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Rutherford backscatterindRBS) is a nondestructive, fully quantitative technique for accurately determining
the compositional depth profile of thin films. The inverse RBS problem, which is to determine from the data
the corresponding sample structure, is, however, in general ill posed. Skilled analysts use their knowledge and
experience to recognize recurring features in the data and relate them to features in the sample structure. This
is then followed by a detailed quantitative analysis. We have developed an artificial neural n@iNétkfor
the same purpose, applied to the specific case of Ge-implanted Si. The ANN was trained with thousands of
constructed spectra of samples for which the structure is known. It thus learns how to interpret the spectrum of
a given sample, without any knowledge of the physics involved. The ANN was then applied to experimental
data from samples of unknown structure. The quantitative results obtained were compared with those given by
traditional analysis methods and are excellent. The major advantage of ANNs over those other methods is that,
after the time-consuming training phase, the analysis is instantaneous, which opens the door to automated
on-line data analysis. Furthermore, the ANN was able to distinguish two different classes of data which are
experimentally difficult to analyze. This opens the door to automated on-line optimization of the experimental
conditions.

PACS numbgs): 07.05.Mh, 82.80.Yc, 07.05.Kf, 68.55.Nq

I. INTRODUCTION nonresonant nuclear reaction analy®&A) [8] spectra col-
lected from a given sample. The analysis with SA is fast,

Rutherford backscatteringRBS), as well as other ion taking the same order of magnitude as the time required to
beam analysigIBA) related techniques, is dedicated to thecollect the data using a desktop PC, and only a small degree
compositional analysis of samples in the few nm to the ten®f user expertise is required to interpret the results.
of um range[1] and is extensively used in research labora- However, it would nevertheless be highly desirable to
tories. One of the reasons for its success is that it is fullhave push-button instantaneous data analysis, particularly for
quantitative, not needing to recur to certified sampéeder-  specific systems of interest. This would enable batch analysis
nal standards and the physics behind it is mostly classical. of samples, for instance, in quality control within a produc-

The inverse RBS problem, which is to determine from thetion line. Furthermore, the active participation of an expert
data the corresponding sample structure, is ill posed excepluring data collection is often required to optimize the ex-
in the most simple cases. While this is true of many inverseperimental conditions. Automatic determination of optimal
problems, skilled analysts have long sidetracked this barriegxperimental conditions for a given sample is then another
by using their experience-gained knowledge of what thedetermining condition for successful automation of RBS ex-
RBS spectrum of a known sample looks like. This enablegperiments.
the analyst to recognize specific recurring features in RBS The aim of this paper is to present a code for the analysis
data and relate them to specific sample properties. This isf RBS data based on a supervised feedforward artificial
then normally followed by a detailed quantitative analysis. neural networKANN) algorithm[9], which is a very flexible

Until recently, analysis of RBS datand other IBA tech- scheme, capable of approximating an arbitrary unknown
niques had to be performed manually, with the help of in- function. It is particularly well suited to high-dimensional
teractive simulation codes, by highly skilled scientists. Thisnonlinear regression analysis with noisy signals and incom-
time-consuming procedure precluded the analysis of largelete data. It was applied with success to many different
amounts of data. In particular, it prevented the developmenfields, including infrared spectroscodyl0], the traveling
of an automated on-line analysis of data. salesman probleri1], and medicind12].

Recently, a code based on the simulated annea&fidy Techniques such as SA, Bayesian inference and maxi-
algorithm[2,3] was presented which can analyze automati-num entropy with the Markov chain Monte Carlo algorithm,
cally RBS [4-€], elastic recoil detectiotERDA) [7], and  and genetic algorithms have been recently applied to differ-

ent experimental techniques such as RBS, particle-induced
x-ray emissior]{13], ellipsometry[14], or x-ray fluorescence

* Author to whom correspondence should be addressed. Electron[d5]. One of the main advantages of ANNs over those tech-
address: nunoni@itnl.itn.pt niques is that they require some tirghich in some cases
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can be very longfor the analysis of each data set, while tering, they further lose energpE,,) on their way out. The
ANNs, after the time-consuming initial training process, ana-energy of the particle after being scattered at dep#nd

lyze the data instantaneously. leaving the sample is then
Another foremost ability of ANNSs is to recognize recur-
ring patterns in the input data. This is done without specific Eger=Eo— AEj,—AE(—AEqy, 3

knowledge of the causes of the pattern. ANNs are then an

ideal candidate to do automatically what RBS analysts hav#here

long done, which is to relate specific features of the data to

specific properties of the sample. To test the capability of AE. zftS[E(x)]dx ()
ANNSs to perform this task, we chose a simple system, Ge " Jo '

implanted in Si[16], which has, however, many possible

technological applications, in particular in the field of opto- AE(=(1-K)(Eq—AE,y, (5)
electronics, with the potential for monolithic integration with
Si technology{ 17]. 0
AEq= _J S E(x)]dx, (6)
t/cosageatt
Il. RUTHERFORD BACKSCATTERING and
A. Theory

In 1909 Geiger and Marsden observed what they called SE(x)]= d_E 7)

“diffuse scattering”—that is, backward scattering—of MeV dx

alpha particles by thin metal foild8] (subsequently known ] o ]

as the “Rutherford experimeny”’and the following year IS the energy loss per unit path Ier_lgt_h, which is a function of
measured the most probable angle of scattering of transmith® energy of the particle, which in its turn depends on the
ted particleg19]. Based on these data, Rutherford developedath already traversed. These energy loss values have been
his model of the atom and calculated the one-body scatteringetermined experimentally for many incident beams and tar-
cross section using a Coulomb potenf20]. His predictions ~ 9€ts, and are available in tabulated fdi23]. Note that Eqs.

on the angular dependence of the cross section were cofff) and (6) are valid only for normal incidence. When the
firmed by Geiger and Marsdd@1] in 1913. Two-body cal- Sample is tilted at an anglé,c with the normal to the
culations lead to correcting terms to Rutherford’s expressions@mple, the integral limits are scaled according to:@s in

and the final result, the so-called Rutherford cross sectiofrder to account for the longer path of the beam through the

ORuths 1S sample.
Equations(1)—(3) constitute the basis of the Rutherford
ZoZue?\? 4 backscattering technique. The energy of particles backscat-
TR TAE | Sirf areom tered from the surface of a sample depends only on known
parameters and on the mass of the scattering center. Hence,
[[1—(M/M)?Sirf agead %+ cOS@geal® from Eq.(2), one can determin@hatthe sample is made of.
[1—(M/M)ZSir? ageag 72 o (@ The Rutherford cross section depends also only on known

parametergafter the target particles have been identified

. o hence, from Eq(1) one can determineow muchof a given
whereZ, andZy, are the atomic number of the incident and gjement the sample contains. Finally, from the energy loss

target particles, respectively andM their massesgscanth®  ang Eq.(3) one can determinevherea certain element is
angle of scatteringe- the incident particle energy, argthe  |ocated in a given sample. This is quantitative in an absolute

electron charge. The target particle is supposed initially af,4y- that is, it does not depend on external standards, which
rest. Deviations from the Rutherford cross section exist, afs the main factor making RB&nd other ion beam analysis

low energies due to electron screening of the nuclear chargg chniques attractive. A detailed description of the numeri-
[22] and at high energies due to nuclear reactions betweegy, generation of RBS spectra can be found in fR24].

the two particles. _ _ Equation (3) provides a depth scale, i.e., a conversion
In t_he_ (_:(_)II|5|on, the backsc_attered partlcle_s lose a fractionyatween detected energy and depth: however, it is different
of their initial energy. The ratio between their energy beforeq, each target element and is also not linear. For instance,
and after scatteringz, andE, respectively, is the so-called he signal due to scattering from a heavy element located
kinematic factorK: deep in a sample can be, and often is, superimposed onto the
signal due to a lighter element located near the surface of the
(M2 —m? Sir? argean 2+ M COSasea]? sample. This renders analysis difficult. While it is very easy
MEm (2)  to calculate the expected spectrum from a given beam and
sample(and parameters of the detection syskémdiscretiz-
ing the sample into many sublayers, the inverse problem of
The scattering does not necessarily occur at the surface ehlculating the sample structure from a measured spectrum is
a sample. As the particles of the incident beam penetrate theonsiderably more difficult.
sample, they lose an amount of eneryly;,, mainly through Traditionally, analysis for all but the most simple cases
interactions with the sample electrons. In the scattering, thbas been done with the aid of computer programs. These are
particles lose energyNE) according to Eq(2). After scat- almost all interactive, requiring the analyst to guess the

K=E/Ey=
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structure of the sample, calculate a spectrum, compare it witto the input layer and the respective set of desired outputs

the data, and iterate until a sufficiently good match is obpresented to the output layer. The training set normally con-

tained. A recent review of available codes is given in Ref.sists of experimental data. However, when a good computa-

[25]. Recently, a codeDF, based on the SA algorithfi2,3],  tional model is available, the training set may be constructed

has been presented which effectively solved the inverse RB®ith simulated experimental data.

problem[4]. The training of an ANN is in general very time-
The theoretical model presented above has some limitazonsuming. After being trained, however, the experimental

tions. First, it considers only a single large-angle scatteringlata are analyzed almost instantaneously. Furthermore, care

event. It disregards the existence of plural scattering, irmust be taken in order to use an adequate training set, rep-

which several large-angle scattering events take place, anésentative of all possible experimental situations. In many

multiple scattering, in which many small-angle scatteringcases this is not feasible, and the sampling space must be

events take place before or after the backscattering occurgestricted to a specific subdomain. This means that ANNs are

These effects lead to an enhanced yield at low energies, thaest applied to specific, well-defined problems.

is, a low-energy backgroundin some cases, particularly There are several training algorithms for supervised learn-

low-energy heavy ions, also a higher-energy background caimg, the backpropagation algorithm being the most widely

occur[26]), as well as to degradation of the energy resolu-used. In this algorithm the training is performed by minimiz-

tion [27,28. ing the sum of square errors function over thelements of
Second, in this model we consider only the energy resothe training set:

lution of the setup. We have disregarded energy straggling

due to the statistical nature of the energy loss process, to the 1 2

energy and angular spread of the analyzing beam, geometric E= §n§=:1 (Yn=0n)". 8)

straggling cause by the finite size of the beam spot and de-

tector, and multiple scattering. The influence of all these fac- |n this equatiory is the output given by the netwoilfor

tors can be calculatef®9,30, but it is rather involved and  simplicity, we consider a single outpuindo; is the desired

can be time-consuming. output. By minimizing this equation with respect to the

weightsw!‘j connecting the nodeof the last hidden layek

to nodeg of the output layer, we obtain the following recur-

sive relation for updating the weights after each iteration
Ge was implanted into Si with nominal beam fluence[32]:

(also called implanted doséetween 10 and 2510'° Ge

atoms/cr, to projected ranges between 491 and 776 A, that W!(j(t+1)=W!‘j(t)+ 76X + a[wikj(t)—w!‘j(t— D], (9

is, between 245 and 33810'°Si atoms/crA The RBS

analysis utilized a 1.5-MeV Hebeam. Both normal inci- Wherex; is the output of the nodein layerk and 8" is given

dence and a 7° misalignment were used. Two detectors weky

used in the IBM geometryin which the incident beam, the ‘

detected beam, and the normal to the sample all lie in the o'=y(1-y)(o—y). (10

same horizontal planewith scattering angles 165° and 133°.

The product of detector solid angle with analyzing beam

N

B. Experimental details

To actualize the weights of a given layer— 1, the error

fluence was between 4.3 and 124 msr. is backpropagated substitutirdj by
lll. ARTIFICIAL NEURAL NETWORKS 5{“*1=xi(1—xi); Swi T, (11)
A. Theory

An artificial neural network is a flexible scheme capableVhereX; is the output of nodé in layerm—1, and for the
of approximating any arbitrary unknown functiég]. It is  last hidden layeik, 5 is defined ass*. The learning rate
particularly well suited to high-dimensional nonlinear regres-Parameten is usually set below 0.2. A momentum teeeris
sion analysis with noisy signals and incomplete dat§. A~ added to avoid trapping in local minima. In our case we set
feedforward neural network consists of an array of inpute=0.2. The output of each node is taken to be the sigmoid
nodes connected to an array of output nodes through théginction f(x) of the weighted sunx of the outputs from all
nodes of successive intermediate layers. Each connection bée nodes of the previous layer:
tween nodes has a weight, initially random, which is adjusted e 1
during a training process. The output of each node of a spe- f)=(1+e =)7L (12
cific layer is a function of the sum on the weighted signals _ )
coming from the previous layer. The crucial points in the 1h€ parameted is a threshold that usually is set to zero.
construction of an ANN are the selection of inputs and outAt €ach iteration the results provided by the ANN are com-
puts, the architecture of the ANN, that is, the number ofPared with a sample of examples not used in the training,
layers and of nodes in each layer, and finally, the trainin _alled the test set. The figure of merit of the network is the

algorithm. inal mean-square errdMSE), given by
In supervised learninf], the training is done by present- 2
ing a large set of examples, called the training set, to the (yi—0) (13

. . & = —.
network. Each example consists of a set of inputs presented MSE ] (0;—0)°
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FIG. 1. Mean-square error as a function of the number of train-
ing iterations for the train set and the test set. The arrow marks th
iteration where the error reached 20% and all cases with error large
than 40% were excluded from the train and test sets.

500 +

Yield (arb. units)

The sum is over the training set, ands the mean value of

the output used in the training data. The training process i

stopped after some convergence criterion is reached. 1000
During training, the MSE of the training set decreases

with the number of iterations, while for the test set it reaches

a minimum, after which it starts to increase. This occurs dut 500

to overfitting of the net to the training data, thus decreasin(

its generalization capabilities. To overcome this problem we

have to define a stop criterion. The most widely used recip: 0

is to stop the training process when the MSE of the test set i

minimum (see Fig. 1L Another possibility to avoid overfit-

ting is the addition of noise to the training data. In our case

both techniques are simultaneously used.

FIG. 2. Spectra calculated for different experimental conditions
for a 25-A-thick Ges layer located under a 400-nm-thick Si lay-
er: (a Beam energyE,=1.2, 1.6, and 2 MeV(b) Scattering

The selection of an adequate network architecture is onengle ag.=120°, 140°, and 180°(c) Angle of incidence 6,
of the most important aspects to consider in using ANNs=0° (normal incidencg 25°, and 50°.

Although an ANN with a single hidden layer is in principle

capable of classifying any pattetprovided that an infinite  gigterent technique consists in using node growth and prun-

number of training examples is availahlén many cases itis g 550rithms in which new nodes and layers are added or
useful to use more intermediate layers. This can have severghateq pased on the sensitivity of the output to their weights
ac_ivantages. For example, by introducing intermediate I_ayer ]. Both these methods have the disadvantage of demanding
with a number of nodes smaller than the number of inpuye ¢ompytation, or some approximation, of the second de-
nodes, the dimension of the input space is reduced through g 4iye of the error function with respect to all the networks

projeption Qf .the. dgta into a Ipwer—dimensional space. Ir\/\/eights, i.e., the Hessian matrix, which is a time-consuming
practice, this is similar to applying feature extraction meth—task

ods on'the input data, IiI§e principal component analm,' In principle, the determination of determining the best
which is a useful technique when a large number of highly,enyork configuration, i.e., the network with the lowest

correlated inputs exist. This leads to a more robust map berﬁean—square error, is an optimization problem that can be

tween the. Inputs anq outputs, and with a onver error. .S'ncpsolved by standard optimization algorithms, such as simu-
the sampling space is effectively reduced, dimensionality rey

duction is al ted | h N af ._[ated annealing or genetic algorithrfi35]. These have the
uction is also appropriated in cases where only a few tralnFnajor drawback that they require the training of thousands of

ing examples are avaﬂablg. . .__ANNSs and the evaluation of their performance.
One the other hand, using a large number of intermediate

layers may cause some difficulties. Due to the increase of
optimization parametersi.e., the connection weightshe
risk of the ANN becoming trapped in a local minimum is  We present in Fig. 2 spectra calculated for different ex-
higher. The risk of overfitting is also higher, and, finally, it perimental conditions, for a Ge sample 25 A thitle.,
takes more time to train ANNs with a large number of layers.11.1X 10'°Ge atoms/crf) & layer located under 400 nm of
Several techniques of alleviating these difficulties exist.Si (i.e., 2x 10'Siatoms/crf). It is clear that, for one given
One of them is weight decayd4], which essentially elimi- sample, very different spectra can be obtained. Some of the
nates less significant nodes or weights from the network. Aossible spectra are relatively simple to analytzege and

B. Network architecture

C. Application to Rutherford backscattering
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1500 T r T T T r solid angle and analyzing beam fluence, as a normalizing
i factor to help determine the Ge dose.
1600 (b) The data must be preprocessed before being presented to

the ANN. The most important step is to normalize all the
inputs and outputs. Since the signals have a wide variation
500 - Y 75 i range (three orders of magnituglewe chose to apply the
A following transformations: for the output depthy

=,y+b, and for the implanted dosg=In(y+b). The
threshold value was set to=5 and was included in order
not to give extreme importance to cases with very low val-
ues. For the depth we prefer to use the square root since its
variation within the training set is lower than for the dose.

The yield is first normalized to the charge—solid-angle
product and then normalized to values between 0 ardl 1
corresponding to the largest single-channel yield observed in
the training and test setsThe total yield(signal areais also
. . . . i . used as an input. The other inputs are the beam energy and
0 100 200 300 400  energy resolution, the angle of incidence and the scattering
angle, and the input data consisting of 128 channels.

Yield (arb. units)

1000 +

500 +

Channel

IV. ANN IN RBS ANALYSIS OF Ge IMPLANTS INTO Si
FIG. 3. Calculated spectra for a Gelayer in Si: (a) 10 A

thick, located at different depths: 1-20, 2—100, 3—300, 4—600, A. Construction of the training set

and 5-1000 nm. The position of the Ge peaks and of the corre- The training set must cover a wide range of realistic ex-
sponding Si dips is markedb) 25, 50, and 75 A thick, located perimental conditions and of possible Ge doses and depths.
under a 200-nm-thick Si layer. We generated a training set consisting of theoretical spectra
simulating different Ge implants into Si, to doses between
well-separated signalsand others relatively complicated 10" and 168Ge atoms/crhand depths between 1 and 1500
(e.g., when the signals of Ge and Si are superimpod§dte  nm (which corresponds to an implant energy of about 2.8
purpose of an ANN dedicated to the analysis of RBS spectraveV). Each implant was simulated as a perfect Gaussian,
and in particular to the analysis of Ge in Si, is, first, towith width given by the coderim [23] for the correspond-
determine the amount of Ge present and the depth at whichihg implantation depth subject to an up to 20% random
is located. This should be achieved independently of the exchange. The spectra were calculated for different beam and
perimental conditions, that is, with any of the spectra showrdetection parameters chosen at random, in order to simulate
in Fig. 2 given as input, and as long as the experimenta& very broad range of realistic experimental conditions. The
conditions are also part of the input, the ANN should be abldbeam was He, with energy between 1 and 2 MeV and reso-
to determine that the amount of Ge is 1%.10'°Ge/cnf and  lution between 13 and 40 keV full width at half maximum
that its central point is located at a 200%8.50°atom/cnt  (FWHM). The scattering angle was between 130° and 180°,
depth. Second, if this is not possible due to data that are toand the detection angle was betweeB0° and 30°, consid-
hard to analyzde.g., with partially or completely superim- ering the normal to the sample in the plane defined by the
posed Ge and Si signaJshe ANN should be able to recog- beam(IBM geometry. The collected chargéheam fluence
nize that fact and return feedback with suggested optimizedvas between 0.2 and 250C for a solid angle of 1 msr. We
experimental conditions. Eventually, one could train differ-then added the contribution of pulse pileup to the theoretical
ent networks, specialized for different classes of datg., spectrg 36], and finally we added Poisson noise in order to
separated signals versus superimposed signals simulate experimental data as closely as possible. We did not
We show in Fig. 8) the spectra expected for a 25-A- include the effect of plural and multiple scattering, which
thick Ge § layer located at different depths in Si, for a 1.5- lead to a low-energy background. The reason was that they
MeV He' beam at normal incidence and detected at 165tan only be calculated by extremely time-consuming Monte
scattering angle. Given the experimental conditions, theCarlo methodg$28], and furthermore the theoretical discus-
ANN can use the position of the Ge signal relative to the Sision on the origin of the low-energy tails observed experi-
signal to determine the Ge depth. The dip in the Si signamentally is still ongoind 37].
could in principle also be used, but it is small and thus easily The space of implant, beam, and detection parameters
masked by statistical noise. Furthermore, given the experittraining spacg utilized was not uniform. Instead, more
mental conditions, the ANN can use the size of the Ge signakaining spectra were generated for the beam and detection
to determine the amount of Ge as shown in Figp)3Again,  conditions that are more common in real experimental situ-
the size of the Si dip provides only limited information. On ations. We thus provide a larger amount of training examples
the other hand, the total yield in the Ge signal is directlycorresponding to common and to difficult cases. The training
proportional to the product of detector solid angle and anaspace utilized is shown in Fig. 4.
lyzing beam fluence, which must also be an input. However, For the implant conditions, we chose an almost uniform
it should be noted that the ANN can use the size of the Silogarithmically) distribution for the Ge dose, decreasing
signal, which is also proportional to the product of detectorslowly for extremely high doses that only seldom are im-
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FIG. 4. Space of sample, beam, and detection conditions utilized to generate the training and test sets.

planted (due to cost and time considerationsA larger
weight was given to larger implant depths, since for these
cases the analysis is more difficult due to the superpositiot
of the Ge and Si signals. As for the width of the implant, it is
strictly correlated to the implant depth as mentioned above
and as is shown in Fig.(&).

The distribution of the beam energy was uniform, as 1-2
MeV are common energies used for HRBS, and different
laboratories use different values. The distribution of the de-
tector resolution is given by the superposition of two differ-
ent uniform distributions, the first one from 11 to 40 keV T T
(respectively, very good and very poor valuyesd the sec- 10" 10° 10°
ond one, more probable, from 13 to 22 keV, which are nor- Depth (10'° aticm?)
mal experimental values. For the angle of incide(retative
to the normal of the samplewe chose a superposition of
three distributions: a broad one from30° to +30° to
cover most of the experimental range used, a narrower on
from —10° to +10° to cover the normal rangéor instance,

a tilt angle of about 7° is commonly used to avoid accidental
channeling, and aé distribution for §=0°, as most of the
experiments are done at normal incidence. For the angle ¢
scattering we chose a uniform distribution between 160° anc
180°, which is the range of most common values, superim:
posed to a lower probability distribution decreasing to 125°,
covering the vast majority of cases. The distribution of the 107
charge—solid-angle product peaks at0 msr and then de-

creases slowly to very high values. Finally, the pileup factor,

which determines the size of the pileup correction, was given FIG. 5. Correlations in the training space, betwémrwidth and
by a logarithmically uniform distribution covering a broad depth of implant andb) depth and implanted dose. Each point is
range of values. one case.

Width (10" at/ecm?)

w

-
o

Depth (1015 at/cmz)
aLl\)

-
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Dose (1015 Ge/cmz)
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3000 — 7 TABLE |. Tested ANN architectured.and O represent the in-
put and output data, respectively. The intermediate numbers repre-
sent the number of nodes in each hidden layer. THEDQ,80,500)

o ANN was chosen as the reference ANN.

gzooo -

= Architecture Train set error Test set error

© (1,1000) 6.3 11.7

= 1000 ~ (1,2500) 5.2 10.1

= (1,100,800) 3.6 5.3

a (1,100,50,2(0) 4.2 5.1

(I, 100 80, 50, O) 3.0 4.1
04 (1,100,80,80)) 2.8 47

3 (1,100,50,10@) 3.0 4.2

Nﬁmo_: (1,100,80,80,5@) 3.2 4.1
(1,100,80,50,30,2@) 3.8 5.3

First of all, using a single hidden layer, the error in both
the training and test sets decreases when the number of nodes
increases from 100 to 250. However, the error remains very
large, above 10% on the test set, which shows that a single
hidden layer is inefficient classifying RBS spectra.

The addition of an extra hidden layer with 80 nodes to a
previous 100-node layer has a beneficial effect by decreasing
the MSE by a factor of 2. Increasing the number of layers to
Test case number 3 but decreasing at the same time the number of nodes leads
0 a slightly worse performance. We hence kept the previous

o-hidden-layer structure and added one extra layer with 50

odes, which led to a further reduction in the test set error.
is indicates that the inputs are correlated, but not too
much.

Increasing further the number of nodes of the third hidden

Finally, we should note that only Gaussian distributionslayer to 80 decreases the error in the training set, but the
99% inside the sample were generated. This means that sh&kror in the test set becomes worse, in a clear sign that over-
low implants with high doses, where the implant shape defraining occurred. In the same way, increasing the number of
viates significantly from Gaussian, were not consideredhidden layers to 4 or to 5 also leads to no reduction or even
These distributions with simultaneously high dose and smaf® @n Increase in the test set error. The error for these more

. complex architectures might decrease further using a larger
depth were hence not generated, as shown in Rlg. 5 number of spectra in the training set. However, this would be

at the cost of a large increase in the time required to train the
B. Optimization of the architecture ANN.

As mentioned in Sec. Ill, the architecture of an ANN is a ~ We finally phose the architecture consisting of three hid-
fundamental factor in determining its behavior and quality.9€" layers, with 100, 80, and 50 nodes. The results for some
The optimization methods mentioned above, such as sim of the spectra are shown in Fig. 6. This is the ANN with the
lated annealing or genetic algorithms, have the major drawsallest test set error. One ANN tested has an equally small
back that they require the evaluation of the performance o fror on the test set, but with four hidden layers 1tis unnec-

. S . ssarily more complex and, furthermore, has a slightly worse
thousands of ANNs, which is in general very time- )
. - - error on the train set.
consuming. In our case the training of each network with
10000 examples takes about 10 h to be completed in a Pen- .
tium Il computer running at 500 MHz. So we have to aban- C. Reliability and robustness
don a systematic approach to determine the best network It was mentioned above that, when the average error
configuration in favor of a more modest approach based oreached 20%, all the cases with error superior to 40% were
testing several different configurations. exclude from the training process. The results for some of

We tested several ANNSs, with between one and five hidthe spectra are shown in Fig. 6. This corresponded to about
den layers, and considering different numbers of nodes i13% of the cases in the training set, meaning that the ANN
each hidden layer. In all cases we trained the ANNSs using thdeveloped could not analyze a significant fraction of the
same training and test sets consisting of 4500 and 500 gewata, posing the question of its reliability. We will now ex-
erated spectra, respectively. When the MSE in the train seimine which cases were so eliminated. We show in Fig. 7
reached 20%, we excluded from the training and test sets alhe depth versus dose diagram for the excluded cases. This
the cases with error larger than 40% and continued trainingompares with Fig. ®), where a similar diagram is shown,
until a minimum on the test set MSE was reacliegle Fig.  but for the entire initial training space. It is observed that the
1). The results obtained are given in Table I. cases eliminated correspond to two broad classes: one in-

Dose (10" at/cm
>
/|

—_
saaut

0.1 — 1T T T T T T T T 1
0 10 20 30 40 50 60

FIG. 6. Results for a series of the test set spectra that the AN
identified as being correctly analyzed. The original Ge dose an
depth with which the spectra were generated are identified as dai
and the results given by the neural network as ANN.
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FIG. 7. Dose and depth of the spectra, with error larger than
40%, eliminated from the training set at a 20% average error level.
Each point is one case eliminated. (b)

cludes spectra with implanted depth larger than approxi-
mately 2000x 10™ atom/cnt, which we will call classB, and ;
the other includes spectra with doses smaller than approxi-c 10 - .
mately 3x 10*atom/cn?, which we will call classC. Class 3
A corresponds to spectra with implanted depth smaller than

2000x 10°atom/cnt and dose larger than >310%

atom/cn, of which very few were eliminated. 0- p o ; ) s
We show in Fig. 8 the density of eliminated cases as a 10 10 10 10 10
function of implanted depth and of implanted dose. From Dose (1015 Ge/cmz)

Fig. 8@a) it is concluded that samples that have both very

small implant dosesland large implant depths, that is, Fig, g. Density of eliminated cases as a function(af im-
samples that belong simultaneously to clagsemdC, have  planted depth—the dashed line corresponds to cases with dose
a much enhanced probability of having a large error angmaller than % 10*°atom/cni—and (b) implanted dose. The
hence of being rejected at the end of the first training phasgjashed line corresponds to cases with depth smaller than 2000
Sample with higher implant doses are only rejected when the 10 atom/cn?.

implant depth is very large, that is, if they belong to clBss

On the other hand, we see from FighBthat samples with . S
smaller implant depths are only eliminated from the trainingthoth St'“. possible in the cases sho(/md_altogether_hope-
ess for still smaller dosg¢sbecomes difficult and, in any

process if they have very small implant doses, that is, if the); ) . .
belong to clas<. case, leads to large errors. The experimentalist’'s solution for

Some of the rejected spectra from clasgeand C are such cases is either to use a different technique with a better

shown in Fig. 9, where the reasons behind the rejection pesensitivity to Ge or to increase the He beam fluence in order
come apparent. Clagcorresponds to spectra where the Geto obtain better counting statistics.
is so deep in the sample that, taken the analyzing beam en- It should be noticed that the developed ANN effectively
ergy and the experimental conditions into account, the Gé&eparated the input spectra into three distinct classes: that
signal becomes superimposed onto the Si signal. This lead¥ the “normal,” or easier, cases to analyze and two differ-
to a spectral shape that is significantly different from theent classes that correspond to samples that are experimen-
majority of spectra, in which the signals are well separated. Itally difficult to analyze, for completely different reasons and
corresponds to a class of spectra that is difficult to analyzerequiring completely different actions from the experimen-
even when traditional methods are used, also due to the sigglist. This opens the door to on-line optimization of the ex-
nal superposition. The experimentalist’s solution, when conperimental parameters, as, once feedback from the ANN to
fronted with one such spectrum, is normally to try to changethe controlling system of the accelerator is incorporated, au-
the experimental conditions in order to obtain separated siggomation of the optimization process can be achieved.
nals. This can be done by increasing the beam energy or, if To test the sensitivity of the ANN to mistakes in the ex-
the sample was measured at a tilt angjg away from nor-  perimental data, we generated two different sets of 500 the-
mal incidence, us@;,.=0°. oretical spectra each. All the parameters were in the same
As for classC, it corresponds to spectra where the Gerange as that used for the training set, but instead of simu-
signal is extremely small compared with the Si signal or withlating Ge implants, we simulated implants with the neighbor-
the pileup background. Without the logarithmic scale in Fig.ing elements Ga and As. The mass resolution of RBS is
9(a), the Ge signal would go unnoticed. Furthermore, in realgiven by the energy differencAE due to scattering from
samples small levels of impurities in the Si signal couldelements with mass aroumd and a mass difference &fM.
mask the Ge signal even further. Quantitative analysis, all is, for a scattering angle of 180°,
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FIG. 10. Generated spectra for 2%.90'° atom/cnt implants of
Ge, Ga, and As.
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rower than the Ge peak. It is this similarity between the Ga
and Ge peaks and this difference between the As and Ge
| peaks that leads to only a modest increase in the error when
i the Ge-trained ANN is used on Ga data and to a large in-
] crease when it is used on As data.
: : . The reason behind the shape of the Ga, Ge, and As peaks

40 60 lies on their isotopic distribution. Natural Ga has two main
Channel isotopes®®Ga and’*Ga with abundance 60.1 and 39.9, re-
spectively. Although the scattering cross section is the same
for the two isotopes, the kinematic factor is not, which leads
to a slight broadening of the Ga peak. Natural Ge has three
isotopes’Ge, “Ge, and’“Ge with abundance 21.2, 27.7,

] ) and 35.9. On the one hand, this leads to an even larger broad-
whereE, is the beam energy amd is the mass of the beam ening of the Ge peak than that of the Ga peak, which ex-

Yield (10° counts)
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.2

-
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o

FIG. 9. (a) Spectra from clas€. (b) Spectra from clasB.

AE=4Ey(m/M?)AM, (14)

species. For 1.5-Mel/He" scattering off Ge, we have plains why the height of the Ge peak is slightly smaller than
that of the Ga peak, even when its area is larger by a factor
AE/AM=4.55 keV/amu. (19 of (Zge/Zg)?=1.065. On the other hand, one of the Ge

o . isotopes (°Ge) is lighter than one of the Ga isotopé&Ga),
This is leads to an energy difference of 13.1 and 10.5 keVjyhich leads to a larger degree of superposition between the
between the Ga and Ge and As and Ge signals, respectivelga and Ge peaks than could be otherwise expected. On the

These values are smaller than the energy resolution normalblontrary, As has a single isotopeAs, leading to the narrow
achieved with surface barrier detectors, since, as said abovgnd large peak observed.

the training set was generated with resolution between 13
and 40 keV. Furthermore, according to Ef), the Ruther- ) ) _
ford cross section is similar for the three elements, differing D. Comparison with experimental results
13% between Ga and As. This means that the difference is We applied the neural network, with the fixed weights
small enough that the ANN trained for Ge implants shouldobtained during the supervised training, to real data. We ana-
still be able to analyze the Ga and As implant test data, albelyzed ten spectra collected in different experimental condi-
with a systematically larger error. tions. The total analysis time was less than 1 s. While during
Utilizing the reference ANN, the error was 4.6% on thethe supervised training the Ge dose and depth are given to
Ga set and 14.0% on the As sets. As expected, this is largeine ANN, they are now outputs calculated directly from the
than the errors on the Ge training and test sets, which werexperimental data. We compared the results obtained with
3.0% and 4.1% respectively. However, at first sight it couldthe values determined using NOB,38]. The results are
seem surprising that the error in the Ga set is smaller thagiven in Table Il and are excellent. It should be noted that
that in the As set, because the mass difference between Gae first 25 channels of each spectrum were disregarded, in
and Ge is larger than that between As and Ge. We show iorder to eliminate the region where the plural scattering ef-
Fig. 10 generated spectra corresponding to an implanted dosect is larger.
of 25.9x 10 atom/cn? of Ge, Ga, and As. The Ga and Ge  While the precision achieved is worse than what can be
peaks are approximately the same shape and height. Thebtained with the usual data fitting, simulation, or calculation
main difference between them is their position, the Ga peaknethods, we stress that the analysis was fully automatic and
being located slightly to the left of the Ge peak due to theperformed practically instantaneously, hence being well
lower kinematic factor for Ga as given by E@). On the suited for on-line analysis purposes. Furthermore, a fast local
other hand, the height of the As peak is considerably largesearch algorithm could easily make the small improvements
than that of the Ge peak. The As peak is furthermore narnecessary to obtain precise values.
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TABLE Il. Experimental data results.

Values derived with NDF Values obtained with the ANN
Ge Depth Ge Depth
Sample (10" atom/cnd) (10% atom/cn?) (10" atom/cnd) (10 atom/cnd)

1 16.7 332.8 16.3 267.4
2 14.4 302.3 12.4 223.7
3 13.6 318.2 15.3 307.2
4 14.7 334.5 12.4 236.8
5 15.7 378.0 10.6 245.7
6 9.3 250.7 12.2 308.7
7 26.8 246.3 27.9 214.3
8 9.8 349.1 12.7 359.4
9 9.6 356.8 12.6 384.7
10 9.7 316.3 11.9 329.4

This is demonstrated in Fig. 11, where the theoreticab5.4x 10'°atom/cn?, is smaller than the depth resolution,
spectrum generated from the implant depth and dose olyhich is in this case 158 10" atom/cn?, as calculated with
tained by the ANN for sample 1 is superimposed onto thghe pepTH code [29]. Also, any inaccuracy in the energy
experimental data. While the overall agreement is goodgalibration would lead to a slightly corrected depth value. As
some comments must be made. First, one should note thgdr the 2.39% error in the determination of the implanted
the spectrum was generated for nominal experimental condgose, the statistical error corresponding to the Ge peak due to
tions, in particular the nominal collected charge. Second, it ishe limited collected charge and consequent limited Ge yield
obvious that there is a large misfit below about channel 30is 2.349% in this casécorresponding to 1818 counts in the Ge
This is due to plural and multiple scattering, which is notpeal, to which one should add the 4% error in the nominal
taken into account and which leads to an increased yield &harge.
low energieq27]. Second, the slight misfit around channels  That is, the ANN is determining the implanted dose and
40-60 where the simulated spectrum is consistently abovgepth as well as is possible given the constraints imposed by
the data(4% on averageand where no plural and multiple the physical model used in the calculation of theoretical RBS
scattering is expected, is due to the inaccuracy in charggpectra, the accuracy in the experimental parameters, and the
collection. Also, the small peak observed in the experimentajack of a priori knowledge about the composition of the
data around channel 37 is an oxygen signal due to the naturghmme(in this case, the presence of a surface oxide
surface Si oxide. should be noted that a careful analysis using NDF can over-

Finally, and most importantly, the Ge peak is excellentlycome these constraints. A plural scattering correction can be
reproduced, both in position and in size. The error in thentroduced in NDF39], the experimental parameters are au-
implant depth committed by the ANN given in Table I, tomatically slightly adjusted by NDF to improve the internal
consistency of the fit, and the surface oxide can also easily be
included. All these corrections were taken into account in the
values determined with NDF and given in Table II.

E. Influence of the RBS forward model

Itis clear that the RBS forward model used has important
consequences for the results obtained. To test the influence
of different parameters in the results, we trained ANNs with
the same architecturel ,100,80,50)), but using training
sets constructed using different assumptions. In all cases the
errors in the training and test sets were comparable. We then
applied the ANNSs so built to the experimental data and cal-
culated the mean absolute error for the implanted dose and
depth. The results are given in Table III.

The average errors for the dose and depth obtained with
the reference ANN, i.e., the one which includes all the ef-
fects including pileup correction an(statistical] Poisson
noise and where the first 25 channels are ignored, are 2.56

FIG. 11. Experimental datéopen circles and corresponding X 10*° and 52.% 10" atom/cn?, respectively. For an ANN
spectrum generated from the implant depth and dose obtained witfiained with similar data, but where Poisson noise was not
the ANN for the nominal experimental conditions, for a given included (actually, exactly the same data except for the in-
sample. clusion of the noisg the error in the dose improves signifi-

Yield (counts)

0 20 40 60 80 100 120
Channel
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TABLE lll. Average absolute error in the analysis of experimental data, obtained with the reference ANN
and with the ANNs trained with generated data that did not include random Poisson noise, that did not
include the pileup correction, and where only the first five channels were disregarded.

Absolute error No Poisson No pileup First five channels

(10 atom/cn?) Reference ANN noise correction disregarded
Dose 2.36 1.22 3.45 5.65
Depth 52.7 64.1 68.3 106.2

cantly while the error in the implanted depth increasesRBS data instantaneously. Other methods developed that are
slightly. The improvement in the dose error can be underable to perform automated analysis of RBS data, such as
stood by considering that ANNs recognize the shape angayesian inference or simulated annealing, require some
features of pictures, while the noigsexperimental or calcu- time to perform the analysis, as well as some degree of un-
lated is just. a distortion of the O(iginal picture. By training derstanding of the physics behind RBS and of the mathemat-
the ANN with the und'lstorted signal, the.ANN can morecs pehind the algorithms. In contrast, the ANN algorithm
easily appr.ehend'the important features in th? data.‘_FrorBresented here is essentially a push-button black box, which
another point of view, one could say that also in trad|t|0nalopens the doors to the integration of RBS and other ion beam
fitting methods the fitted curve is always purely theoreticalanalysis techniques in the production line.

with no noise introduced. As for the error in the implanted The alaorithm develobed can be applied to a single svs-
depth, it should be noted that the calculation of the dept Y . P n be applied gie sy
em, namely, implants of Ge in Si, albeit in a very wide

depends strongly on the position of the signal and onl £ impl dd d debth Il as i id
weakly on its exact shape, and hence the depth error chang@"s.nge orimp ante ose and epth, as we as Ina very wide
range of experimental conditions. For each different system

Onl\)//\/zhgg(l)yl[ramed an ANN using data with Poisson noiseto.b? studied, a new ANN must be built 'anoll trained. .While
and ignoring the first 25 channels, but where the pileup corthis is clearly a shortcoming, many applications require the
rection was not applied. Again, the depth error does no@nalysis of a large amount of similar samples. This is the
change very much, while the error in the determination of thecase, for instance, in quality control or in batch production of
dose is significantly worse. The reason is that the main effed@iven systems.
of the pileup correction is to reduce or increase the yield in  The reliability of the ANN developed was investigated. It
different parts of the spectrum: where there were originallywas shown that there exist two well-defined classes of spec-
no (or little) counts, pileup will lead to an increase in the tra that the ANN is not able to analyze correctly. These two
yield, and where there were originally many counts, the yielcclasses, however, correspond to cases that are difficult to
will decrease. So around the Ge peak the yield increases dugalyze even using traditional methods. They correspond to
to pileup while in the peak itself it decreases, leading to areither very large implant depths, where the Ge and Si signals
extra source of error when pileup is not considered. overlap and are difficult to separate, or to very small doses,
Finally, we trained an ANN using exactly the same datawhere it is difficult to distinguish the Ge signal from the
as in the reference ANN, but considering the whole spectrgackground. The experimentalist's solution to solving the
(that is, _disregarding the first 5 ins_tead of th_e_first 25 Chan'problem would be, in one case, to change the angle of inci-
nels as in the reference ANNboth in the training process gence or to increase the beam energy and, in the latter case,
and in the analysis of the experimental data. The error Mo increase the beam fluence. While this normally requires
both the dose and depth increases by a factor of about 2. Thfﬁe presence of a highly trained experimentalist during the

is due to the strong dlstorthn in the experimental data that i easurement, implementation of feedback from the ANN to
introduced by plural scattering. On the one hand, the Ge dos[ e experimental setup would lead to on-line automated op-
is given by the yield in the Ge peak, but the absolute nor-t. . tp £ th P al dit ; h ai P
malization is given by the height of the Si signal. The in- imization of the experimental conditions for €ach given

crease in the Si yield due to plural scattering is hence bounaample. Further research in this dir_ection is being deyeloped.
to lead to an increase in the dose error. On the other hand, 1"€ ANN developed was applied to real experimental

the determination of the depth is based on the position of thdata with excellent results. The error in the implanted dose
Ge signal relative to the position where surface Ge would bevas within the experimental error given by the limited count-

The difference is determined by the stopping power of the"9 statistics, and 'the error in the |mplanteq depth was within
incident He beam in Si, which also strongly influences thethe depth resolution of the technique. This means that the
shape of the Si signal, particularly at low energies where théesults given by the ANN can be taken directly as such or
stopping power is a strong function of the beam energy_U_SGd as the initial guess in a fast local optimization algo-
Hence one of the features of the data that the ANN can use fothm. . .

determine the Ge depth is the shape of the Si signal, and the ANNs are often trained using real data. For RBS, that

plural scattering distortion will lead to an increased error. would require measuring thousands_ or tens of thousand'of
spectra and analyzing them by traditional methods. This is,

in practice, not feasible. The alternative found was to train
the ANN with theoretically generated spectra. On the one

As far as we are aware, the artificial neural network algo-and, this was validated by the successful application of the
rithm demonstrated here is the first method that can analyz&NN so trained to real experimental data. We nevertheless

V. CONCLUSIONS
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studied the influence of the theoretical RBS model used taffected by plural and multiple scattering, cannot be used in
generate the spectra on the ANN performance. The concluihe analysis of experimental data with the ANN developed
sion is that to obtain maximum accuracy of the results alhere. This does not affect the particular system studied, since
relevant effects should be included in the model. Whilethe Ge signal is located in the high-energy region of the data.
pileup can be easily taken into account, the effect of pluraHowever, future developments will have to include the effect
and multiple scattering cannot be calculated efficiently andf multiple and plural scattering, either by utilization of
accurately enough for the purposes of this study. This mearsome experimental data in the training or by devising an
that the low-energy region of the data, which can be stronglefficient way of calculating it.
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