property relationships in the smallest

number of steps, the DKL method is used as a basis for a

Bayesian optimization (BO)41 process. In the DKL BO frame-

work, the chosen characteristic of the spectrum or evolution of

spectrum sequence (mutual entropy, etc.) defines the reward

function for a DKL learning process. The goal in AE is to maxi-

mize this function. For example, DKL can be used to discover

the microstructural elements that correspond to the largest

area of hysteresis loops,31 regions with the highest intensity of

edge plasmons in the STEM-electron energy loss spectroscopy

(EELS) measurements,14 or the highest internal electric field in

the 4D STEM.42 It is also important to note that DKL AE is an

example of beyond-human workflows; the correlation between

the spectra and structures is learned in real-time experiments.

The balance between the exploration and exploitation of the

BO framework is set via the choice of the acquisition function
built upon the ‘‘scalarizer’’ function. We

implemented and investigated three

acquisition functions in this work, namely

expected improvement (EI), upper confi-

dence bound (UCB), and prediction

maximum uncertainty (MU). Specifically,

for the DKL-PFM experiment, the DKL is

trained by image patches IPi and mea-
surements Mi (chosen as scalarizer function applied to spec-

trum) at locations [xi, yi]; the trained DKL predicts unmeasured

locations with known structural image patches. The scalarizer

function can be the area of the hysteresis loop or the offset of

the loop in the voltage axis or any other characteristics of the

spectrum. Then, the acquisition function derives the next mea-

surement location [xi+1, yi+1] based on DKL prediction and uncer-

tainty. We define the sequence of spectroscopy measurement

locations (with corresponding image patches) as the experi-

mental trace. It is important to note that the decision-making in

the DKL AE is based on a single scalar characteristic of the

measured spectra (i.e., scalarizer) rather than the full spectrum.

However, the availability of the full spectrum allows us to incor-

porate counterfactual analyses, which will be illustrated below.

Here we introduce the AE post-experimental analysis frame-

work for DKL-BEPS experiment, comprising (1) regret analysis

including the acquisition function component analysis and coun-

terfactual decision-making, (2) trajectory analysis and feature

discovery, and (3) global latent trajectory analysis.

In regret analysis, we compare the knowledge gain following the

experimental traces of the actual AE DKL model and the trained

DKL models. To illustrate this concept, we have defined three

DKLmodels as shown in Figure 3. The live DKLmodel is the active

model during theDKL experiment, which is trained and updated at

eachexploration step. Thismodel has learnedonly from theexper-

imental data available from the beginning of the experiment to the

current step. The final DKL model is the model trained on all data

sampled during the DKL experiment, e.g., in a 200-step DKL

experiment, and the finalDKLmodel is trainedon200 sampled im-

age patches and corresponding spectroscopic properties. The full

DKLmodel is trained by all data in themodel BEPSdata. Note that

the full DKLmodel can be trained only when the ground truth data

are available, which often is not possible in a real experiment,

whereas the active learning experiment allows access to live and

(in the end) trained DKL models.

During the post-experimental regret analysis, the predictions

of the final DKL and complete DKL models are compared to
Patterns 4, 100858, November 10, 2023 3



Figure 2. DKL workflow

(A) Workflow of DKL-driven SPM measurement.

(B) Global structural image.

(C) DKL training with known structure and known

spectrum.

(D) DKL prediction with known structure; DKL pre-

dicts the values of scalarizer function (i.e., charac-

teristic of the spectrum that is of interest to exper-

imentalists, such as the area under hysteresis loop,

magnitude of the signal at a certain voltage, etc.).
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the prediction of the live DKL model. The regret is defined as the

difference between the predicted scalarizer of the live DKL

model and the final DKL model:

Regreti = Predictionlive DKL
i � Predictionfinal DKL

i

The regret evolution for three acquisition functions is shown in

Figure 3B. Here, the solid line in Figure 3B indicates the mean

Regreti, and the shadow indicates the deviation of Regreti
across the dataset (i.e., the standard deviation of the DKL uncer-

tainty image).

The learning process of live DKLmodels with different acquisi-

tion functions is shown in Figures 3C–3E. The DKL prediction un-

certainty is used as a metrics of learning here. The uncertainty of

the final DKLmodel and the complete DKLmodel are shown as a

comparison. Here, the prediction uncertainty indicates how well

the model can predict the scalarizer value from the structural

domain pattern. The black line illustrates the evolution of the un-

certainty during AE, whereas the shaded region is the distribution

of uncertainties within the image. For the UCB and EI acquisition

functions, themodel learns faster. However, for EI, there is a clear

inflection point suggesting the discovery of a new type of

behavior. Experimentally, a smoother learning process can be

achieved by increasing the exploratory component of the chosen

acquisition function. Curiously, the variability of the predicted be-

haviors is small at the beginning of the learning process, grows at

the intermediate steps when the model discovers new classes of

behaviors, and starts to decrease for the second half of the

training. The regret function (comparison of the final and live

model) for this dataset shows a high noise level and allows us

to identify the stageofmaximal learning. Finally, themeanpredic-

tion component can further be evaluated to characterize the

behavior of the optimization part of the algorithm (not shown).

We note that the learning curves in Figures 3C–3E can be eval-

uated during the experiment and hence represent the indicators

based on which hyperparameter tuning (choice of acquisition

function, tuning the exploration and exploitation within acquisi-
4 Patterns 4, 100858, November 10, 2023
tion function, addition of random explora-

tion, e.g., via epsilon-greedy policies) can

be introduced.

A deeper insight into the decision-mak-

ing process can be given based on the

analysis of the components of the acqui-

sition function, including predicted value

and uncertainty. Therefore, the DKL pre-

dicted value and uncertainty of the next

measurement point are shown in Figure 4
as a function of step. The ground truth of the next measurement

point is also shown in Figure 4 as a comparison. The observed

traces show very high noise levels common for active learning

tasks. Note that this high noise level is present both in the predic-

tion and the ground truth data. However, the background trend

of the decreasing predictive value (i.e., BO minimizes the scalar-

izer function) is seen, and the rate of learning for different acqui-

sition functions can be deduced as the bottom envelope of

observed behaviors.

Another component of AE post-experimental analysis is coun-

terfactual analysis. The counterfactual analysis is defined as how

the action at each step changes if the scalarizer had been cho-

sen to be different. We recall that the progression of the DKL is

driven by the chosen characteristic of the spectra defined via

the scalarizer function (e.g., the scalarizer can be the switching

bias, nucleation bias, and loop area for hysteresis loops in

BEPS), and DKL prediction and uncertainty of the scalarizer

form the acquisition function and guide the exploration. The

reason the counterfactual analysis is possible at each step is

that the actual experiment collects the full-spectrum data, and

any scalarizer characteristics can be evaluated at each step.

This counterfactual analysis allows us to determine whether

the sampled points based on target property 1 help explore

target property 2. To illustrate this concept, we have performed

DKL exploration with loop area from polarization-voltage hyster-

esis, as shown in Figure 5B. This creates an experimental trace,

meaning the sequence of the sampling points, corresponding

image patches, and hysteresis loops. With the experimental

trace for loop area as a scalarizer created, we have loaded the

sampling points and used loop height or coercive field to perform

DKL analysis, as shown in Figure 5C. In addition to DKL counter-

factual analysis that uses DKL sampling points based on a

different target property, we also performed DKL analysis using

random sampling points as a comparison. DKL counterfactual

and random analysis results are shown in Figure 6.

As a measure of the counterfactual experiment progression,

we compare the spatial distribution of the predicted images



Figure 3. Regret analysis of DKL AE

(A) The workflow of regret analysis, where the final DKL and complete DKLmodels are reference models. The final DKLmodel is the DKLmodel after 200 steps of

exploration, and the complete DKL model is trained with all available data.

(B) Regret of DKL with different acquisition functions. The regret is defined as Rgi = Preal� time DKL
i � Ptrained DKL

i , where the solid line is the mean of Rgi, and the

distribution is the deviation of Rgi at step i.

(C, D, and E) Comparison of live, final, and complete DKL prediction uncertainty as a function of step, (C), (D), and (E) show results of DKL with three different

acquisition functions, respectively; here, the solid line shows the average uncertainty, and the shadow shows the deviation of uncertainty.
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with the ground truth. Here, we generate the DKL prediction im-

age of target functionality and calculate the structural similarity

index (SSID) between the DKL prediction and ground truth. We

expect that, if the physical behaviors described by different sca-

larizers are strongly correlated, the SSID values will be high,

whereas if they differ, the SSID will be low.

Shown in Figure 6 are the DKL counterfactual analysis results

with different acquisition functions. The experimental trace is

created by performing DKL exploration with the polarization-

voltage hysteresis loop area as the target property. Then, we

loaded the experimental trace and used loop height and coercive

field to perform counterfactual analysis. The SSID evolution of

DKL exploration (with loop area as target property) and DKL

counterfactual with loop height as target property are similar,

as shown in Figure 6. However, the evolution of DKL counterfac-

tual with the coercive field as target property is slightly different

from the DKL exploration. This is most likely because the loop

area and loop height originate from similar physical mechanisms,

i.e., remnant polarization. In contrast, the coercive field is tied to

different physical mechanisms.

We further proceed to define trajectory analysis and feature

discovery. We note that AE in physical imaging traces a certain

trajectory in the image plane of the system. Given that the global

image is available before the DKL experiment, this trajectory can

be visualized and examined in real space both in real time and

after the experiment.
Shown in Figures 7A–7Care the trajectories of theDKL explora-

tion. Theexploration locationsareplotted in thestructural image in

sequence fromblue to red. The examination of the real-space tra-

jectory yields a powerful real-time andpost-experimental analysis

tool to monitor the progression of the AE. For example, the con-

centration of the experimental points in a certain part of the image

plane to full exclusionofother regionsoftensuggests theeffectsof

instrumental crosstalk (e.g., tilt). Secondly, visual examination of

the trajectory vs. the structural image allows direct identification

of themicrostructural elements that carry functionalitiesof interest

discovered by the DKL. For example, in Figures 7A and 7C, many

of the experimental points have been chosen at the ferroelastic

domain boundaries between large a and c domains. At the

same time, the sampling of the small a-c domain stripes is very

sparse, suggesting that the functionality of interest (i.e., hysteresis

looparea) doesnotmanifest strongly in these regionseven though

they comprise most of the sample surface. Note that this analysis

can be further extended toward human-in-the-loop analysis,

where supervised ML can be used to identify objects of interest

(human-provided goals and labels), and the next round of the

AE will be focused only on these specific features. This approach

has been demonstrated for the analysis of grain boundaries in

hybrid perovskites.43

During the automated experiment, the ML agent learns which

image patches correspond to the optimization of the scalarizer

function. To explore the dynamics of this learning process and
Patterns 4, 100858, November 10, 2023 5



Figure 4. Comparison of live, final, and complete DKL prediction and uncertainty for the next measurement location

(A) Shown is the DKL prediction of the value of the next measurement location.

(B) Shown is the ground truth of the predicted next point.

(C) Shown is the uncertainty of the next point.
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explore what are the discovered features, we introduce the latent

analysis with rotationally invariant variational autoencoders

(rVAEs) on the full experimental trace.44–46 The rVAE disentan-

gles the factors of variation in all image patches into latent

variables; in this case, the latent space shows the structural var-

iations that are somehow relevant to physical features (e.g., do-

mains). Shown in Figures 7D–7F are the trajectories of DKL

exploration in rVAE latent space. The corresponding latent rep-

resentations are shown in Figures 7G–7I and allow us to identify

the physical features related to latent variables. Note that the

analysis above is based on the data contained in the experi-

mental trace and becomes available after the experiment.

Finally, to explore the discovery process, we introduce latent

trajectory analysis. In this case, we utilize the fact that the global

image and hence full collection of the image patches are avail-

able before the experiment. This allows the latent space of the

system to be constructed via the suitable (invariant) VAE. The im-

age patches that become available as the experimental trace

can be visualized in the corresponding latent space, whereas
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the trajectory in the global latent space and the evolution of latent

variables along the experimental path can be visualized in real

time. Note that these latent variables are different from the

DKL latent, since the DKL embeddings are updated at each

experimental step (and their meaning can be determined only

via backpropagation through the deep convoltional neural

networks).

The latent trajectory analysis is shown in Figures 8A and 8B.

Figure 8A shows the correlation of DKL embedded variables

and structural factors, and Figure 8B shows the correlation be-

tween rVAE latent variables and structural factors, where there

is some similarity between DKL and rVAE variables. Figures 8C

and 8D indicate the distribution of DKL samplings in the rVAE

latent space. Note that for all three acquisition functions, the

AE samples the regions in the latent space corresponding to

a-c domain walls; from the point of view of ferroelectric phys-

ics, this can be understood that more factors (wall, strain,

defect, etc.) affect properties near a-c domain walls. The cen-

tral peak of the kernel density estimate corresponding to



loop
height

coercive
field

coercive
field

loop
area

Voltage (V)

Po
la
riz
at
io
n
(a
.u
.) Target properties:

1. Loop Area
2. Loop Height
3. Coercive Field
4. …

loop area

loop height

DKL Exploration

DKL Counterfactual

A

B

C

Figure 5. Counterfactual analysis

(A–C) Workflow of counterfactual analysis. (A)

There are multiple target properties encoded in

spectroscopic data. (B) DKL exploration based on

one target property determines the measurement

location at each step. (C) In counterfactual anal-

ysis, another target property will be used to

perform DKL analysis, and the measurement

location at each step is loaded from the corre-

sponding exploration step.

(D) DKL counterfactual analysis results, where the

DKL exploration is guided by the target property of

loop area, and counterfactual analysis target

properties are loop height and coercive field. DKL

analysis based on random location is also plotted

as a comparison.
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most usual microstructures (dense ferroelastic domain pat-

terns) remains unaddressed. This approach illustrates which

microstructures give rise to the thought behaviors. Note that

additional insight into this discovery process can be derived

by plotting the time dependence of the latent variables, time-

coding trajectories for a single acquisition function in the latent

space, etc.

Here we want to note that the structural factors can be modi-

fied by changing the image patch size, and correspondingly, the

DKL exploration trajectory and samplings will also be changed.

We believe this change is tied to the physics involved in the im-

age patches with different sizes. Note that the discovery process

can be further explored by exploring the time dependence of the

latent codes corresponding to the patches along the experi-

mental trace.

DISCUSSION

The AE post-experimental analysis represented above illustrates

the collection of descriptors available during and after the DKL
Figure 6. Counterfactual analysis results, where the DKL exploration is

ysis target properties are loop height and coercive field; DKL analysis

(A–C) Shown are the counterfactual analysis results of DKL with different acquisitio

confidence bound (UCB), respectively. The DKL counterfactual analysis process
automated experiment that provide insight into the progression

of the training (predictive uncertainties), rate of the BO of target

functionalities, and real-space and latent space discovery trajec-

tories. Given the rich nature of the information contained in the

experimental trace, these methodologies can be developed

further using multiple tools developed in the context of static

ML and BO. For example, the analysis can be extended to

exploring the emergence of correlations between image and

spectral data in trace via linear (canonical correlation analysis)47

and VAE-basedmethods. The patches in trace or spectra can be

used as labels for the semi-supervised analysis of the global

structural data. Multiple opportunities further emerge for the

AE policies, including the introduction of multi-objective optimi-

zation for multiple scalarizers, changing policies during the

experiment, etc. We defer the analysis of these opportunities

for further experimental effort.

Finally, we consider the opportunities for human-in-the-loop

interventions in the automated experiment, as shown in Fig-

ure 9. Table 1 summarizes the definitions for the real-time

and post-experimental analysis descriptors in the AE. The
guided by the target property of loop area, and counterfactual anal-

based on random location plotted as a comparison

n functions expected improvement (EI), maximum uncertainty (MU), and upper

is shown in Figure 5.

Patterns 4, 100858, November 10, 2023 7



Figure 7. Trajectories of DKL exploration with different acquisition functions and evolution of latent component Z1, Z2 as a function of step

(A–C) In the trajectory of DKL exploration with different acquisition functions EI, MU, and UCB, respectively, where the exploration locations are shown on the

structural image, the spot’s color represents a step.

(D–F) Trajectory in latent space, where (D), (E), and (F) correspond to the trajectories of DKL exploration with difference acquition functions EI, MU, and UCB,

respectively.

(G–I) rVAE latent representations, where the rVAE is trained with DKL samplings with different acquition fucntions EI, MU, and UCB, respectively.

ll
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indicators such as learning and regret curves and real-space

and latent trajectories can be visualized in real time during

the experiment and provide strong signals on the progress in

predictability and discovery during AE and the nature of uncov-

ered structural elements and functional behaviors. At the same

time, AE allows easy access to the control parameters. The BO

pathways can be tuned via the selection of the scalarizer func-

tion that can be chosen from the pre-populated list or dynam-

ically tuned during the experiment (e.g., signal averaged over

selected spectral band). The balance between exploration

and exploitation can be tuned via the acquisition function,

again selecting from the list or tuning the weight coefficients

in UCB, etc. Similarly, random exploration can be added via

the epsilon-greedy term.
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Several of the parameters (e.g., related to the final DKLmodel or

feature discovery) are available at the end of the DKL experiment.

Rigorously, these can be updated throughout the experiment.

However, we believe that their interpretability makes them ideal

for the human-in-the-loop interventions, where the experiment is

paused, and the human operator tunes the experimental policies.

Wealsonote that thisanalysiscanbe furtherextended to introduce

additional knowledgeduring theexperiment, for example,byusing

a deep convolutional network to perform the image segmentation

and run DKL on segmented (rather than raw) data. We hope that

the provided notebooks48 will allow the broad experimental com-

munity to explore these opportunities.

To summarize, here we proposed and implemented the AE

post-experimental analysis for the automated experiment in



Figure 8. rVAE analysis of DKL sampling

(A) DKL embedded variables.

(B) rVAE latent variables.

(C and D) rVAE analysis of all image patches and the DKL sampling distribution. Here, (D) is the latent distribution of the system, i.e., all image patches represented

in the latent space.

(E) Shown is the superposition of the sampled patches on the kernel density estimate of the full latent distribution of the system, showingwhich of the regions were

sampled for different acquisition functions. These data can be color-coded by the number of points (not shown).
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SPM. This analysis is implemented on a pre-acquired dataset,

thus allowing a comparison of the dissimilar experimental pol-

icies. However, it can be implemented on anymicroscope equip-

ped with previously reported DKL workflows. Overall, this anal-

ysis allows monitoring the progression of the exploratory and

exploitative descriptors during the AE and introduces the strate-

gies for human-in-the-loop intervention based on the target and

policy controls.

The proposed approach can be extended to all other imaging

spectroscopicmethods, including STEM-EELS, 4DSTEM, optical

microscopy, and scanning electron microscopy combined with
reward
policy
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nanoindentation and multiple chemical imaging methods. The

only requirement for theapplicabilityofAEpost-experimental anal-

ysis in its present form is the availability of the structure-spectra

pairs as the basis for the imaging process. From the instrumental

side, the common denominator is the control hyper-language

that gives access to the probe position and enables the initiation

of imaging and spectroscopic scans.

We further note that this methodology can be applied to

more complex scenarios, including exploration of the parameter

space of the theoretical models or composition and processing

spaces in automated materials synthesis, as well as chemical
intervenƟon
intervenƟon

ML

riment

Figure 9. Human- vs. artificial intelligence-

assisted experiments

(A) In the human-controlled paradigm, the human

operator issuescontrol commands in the instrument-

specific hyper-language for certain experiments.

(B) In ML-driven autonomous experiments, the hu-

man operator is substituted by the AI agent.

(C) In the AI-assisted human-in-the-loop paradigm,

thehumanoperatoroverseesexperiments runby the

AIagent.During this,humanscandirectly intervenein

the experiment or tune (in real time) the decision-

making process of the ML agent, which requires

developing the methodology to monitor and inter-

vene in the ML-driven autonomous experiments.
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Table 1. Summary of the definitions for AE post-experimental analysis descriptors

Characteristic Definition Availability

Global image initial structural dataset available before

DKL experiment; used to create patches for

DKL training

before

DKL latent the latent variables encoding the structural

information in the patches

duringb

Scalarizer function the function defining what characteristic of

the spectrum guides Bayesian optimization

beforea

Acquisition function function combining DKL prediction and

uncertainty of the scalarizer function

beforea

Policy principle for selection of next path; the

simplest policy is maximization of

acquisition function but can be more

complex including epsilon-greedy or

switching between multiple scalarizers or

acquisition functions; human-in-the-loop

intervention tunes some aspects of the

policy

beforea

Experimental trace collection of patches (and their coordinates)

and spectra derived during the experiment;

trace and global image are the results of

AE SPM

during

Live DKL model DKLmodel in the state corresponding to the

n-th experimental step

during

Final DKL model DKLmodel in the state corresponding to the

end of the experiment

after

Complete DKL model DKL model trained on the full dataset (if

available from grid measurements, etc.)

not available in

real experiments

Regret analysis the difference between predictions of the

live DKL model and the final DKL model

after the whole experiment (i.e., after 200

steps in this work)

duringb and after

Learning curve change of the DKL uncertainty (mean and

deviation), indicative of the predictability of

the patch-scalarizer relationship

during

Counterfactual scalarizer the availability of full spectral data as a part

of the experimental trace allows us to

estimate what the BO step would be if the

scalarizer were chosen to be different

during

Trajectory analysis real-time trajectory of the probe that can be

represented in the global image plane

during

Feature discovery analysis of the latent variables and latent

representations of image patches and

spectra in the trace; here, we realize only

patch analysis, but extension to spectra is

straightforward

after

Latent trajectory analysis analysis of the experimental trajectory in the

latent space of the full collection of the

image patches derived from the

global image

duringb

aDenotes parameters that provide controls for human-in-the-loop intervention.
bDenotes observables that can be naturally monitored during the DKL experiment to make human-in-the-loop decisions. Note that

strictly speaking all after-experiment descriptors can be evaluated on the fly, but they represent more difficult to interpret and intervene

upon behaviors.
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spaces for organic molecules or biomolecules. However,

in these cases, the measures for exploration and representation

will depend on the structure and correlations in the correspond-
10 Patterns 4, 100858, November 10, 2023
ing parameter spaces, necessitating the development of

domain-specific descriptors. Overall, we believe that the

proposed framework opens the pathway to interpretable
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automated experiments, AE monitoring, and human-in-the-loop

interventions.
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