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Motivation

The nuclear microprobe allows the creation of 2D elemental distribution maps from regions of
interest defined in the multiple spectra recorded during the experiment, such as RBS, PIXE,

STIM, etc.
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State of the Art

RBS spectrum
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ABSTRACT Increasing interest in the use of nanopatrticles (NPs) to elucidate the function of nanometer-sized assemblies of
macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic
sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole
cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole
cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be guantified.
High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast
for AUNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from
elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are
at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-
dimensional imaging at <10 nm resolution.

FIGURE 8 FSTIM image of the NP cell, using RBS depth information to
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State of the Art, MORIA
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Summary

In this work, a new tool was developed, the MORIA program
that readily translates Rutherford backscattering spectrome-
try (RBS) output data into visual information, creating a dis-
play of the distribution of elements in a true three-dimensional
(3D) environment.

The program methodology is illustrated with the analysis
of yeast Saccharomyces cerevisiae cells, exposed to copper ox-
ide nanoparticles (CuO-NP) and HeLa cells in the presence of
gold nanoparticles (Au-NP), using different beam species, en-
ergies and nuclear microscopy systems. Results demonstrate
that for both cell types, the NP internalization can be clearly
perceived. The 3D models of the distribution of CuO-NP in S.
cerevisiae cells indicate the nonuniform distribution of NP in
the cellular environment and a relevant confinement of CuO-
NP to the cell wall. This suggests the impenetrability of certain

cellular organelles or compartments for NP. By contrast, using
a high-resolution ion beam system, discretized agglomerates
of Au-NP were visualized inside the HelLa cell. Thisis consistent
with the mechanism of entry of these NPsin the cellular space
by endocytosis enclosed in endosomal vesicles. This approach

shows RBS to be a Eowerful imaging technigue assigning to
nuclear microscopy ungaralleled Eotential to assess nanopar-

ticle distribution inside the cellular volume.
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State of the Art, MORIA
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State of the Art, Artificial Neural Networks

- N.P. Barradas and A. Vieira are pioneers in use Neural Networks to classify RBS spectra.

1500 , — .
PHYSICAL REVIEW E VOLUME 62, NUMBER 4 OCTOBER 2000

1000 T Artificial neural network algorithm for analysis of Rutherford backscattering data

- N. P. Barradas™
Instituto Tecnologico e Nuclear, Reactor, Estrada Nacional 10, 2686-953 Sacavem, Portugal
and Centro de Fisica Nuclear da Universidade de Lishoa, Avenida Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
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T Rutherford backscattering (RBS) 1s a nondestructive, fully quantitative technique for accurately determining
> the compositional depth profile of thin films. The inverse RBS problem, which 1s to determine from the data

T the corresponding sample structure, 1s, however, in general ill posed. Skilled analysts use their knowledge and
X, @ experience to recognize recuring features in the data and relate them to features in the sample structure. This

1000 4 e : | is then followed by a detailed quantitative analysis. We have developed an artificial neural network (ANN) for
: the same purpose, applied to the specific case of Ge-implanted Si_The ANN was trained with thousands of

constructed spectra of samples for which the structure is known. It thus learns how to interpret the spectrum of

1 a_given sample. without any knowledge of the physics involved. The ANN was then applied to experimental

data from samples of unknown structure. The quantitative results obtained were compared with those given by
traditional analysis methods and are excellent. The major advantage of ANNs over those other methods 1s that,
after the fime-consunung traming phase, the analysis 1s instantaneous, which opens the door to automated
on-line data analysis. Furthermore, the ANN was able to distinguish two different classes of data which are
experimentally difficult to analyze. This opens the door to automated on-line optimization of the experimental
conditions.

1
400
Channel

FIG. 2. Spectra calculated for different experimental conditions
for a 25-A-thick Ge & layer located under a 400-nm-thick S1 lay-
er: (a) Beam energy Ep=12, 1.6, and 2 MeV. (b) Scattering
angle @y =120, 140° and 180°. (c) Angle of mcidence &
=0° (normal incidence), 25°, and 50°.

PACS number(s): 07.05.Mh, 82.80.Yc, 07.05.Kf, 68.55Nq

Just one of the multiple publications...
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State of the Art, Artificial Neural Networks

- Also in the IBA&PIXE-SIMS 2021 conference, the use and efficacy of Neural Networks were also discussed. ...

IBA&PIXE-SIMS 2021
11-15 October 2021

An artificial neural network algorithm for the simultaneous analysis of multi-detector
RBS depth profiling
Goele Magchiels, KU Leuven, Germany
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P24 Deep Convolutional Neural Networks applied to nuclear microprobe data

B Victoria Corregidor, C2TN /DECN, IST-Ulishoa, Portugal
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Fig. 1: RBS spectra of Ni/Ge0.914Sn0.086/Ge after deposition measured in (a) backscattering
geometry and (b) glancing geometry. The experi- mental data are represented by the black triangles,
the simulations based on the ANN output by the red solid line. 0o s

Cu distribution in a gold matrix

In both cases, again, only RBS data were considered.
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Results: Thermophotovoltaic GaSb ce
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TPV cell: 2 x 2 mm?

The front grid metallization:

finger width: ~ 10 um
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Artificial Neural Networks and nuclear microprobe

Although the overall RBS spectra (the sum of all pixel spectra) may show good counting statistics, when each pixel is

considered individually, the corresponding single spectra usually have rather poor counting statistics.
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Artificial Neural Networks and nuclear microprobe

To increase the statistic of the spectra, the raw data should be pre-processed. The data were 4x4 compressed.

20 um 408003P0:Au Lat (ITN)
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Results: Thermophotovoltaic GaSb cell
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TPV cell: 2 x 2 mm?2

The front grid metallization:

finger width: ~ 10 um

Evaporation of: 5 nm Cr/ 25nm Au/ 60 nm Ni/ 1 um Au
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Artificial Neural Networks and nuclear microprobe

Typically, data from each area scanned by a nuclear microprobe is acquired as a 256 x 256 x n pixel matrix, each pixel

containing n of the IBA spectra recorded during the experiment.
Neural networks

Hidden
Data AN N Results Input

Composnmn and depth
d[StI‘IbUl‘IDF’l : 1

Output

Input data: simulated RBS spectra (WiNDF) + noise; Real PIXE spectra (5) + noise (thousands)
Output data: Au thickness of the Au layer and Ni+Cr distribution.

Hidden layers, number of input data..... Parameters to be adjusted.
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Artificial Neural Networks: PIXE input data
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input data:

5 real PIXE spectra, which are

“representative”, add noise
generate thousands of PIXE

to

spectra to train the networks
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Artificial Neural Networks: 2D maps using PIXE spectra

20 um 408003P0:Cr Ka1 (ITN)

i The neural networks are able to reproduce 2D elemental maps

and, in some cases, provide better visualization, as in the case of
Cr distribution.
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Artificial Neural Networks: RBS input data
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Artificial Neural Networks: 3D map using RBS spectra

20 um 408003R1:Aur (ITN) Output data:

Quantitative 3D maps for Au
distribution
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Artlﬁc;lal Neural Networks: 3D map using PIXE and RBS spectra
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Future, next work

- Explore methods to create artificial PIXE spectra to avoid using real PIXE spectra for training
the networks. All ideas are welcome!

- Compress the RBS and PIXE spectra to increase statistics.

- Try Convolutional Neural Networks (which are ideal to classify images) to analyse the spectra
- Reduce the time needed to obtain the experimental data (hours)

- Consider that each case may require a dedicated neural network

- Itis possible to have a general neural network?
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