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Artificial neural network algorithm for analysis of Rutherford backscattering data
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Rutherford backscattering~RBS! is a nondestructive, fully quantitative technique for accurately determining
the compositional depth profile of thin films. The inverse RBS problem, which is to determine from the data
the corresponding sample structure, is, however, in general ill posed. Skilled analysts use their knowledge and
experience to recognize recurring features in the data and relate them to features in the sample structure. This
is then followed by a detailed quantitative analysis. We have developed an artificial neural network~ANN! for
the same purpose, applied to the specific case of Ge-implanted Si. The ANN was trained with thousands of
constructed spectra of samples for which the structure is known. It thus learns how to interpret the spectrum of
a given sample, without any knowledge of the physics involved. The ANN was then applied to experimental
data from samples of unknown structure. The quantitative results obtained were compared with those given by
traditional analysis methods and are excellent. The major advantage of ANNs over those other methods is that,
after the time-consuming training phase, the analysis is instantaneous, which opens the door to automated
on-line data analysis. Furthermore, the ANN was able to distinguish two different classes of data which are
experimentally difficult to analyze. This opens the door to automated on-line optimization of the experimental
conditions.

PACS number~s!: 07.05.Mh, 82.80.Yc, 07.05.Kf, 68.55.Nq
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I. INTRODUCTION

Rutherford backscattering~RBS!, as well as other ion
beam analysis~IBA ! related techniques, is dedicated to t
compositional analysis of samples in the few nm to the t
of mm range@1# and is extensively used in research labo
tories. One of the reasons for its success is that it is fu
quantitative, not needing to recur to certified samples~exter-
nal standards!, and the physics behind it is mostly classic

The inverse RBS problem, which is to determine from t
data the corresponding sample structure, is ill posed ex
in the most simple cases. While this is true of many inve
problems, skilled analysts have long sidetracked this bar
by using their experience-gained knowledge of what
RBS spectrum of a known sample looks like. This enab
the analyst to recognize specific recurring features in R
data and relate them to specific sample properties. Th
then normally followed by a detailed quantitative analysis

Until recently, analysis of RBS data~and other IBA tech-
niques! had to be performed manually, with the help of i
teractive simulation codes, by highly skilled scientists. T
time-consuming procedure precluded the analysis of la
amounts of data. In particular, it prevented the developm
of an automated on-line analysis of data.

Recently, a code based on the simulated annealing~SA!
algorithm @2,3# was presented which can analyze autom
cally RBS @4–6#, elastic recoil detection~ERDA! @7#, and

*Author to whom correspondence should be addressed. Electr
address: nunoni@itn1.itn.pt
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nonresonant nuclear reaction analysis~NRA! @8# spectra col-
lected from a given sample. The analysis with SA is fa
taking the same order of magnitude as the time required
collect the data using a desktop PC, and only a small deg
of user expertise is required to interpret the results.

However, it would nevertheless be highly desirable
have push-button instantaneous data analysis, particularl
specific systems of interest. This would enable batch anal
of samples, for instance, in quality control within a produ
tion line. Furthermore, the active participation of an exp
during data collection is often required to optimize the e
perimental conditions. Automatic determination of optim
experimental conditions for a given sample is then anot
determining condition for successful automation of RBS e
periments.

The aim of this paper is to present a code for the analy
of RBS data based on a supervised feedforward artifi
neural network~ANN! algorithm@9#, which is a very flexible
scheme, capable of approximating an arbitrary unkno
function. It is particularly well suited to high-dimensiona
nonlinear regression analysis with noisy signals and inco
plete data. It was applied with success to many differ
fields, including infrared spectroscopy@10#, the traveling
salesman problem@11#, and medicine@12#.

Techniques such as SA, Bayesian inference and m
mum entropy with the Markov chain Monte Carlo algorithm
and genetic algorithms have been recently applied to dif
ent experimental techniques such as RBS, particle-indu
x-ray emission@13#, ellipsometry@14#, or x-ray fluorescence
@15#. One of the main advantages of ANNs over those te
niques is that they require some time~which in some cases
ic
5818 ©2000 The American Physical Society
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can be very long! for the analysis of each data set, whi
ANNs, after the time-consuming initial training process, an
lyze the data instantaneously.

Another foremost ability of ANNs is to recognize recu
ring patterns in the input data. This is done without spec
knowledge of the causes of the pattern. ANNs are then
ideal candidate to do automatically what RBS analysts h
long done, which is to relate specific features of the data
specific properties of the sample. To test the capability
ANNs to perform this task, we chose a simple system,
implanted in Si@16#, which has, however, many possib
technological applications, in particular in the field of opt
electronics, with the potential for monolithic integration wi
Si technology@17#.

II. RUTHERFORD BACKSCATTERING

A. Theory

In 1909 Geiger and Marsden observed what they ca
‘‘diffuse scattering’’—that is, backward scattering—of Me
alpha particles by thin metal foils@18# ~subsequently known
as the ‘‘Rutherford experiment’’! and the following year
measured the most probable angle of scattering of trans
ted particles@19#. Based on these data, Rutherford develop
his model of the atom and calculated the one-body scatte
cross section using a Coulomb potential@20#. His predictions
on the angular dependence of the cross section were
firmed by Geiger and Marsden@21# in 1913. Two-body cal-
culations lead to correcting terms to Rutherford’s express
and the final result, the so-called Rutherford cross sec
sRuth, is

sRuth5S ZmZMe2

4E D 2 4

sin4 ascatt

3
@@12~m/M !2 sin2 ascatt#

1/21cosascatt#
2

@12~m/M !2 sin2 ascatt#
1/2 , ~1!

whereZm andZM are the atomic number of the incident an
target particles, respectively,m andM their masses,ascatt the
angle of scattering,E the incident particle energy, ande the
electron charge. The target particle is supposed initially
rest. Deviations from the Rutherford cross section exist
low energies due to electron screening of the nuclear ch
@22# and at high energies due to nuclear reactions betw
the two particles.

In the collision, the backscattered particles lose a fract
of their initial energy. The ratio between their energy befo
and after scattering,E0 andE, respectively, is the so-calle
kinematic factorK:

K5E/E05F ~M22m2 sin2 ascatt!
1/21m cosascatt

M1m G2

. ~2!

The scattering does not necessarily occur at the surfac
a sample. As the particles of the incident beam penetrate
sample, they lose an amount of energyDEin , mainly through
interactions with the sample electrons. In the scattering,
particles lose energy (DEK) according to Eq.~2!. After scat-
-
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tering, they further lose energy (DEout) on their way out. The
energy of the particle after being scattered at deptht and
leaving the sample is then

Edet5E02DEin2DEK2DEout, ~3!

where

DEin5E
0

t

S@E~x!#dx, ~4!

DEK5~12K !~E02DEin!, ~5!

DEout52E
t/cosascatt

0

S@E~x!#dx, ~6!

and

S@E~x!#5
dE

dx
~7!

is the energy loss per unit path length, which is a function
the energy of the particle, which in its turn depends on
path already traversed. These energy loss values have
determined experimentally for many incident beams and
gets, and are available in tabulated form@23#. Note that Eqs.
~4! and ~6! are valid only for normal incidence. When th
sample is tilted at an angleu inc with the normal to the
sample, the integral limits are scaled according to cosuinc , in
order to account for the longer path of the beam through
sample.

Equations~1!–~3! constitute the basis of the Rutherfor
backscattering technique. The energy of particles backs
tered from the surface of a sample depends only on kno
parameters and on the mass of the scattering center. He
from Eq.~2!, one can determinewhat the sample is made of
The Rutherford cross section depends also only on kno
parameters~after the target particles have been identifie!;
hence, from Eq.~1! one can determinehow muchof a given
element the sample contains. Finally, from the energy l
and Eq.~3! one can determinewhere a certain element is
located in a given sample. This is quantitative in an abso
way: that is, it does not depend on external standards, w
is the main factor making RBS~and other ion beam analysi
techniques! attractive. A detailed description of the numer
cal generation of RBS spectra can be found in Ref.@24#.

Equation ~3! provides a depth scale, i.e., a conversi
between detected energy and depth; however, it is diffe
for each target element and is also not linear. For instan
the signal due to scattering from a heavy element loca
deep in a sample can be, and often is, superimposed ont
signal due to a lighter element located near the surface of
sample. This renders analysis difficult. While it is very ea
to calculate the expected spectrum from a given beam
sample~and parameters of the detection system! by discretiz-
ing the sample into many sublayers, the inverse problem
calculating the sample structure from a measured spectru
considerably more difficult.

Traditionally, analysis for all but the most simple cas
has been done with the aid of computer programs. These
almost all interactive, requiring the analyst to guess
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structure of the sample, calculate a spectrum, compare it
the data, and iterate until a sufficiently good match is o
tained. A recent review of available codes is given in R
@25#. Recently, a codeNDF, based on the SA algorithm@2,3#,
has been presented which effectively solved the inverse R
problem@4#.

The theoretical model presented above has some lim
tions. First, it considers only a single large-angle scatter
event. It disregards the existence of plural scattering,
which several large-angle scattering events take place,
multiple scattering, in which many small-angle scatteri
events take place before or after the backscattering occ
These effects lead to an enhanced yield at low energies,
is, a low-energy background~in some cases, particularl
low-energy heavy ions, also a higher-energy background
occur @26#!, as well as to degradation of the energy reso
tion @27,28#.

Second, in this model we consider only the energy re
lution of the setup. We have disregarded energy stragg
due to the statistical nature of the energy loss process, to
energy and angular spread of the analyzing beam, geom
straggling cause by the finite size of the beam spot and
tector, and multiple scattering. The influence of all these f
tors can be calculated@29,30#, but it is rather involved and
can be time-consuming.

B. Experimental details

Ge was implanted into Si with nominal beam fluen
~also called implanted dose! between 10 and 2531015 Ge
atoms/cm2, to projected ranges between 491 and 776 Å, t
is, between 245 and 33831015Si atoms/cm2. The RBS
analysis utilized a 1.5-MeV He1 beam. Both normal inci-
dence and a 7° misalignment were used. Two detectors w
used in the IBM geometry~in which the incident beam, the
detected beam, and the normal to the sample all lie in
same horizontal plane!, with scattering angles 165° and 133
The product of detector solid angle with analyzing be
fluence was between 4.3 and 124.2mC msr.

III. ARTIFICIAL NEURAL NETWORKS

A. Theory

An artificial neural network is a flexible scheme capab
of approximating any arbitrary unknown function@9#. It is
particularly well suited to high-dimensional nonlinear regre
sion analysis with noisy signals and incomplete data@31#. A
feedforward neural network consists of an array of inp
nodes connected to an array of output nodes through
nodes of successive intermediate layers. Each connection
tween nodes has a weight, initially random, which is adjus
during a training process. The output of each node of a s
cific layer is a function of the sum on the weighted sign
coming from the previous layer. The crucial points in t
construction of an ANN are the selection of inputs and o
puts, the architecture of the ANN, that is, the number
layers and of nodes in each layer, and finally, the train
algorithm.

In supervised learning@9#, the training is done by presen
ing a large set of examples, called the training set, to
network. Each example consists of a set of inputs prese
th
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to the input layer and the respective set of desired outp
presented to the output layer. The training set normally c
sists of experimental data. However, when a good comp
tional model is available, the training set may be construc
with simulated experimental data.

The training of an ANN is in general very time
consuming. After being trained, however, the experimen
data are analyzed almost instantaneously. Furthermore,
must be taken in order to use an adequate training set,
resentative of all possible experimental situations. In ma
cases this is not feasible, and the sampling space mus
restricted to a specific subdomain. This means that ANNs
best applied to specific, well-defined problems.

There are several training algorithms for supervised lea
ing, the backpropagation algorithm being the most wid
used. In this algorithm the training is performed by minimi
ing the sum of square errors function over theN elements of
the training set:

E5
1

2 (
n51

N

~yn2on!2. ~8!

In this equationy is the output given by the network~for
simplicity, we consider a single output! andoi is the desired
output. By minimizing this equation with respect to th
weightswi j

k connecting the nodei of the last hidden layerk
to nodesj of the output layer, we obtain the following recu
sive relation for updating the weights after each iterat
@32#:

wi j
k ~ t11!5wi j

k ~ t !1hdkxi1a@wi j
k ~ t !2wi j

k ~ t21!#, ~9!

wherexi is the output of the nodei in layerk anddk is given
by

dk5y~12y!~o2y!. ~10!

To actualize the weights of a given layerm21, the error
is backpropagated substitutingdk by

d i
m215xi~12xi !(

j
d j

mwi j
m21, ~11!

wherexi is the output of nodei in layer m21, and for the
last hidden layerk, d j

k is defined asdk. The learning rate
parameterh is usually set below 0.2. A momentum terma is
added to avoid trapping in local minima. In our case we
a50.2. The output of each node is taken to be the sigm
function f (x) of the weighted sumx of the outputs from all
the nodes of the previous layer:

f ~x!5~11e2~x2u!!21. ~12!

The parameteru is a threshold that usually is set to zer
At each iteration the results provided by the ANN are co
pared with a sample of examples not used in the traini
called the test set. The figure of merit of the network is t
final mean-square error~MSE!, given by

«MSE5(
j

~yi2oi !
2

~oi2ō!2 . ~13!
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The sum is over the training set, andō is the mean value o
the output used in the training data. The training proces
stopped after some convergence criterion is reached.

During training, the MSE of the training set decreas
with the number of iterations, while for the test set it reach
a minimum, after which it starts to increase. This occurs d
to overfitting of the net to the training data, thus decreas
its generalization capabilities. To overcome this problem
have to define a stop criterion. The most widely used rec
is to stop the training process when the MSE of the test s
minimum ~see Fig. 1!. Another possibility to avoid overfit-
ting is the addition of noise to the training data. In our ca
both techniques are simultaneously used.

B. Network architecture

The selection of an adequate network architecture is
of the most important aspects to consider in using ANN
Although an ANN with a single hidden layer is in princip
capable of classifying any pattern~provided that an infinite
number of training examples is available!, in many cases it is
useful to use more intermediate layers. This can have sev
advantages. For example, by introducing intermediate la
with a number of nodes smaller than the number of in
nodes, the dimension of the input space is reduced throu
projection of the data into a lower-dimensional space.
practice, this is similar to applying feature extraction me
ods on the input data, like principal component analysis@33#,
which is a useful technique when a large number of hig
correlated inputs exist. This leads to a more robust map
tween the inputs and outputs, and with a lower error. Si
the sampling space is effectively reduced, dimensionality
duction is also appropriated in cases where only a few tr
ing examples are available.

One the other hand, using a large number of intermed
layers may cause some difficulties. Due to the increase
optimization parameters~i.e., the connection weights! the
risk of the ANN becoming trapped in a local minimum
higher. The risk of overfitting is also higher, and, finally,
takes more time to train ANNs with a large number of laye

Several techniques of alleviating these difficulties ex
One of them is weight decay@34#, which essentially elimi-
nates less significant nodes or weights from the network

FIG. 1. Mean-square error as a function of the number of tra
ing iterations for the train set and the test set. The arrow marks
iteration where the error reached 20% and all cases with error la
than 40% were excluded from the train and test sets.
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different technique consists in using node growth and pru
ing algorithms in which new nodes and layers are added
deleted based on the sensitivity of the output to their weigh
@9#. Both these methods have the disadvantage of demand
the computation, or some approximation, of the second d
rivative of the error function with respect to all the network
weights, i.e., the Hessian matrix, which is a time-consumi
task.

In principle, the determination of determining the be
network configuration, i.e., the network with the lowes
mean-square error, is an optimization problem that can
solved by standard optimization algorithms, such as sim
lated annealing or genetic algorithms@35#. These have the
major drawback that they require the training of thousands
ANNs and the evaluation of their performance.

C. Application to Rutherford backscattering

We present in Fig. 2 spectra calculated for different e
perimental conditions, for a Ge sample 25 Å thick~i.e.,
11.131015Ge atoms/cm2) d layer located under 400 nm of
Si ~i.e., 231018Si atoms/cm2). It is clear that, for one given
sample, very different spectra can be obtained. Some of
possible spectra are relatively simple to analyze~large and

-
e
er

FIG. 2. Spectra calculated for different experimental conditio
for a 25-Å-thick Ged layer located under a 400-nm-thick Si lay
er: ~a! Beam energyE051.2, 1.6, and 2 MeV.~b! Scattering
angle ascatt5120°, 140°, and 180°.~c! Angle of incidenceu inc

50° ~normal incidence!, 25°, and 50°.
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well-separated signals! and others relatively complicated
~e.g., when the signals of Ge and Si are superimposed!. The
purpose of an ANN dedicated to the analysis of RBS spec
and in particular to the analysis of Ge in Si, is, first,
determine the amount of Ge present and the depth at whic
is located. This should be achieved independently of the
perimental conditions, that is, with any of the spectra sho
in Fig. 2 given as input, and as long as the experimen
conditions are also part of the input, the ANN should be a
to determine that the amount of Ge is 11.131015Ge/cm2 and
that its central point is located at a 2005.531015atom/cm2

depth. Second, if this is not possible due to data that are
hard to analyze~e.g., with partially or completely superim
posed Ge and Si signals!, the ANN should be able to recog
nize that fact and return feedback with suggested optimiz
experimental conditions. Eventually, one could train diffe
ent networks, specialized for different classes of data~e.g.,
separated signals versus superimposed signals!.

We show in Fig. 3~b! the spectra expected for a 25-Å
thick Ged layer located at different depths in Si, for a 1.5
MeV He1 beam at normal incidence and detected at 16
scattering angle. Given the experimental conditions,
ANN can use the position of the Ge signal relative to the
signal to determine the Ge depth. The dip in the Si sig
could in principle also be used, but it is small and thus eas
masked by statistical noise. Furthermore, given the exp
mental conditions, the ANN can use the size of the Ge sig
to determine the amount of Ge as shown in Fig. 3~b!. Again,
the size of the Si dip provides only limited information. O
the other hand, the total yield in the Ge signal is direc
proportional to the product of detector solid angle and an
lyzing beam fluence, which must also be an input. Howev
it should be noted that the ANN can use the size of the
signal, which is also proportional to the product of detec

FIG. 3. Calculated spectra for a Ged layer in Si: ~a! 10 Å
thick, located at different depths: 1–20, 2–100, 3–300, 4–6
and 5–1000 nm. The position of the Ge peaks and of the co
sponding Si dips is marked.~b! 25, 50, and 75 Å thick, located
under a 200-nm-thick Si layer.
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solid angle and analyzing beam fluence, as a normaliz
factor to help determine the Ge dose.

The data must be preprocessed before being present
the ANN. The most important step is to normalize all t
inputs and outputs. Since the signals have a wide varia
range ~three orders of magnitude!, we chose to apply the
following transformations: for the output depthy
5Ay1b, and for the implanted dosey5 ln(y1b). The
threshold value was set tob55 and was included in orde
not to give extreme importance to cases with very low v
ues. For the depth we prefer to use the square root sinc
variation within the training set is lower than for the dose

The yield is first normalized to the charge–solid-ang
product and then normalized to values between 0 and 1~1
corresponding to the largest single-channel yield observe
the training and test sets!. The total yield~signal area! is also
used as an input. The other inputs are the beam energy
energy resolution, the angle of incidence and the scatte
angle, and the input data consisting of 128 channels.

IV. ANN IN RBS ANALYSIS OF Ge IMPLANTS INTO Si

A. Construction of the training set

The training set must cover a wide range of realistic e
perimental conditions and of possible Ge doses and dep
We generated a training set consisting of theoretical spe
simulating different Ge implants into Si, to doses betwe
1014 and 1018Ge atoms/cm2 and depths between 1 and 150
nm ~which corresponds to an implant energy of about 2
MeV!. Each implant was simulated as a perfect Gauss
with width given by the codeTRIM @23# for the correspond-
ing implantation depth subject to an up to 20% rando
change. The spectra were calculated for different beam
detection parameters chosen at random, in order to simu
a very broad range of realistic experimental conditions. T
beam was He, with energy between 1 and 2 MeV and re
lution between 13 and 40 keV full width at half maximu
~FWHM!. The scattering angle was between 130° and 18
and the detection angle was between230° and 30°, consid-
ering the normal to the sample in the plane defined by
beam~IBM geometry!. The collected charge~beam fluence!
was between 0.2 and 250mC for a solid angle of 1 msr. We
then added the contribution of pulse pileup to the theoret
spectra@36#, and finally we added Poisson noise in order
simulate experimental data as closely as possible. We did
include the effect of plural and multiple scattering, whic
lead to a low-energy background. The reason was that t
can only be calculated by extremely time-consuming Mo
Carlo methods@28#, and furthermore the theoretical discu
sion on the origin of the low-energy tails observed expe
mentally is still ongoing@37#.

The space of implant, beam, and detection parame
~training space! utilized was not uniform. Instead, mor
training spectra were generated for the beam and detec
conditions that are more common in real experimental s
ations. We thus provide a larger amount of training examp
corresponding to common and to difficult cases. The train
space utilized is shown in Fig. 4.

For the implant conditions, we chose an almost unifo
~logarithmically! distribution for the Ge dose, decreasin
slowly for extremely high doses that only seldom are i

,
e-



PRE 62 5823ARTIFICIAL NEURAL NETWORK ALGORITHM FOR . . .
FIG. 4. Space of sample, beam, and detection conditions utilized to generate the training and test sets.
s
tio
is

ov

–

de
r-
V

or

f

o

ta

e
an
im
5°
h
-
o
ve
d is
planted ~due to cost and time considerations!. A larger
weight was given to larger implant depths, since for the
cases the analysis is more difficult due to the superposi
of the Ge and Si signals. As for the width of the implant, it
strictly correlated to the implant depth as mentioned ab
and as is shown in Fig. 5~a!.

The distribution of the beam energy was uniform, as 1
MeV are common energies used for He1 RBS, and different
laboratories use different values. The distribution of the
tector resolution is given by the superposition of two diffe
ent uniform distributions, the first one from 11 to 40 ke
~respectively, very good and very poor values! and the sec-
ond one, more probable, from 13 to 22 keV, which are n
mal experimental values. For the angle of incidence~relative
to the normal of the sample!, we chose a superposition o
three distributions: a broad one from230° to 130° to
cover most of the experimental range used, a narrower
from 210° to 110° to cover the normal range~for instance,
a tilt angle of about 7° is commonly used to avoid acciden
channeling!, and ad distribution for u50°, as most of the
experiments are done at normal incidence. For the angl
scattering we chose a uniform distribution between 160°
180°, which is the range of most common values, super
posed to a lower probability distribution decreasing to 12
covering the vast majority of cases. The distribution of t
charge–solid-angle product peaks at 20mC msr and then de
creases slowly to very high values. Finally, the pileup fact
which determines the size of the pileup correction, was gi
by a logarithmically uniform distribution covering a broa
range of values.
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n FIG. 5. Correlations in the training space, between~a! width and
depth of implant and~b! depth and implanted dose. Each point
one case.
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Finally, we should note that only Gaussian distributio
99% inside the sample were generated. This means that
low implants with high doses, where the implant shape
viates significantly from Gaussian, were not consider
These distributions with simultaneously high dose and sm
depth were hence not generated, as shown in Fig. 5~b!.

B. Optimization of the architecture

As mentioned in Sec. III, the architecture of an ANN is
fundamental factor in determining its behavior and qual
The optimization methods mentioned above, such as si
lated annealing or genetic algorithms, have the major dr
back that they require the evaluation of the performance
thousands of ANNs, which is in general very tim
consuming. In our case the training of each network w
10 000 examples takes about 10 h to be completed in a
tium III computer running at 500 MHz. So we have to aba
don a systematic approach to determine the best netw
configuration in favor of a more modest approach based
testing several different configurations.

We tested several ANNs, with between one and five h
den layers, and considering different numbers of nodes
each hidden layer. In all cases we trained the ANNs using
same training and test sets consisting of 4500 and 500
erated spectra, respectively. When the MSE in the train
reached 20%, we excluded from the training and test set
the cases with error larger than 40% and continued train
until a minimum on the test set MSE was reached~see Fig.
1!. The results obtained are given in Table I.

FIG. 6. Results for a series of the test set spectra that the A
identified as being correctly analyzed. The original Ge dose
depth with which the spectra were generated are identified as
and the results given by the neural network as ANN.
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First of all, using a single hidden layer, the error in bo
the training and test sets decreases when the number of n
increases from 100 to 250. However, the error remains v
large, above 10% on the test set, which shows that a si
hidden layer is inefficient classifying RBS spectra.

The addition of an extra hidden layer with 80 nodes to
previous 100-node layer has a beneficial effect by decrea
the MSE by a factor of 2. Increasing the number of layers
3 but decreasing at the same time the number of nodes l
to a slightly worse performance. We hence kept the previ
two-hidden-layer structure and added one extra layer with
nodes, which led to a further reduction in the test set er
This indicates that the inputs are correlated, but not
much.

Increasing further the number of nodes of the third hidd
layer to 80 decreases the error in the training set, but
error in the test set becomes worse, in a clear sign that o
training occurred. In the same way, increasing the numbe
hidden layers to 4 or to 5 also leads to no reduction or e
to an increase in the test set error. The error for these m
complex architectures might decrease further using a la
number of spectra in the training set. However, this would
at the cost of a large increase in the time required to train
ANN.

We finally chose the architecture consisting of three h
den layers, with 100, 80, and 50 nodes. The results for so
of the spectra are shown in Fig. 6. This is the ANN with t
smallest test set error. One ANN tested has an equally s
error on the test set, but with four hidden layers it is unn
essarily more complex and, furthermore, has a slightly wo
error on the train set.

C. Reliability and robustness

It was mentioned above that, when the average e
reached 20%, all the cases with error superior to 40% w
exclude from the training process. The results for some
the spectra are shown in Fig. 6. This corresponded to ab
13% of the cases in the training set, meaning that the A
developed could not analyze a significant fraction of t
data, posing the question of its reliability. We will now e
amine which cases were so eliminated. We show in Fig
the depth versus dose diagram for the excluded cases.
compares with Fig. 5~b!, where a similar diagram is shown
but for the entire initial training space. It is observed that t
cases eliminated correspond to two broad classes: one

N
d
ta

TABLE I. Tested ANN architectures.I andO represent the in-
put and output data, respectively. The intermediate numbers re
sent the number of nodes in each hidden layer. The (I ,100,80,50,O)
ANN was chosen as the reference ANN.

Architecture Train set error Test set error

(I ,100,O) 6.3 11.7
(I ,250,O) 5.2 10.1
(I ,100,80,O) 3.6 5.3
(I ,100,50,20,O) 4.2 5.1
~I , 100, 80, 50, O! 3.0 4.1
(I ,100,80,80,O) 2.8 4.7
(I ,100,50,100,O) 3.0 4.2
(I ,100,80,80,50,O) 3.2 4.1
(I ,100,80,50,30,20,O) 3.8 5.3
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cludes spectra with implanted depth larger than appro
mately 200031015atom/cm2, which we will call classB, and
the other includes spectra with doses smaller than appr
mately 331015atom/cm2, which we will call classC. Class
A corresponds to spectra with implanted depth smaller t
200031015atom/cm2 and dose larger than 331015

atom/cm2, of which very few were eliminated.
We show in Fig. 8 the density of eliminated cases a

function of implanted depth and of implanted dose. Fro
Fig. 8~a! it is concluded that samples that have both ve
small implant doses and large implant depths, that
samples that belong simultaneously to classesB andC, have
a much enhanced probability of having a large error a
hence of being rejected at the end of the first training pha
Sample with higher implant doses are only rejected when
implant depth is very large, that is, if they belong to classB.
On the other hand, we see from Fig. 8~b! that samples with
smaller implant depths are only eliminated from the train
process if they have very small implant doses, that is, if th
belong to classC.

Some of the rejected spectra from classesB and C are
shown in Fig. 9, where the reasons behind the rejection
come apparent. ClassB corresponds to spectra where the G
is so deep in the sample that, taken the analyzing beam
ergy and the experimental conditions into account, the
signal becomes superimposed onto the Si signal. This le
to a spectral shape that is significantly different from t
majority of spectra, in which the signals are well separated
corresponds to a class of spectra that is difficult to analy
even when traditional methods are used, also due to the
nal superposition. The experimentalist’s solution, when c
fronted with one such spectrum, is normally to try to chan
the experimental conditions in order to obtain separated
nals. This can be done by increasing the beam energy o
the sample was measured at a tilt angleu inc away from nor-
mal incidence, useu inc50°.

As for classC, it corresponds to spectra where the G
signal is extremely small compared with the Si signal or w
the pileup background. Without the logarithmic scale in F
9~a!, the Ge signal would go unnoticed. Furthermore, in r
samples small levels of impurities in the Si signal cou
mask the Ge signal even further. Quantitative analysis,

FIG. 7. Dose and depth of the spectra, with error larger th
40%, eliminated from the training set at a 20% average error le
Each point is one case eliminated.
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though still possible in the cases shown~and altogether hope
less for still smaller doses!, becomes difficult and, in any
case, leads to large errors. The experimentalist’s solution
such cases is either to use a different technique with a be
sensitivity to Ge or to increase the He beam fluence in or
to obtain better counting statistics.

It should be noticed that the developed ANN effective
separated the input spectra into three distinct classes:
of the ‘‘normal,’’ or easier, cases to analyze and two diffe
ent classes that correspond to samples that are experi
tally difficult to analyze, for completely different reasons a
requiring completely different actions from the experime
talist. This opens the door to on-line optimization of the e
perimental parameters, as, once feedback from the ANN
the controlling system of the accelerator is incorporated,
tomation of the optimization process can be achieved.

To test the sensitivity of the ANN to mistakes in the e
perimental data, we generated two different sets of 500
oretical spectra each. All the parameters were in the sa
range as that used for the training set, but instead of si
lating Ge implants, we simulated implants with the neighb
ing elements Ga and As. The mass resolution of RBS
given by the energy differenceDE due to scattering from
elements with mass aroundM and a mass difference ofDM .
It is, for a scattering angle of 180°,

n
l.

FIG. 8. Density of eliminated cases as a function of~a! im-
planted depth—the dashed line corresponds to cases with
smaller than 331015 atom/cm2—and ~b! implanted dose. The
dashed line corresponds to cases with depth smaller than 2
31015 atom/cm2.
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DE54E0~m/M2!DM , ~14!

whereE0 is the beam energy andm is the mass of the beam
species. For 1.5-MeV4 He1 scattering off Ge, we have

DE/DM54.55 keV/amu. ~15!

This is leads to an energy difference of 13.1 and 10.5 k
between the Ga and Ge and As and Ge signals, respecti
These values are smaller than the energy resolution norm
achieved with surface barrier detectors, since, as said ab
the training set was generated with resolution between
and 40 keV. Furthermore, according to Eq.~1!, the Ruther-
ford cross section is similar for the three elements, differ
13% between Ga and As. This means that the differenc
small enough that the ANN trained for Ge implants sho
still be able to analyze the Ga and As implant test data, al
with a systematically larger error.

Utilizing the reference ANN, the error was 4.6% on t
Ga set and 14.0% on the As sets. As expected, this is la
than the errors on the Ge training and test sets, which w
3.0% and 4.1% respectively. However, at first sight it co
seem surprising that the error in the Ga set is smaller t
that in the As set, because the mass difference betwee
and Ge is larger than that between As and Ge. We show
Fig. 10 generated spectra corresponding to an implanted
of 25.931015atom/cm2 of Ge, Ga, and As. The Ga and G
peaks are approximately the same shape and height.
main difference between them is their position, the Ga p
being located slightly to the left of the Ge peak due to
lower kinematic factor for Ga as given by Eq.~2!. On the
other hand, the height of the As peak is considerably lar
than that of the Ge peak. The As peak is furthermore n

FIG. 9. ~a! Spectra from classC. ~b! Spectra from classB.
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rower than the Ge peak. It is this similarity between the
and Ge peaks and this difference between the As and
peaks that leads to only a modest increase in the error w
the Ge-trained ANN is used on Ga data and to a large
crease when it is used on As data.

The reason behind the shape of the Ga, Ge, and As p
lies on their isotopic distribution. Natural Ga has two ma
isotopes69Ga and71Ga with abundance 60.1 and 39.9, r
spectively. Although the scattering cross section is the sa
for the two isotopes, the kinematic factor is not, which lea
to a slight broadening of the Ga peak. Natural Ge has th
isotopes70Ge, 72Ge, and74Ge with abundance 21.2, 27.7
and 35.9. On the one hand, this leads to an even larger br
ening of the Ge peak than that of the Ga peak, which
plains why the height of the Ge peak is slightly smaller th
that of the Ga peak, even when its area is larger by a fa
of (ZGe/ZGa)

251.065. On the other hand, one of the G
isotopes (70Ge) is lighter than one of the Ga isotopes (71Ga),
which leads to a larger degree of superposition between
Ga and Ge peaks than could be otherwise expected. On
contrary, As has a single isotope75As, leading to the narrow
and large peak observed.

D. Comparison with experimental results

We applied the neural network, with the fixed weigh
obtained during the supervised training, to real data. We a
lyzed ten spectra collected in different experimental con
tions. The total analysis time was less than 1 s. While dur
the supervised training the Ge dose and depth are give
the ANN, they are now outputs calculated directly from t
experimental data. We compared the results obtained w
the values determined using NDF@4,38#. The results are
given in Table II and are excellent. It should be noted th
the first 25 channels of each spectrum were disregarded
order to eliminate the region where the plural scattering
fect is larger.

While the precision achieved is worse than what can
obtained with the usual data fitting, simulation, or calculati
methods, we stress that the analysis was fully automatic
performed practically instantaneously, hence being w
suited for on-line analysis purposes. Furthermore, a fast lo
search algorithm could easily make the small improveme
necessary to obtain precise values.

FIG. 10. Generated spectra for 25.931015 atom/cm2 implants of
Ge, Ga, and As.
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TABLE II. Experimental data results.

Sample

Values derived with NDF Values obtained with the ANN

Ge
(1015 atom/cm2)

Depth
(1015 atom/cm2)

Ge
(1015 atom/cm2)

Depth
(1015 atom/cm2)

1 16.7 332.8 16.3 267.4
2 14.4 302.3 12.4 223.7
3 13.6 318.2 15.3 307.2
4 14.7 334.5 12.4 236.8
5 15.7 378.0 10.6 245.7
6 9.3 250.7 12.2 308.7
7 26.8 246.3 27.9 214.3
8 9.8 349.1 12.7 359.4
9 9.6 356.8 12.6 384.7
10 9.7 316.3 11.9 329.4
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This is demonstrated in Fig. 11, where the theoreti
spectrum generated from the implant depth and dose
tained by the ANN for sample 1 is superimposed onto
experimental data. While the overall agreement is go
some comments must be made. First, one should note
the spectrum was generated for nominal experimental co
tions, in particular the nominal collected charge. Second,
obvious that there is a large misfit below about channel
This is due to plural and multiple scattering, which is n
taken into account and which leads to an increased yiel
low energies@27#. Second, the slight misfit around channe
40–60 where the simulated spectrum is consistently ab
the data~4% on average! and where no plural and multipl
scattering is expected, is due to the inaccuracy in cha
collection. Also, the small peak observed in the experime
data around channel 37 is an oxygen signal due to the na
surface Si oxide.

Finally, and most importantly, the Ge peak is excellen
reproduced, both in position and in size. The error in
implant depth committed by the ANN given in Table I

FIG. 11. Experimental data~open circles! and corresponding
spectrum generated from the implant depth and dose obtained
the ANN for the nominal experimental conditions, for a give
sample.
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65.431015atom/cm2, is smaller than the depth resolutio
which is in this case 15331015atom/cm2, as calculated with
the DEPTH code @29#. Also, any inaccuracy in the energ
calibration would lead to a slightly corrected depth value.
for the 2.39% error in the determination of the implant
dose, the statistical error corresponding to the Ge peak du
the limited collected charge and consequent limited Ge y
is 2.34% in this case~corresponding to 1818 counts in the G
peak!, to which one should add the 4% error in the nomin
charge.

That is, the ANN is determining the implanted dose a
depth as well as is possible given the constraints impose
the physical model used in the calculation of theoretical R
spectra, the accuracy in the experimental parameters, an
lack of a priori knowledge about the composition of th
sample ~in this case, the presence of a surface oxide!. It
should be noted that a careful analysis using NDF can o
come these constraints. A plural scattering correction can
introduced in NDF@39#, the experimental parameters are a
tomatically slightly adjusted by NDF to improve the intern
consistency of the fit, and the surface oxide can also easil
included. All these corrections were taken into account in
values determined with NDF and given in Table II.

E. Influence of the RBS forward model

It is clear that the RBS forward model used has import
consequences for the results obtained. To test the influe
of different parameters in the results, we trained ANNs w
the same architecture (I ,100,80,50,O), but using training
sets constructed using different assumptions. In all cases
errors in the training and test sets were comparable. We
applied the ANNs so built to the experimental data and c
culated the mean absolute error for the implanted dose
depth. The results are given in Table III.

The average errors for the dose and depth obtained
the reference ANN, i.e., the one which includes all the
fects including pileup correction and~statistical! Poisson
noise and where the first 25 channels are ignored, are
31015 and 52.731015atom/cm2, respectively. For an ANN
trained with similar data, but where Poisson noise was
included ~actually, exactly the same data except for the
clusion of the noise!, the error in the dose improves signifi

ith
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TABLE III. Average absolute error in the analysis of experimental data, obtained with the reference
and with the ANNs trained with generated data that did not include random Poisson noise, that d
include the pileup correction, and where only the first five channels were disregarded.

Absolute error
(1015 atom/cm2) Reference ANN

No Poisson
noise

No pileup
correction

First five channels
disregarded

Dose 2.36 1.22 3.45 5.65
Depth 52.7 64.1 68.3 106.2
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cantly while the error in the implanted depth increas
slightly. The improvement in the dose error can be und
stood by considering that ANNs recognize the shape
features of pictures, while the noise~experimental or calcu-
lated! is just a distortion of the original picture. By trainin
the ANN with the undistorted signal, the ANN can mo
easily apprehend the important features in the data. F
another point of view, one could say that also in tradition
fitting methods the fitted curve is always purely theoreti
with no noise introduced. As for the error in the implant
depth, it should be noted that the calculation of the de
depends strongly on the position of the signal and o
weakly on its exact shape, and hence the depth error cha
only slightly.

We also trained an ANN using data with Poisson no
and ignoring the first 25 channels, but where the pileup c
rection was not applied. Again, the depth error does
change very much, while the error in the determination of
dose is significantly worse. The reason is that the main ef
of the pileup correction is to reduce or increase the yield
different parts of the spectrum: where there were origina
no ~or little! counts, pileup will lead to an increase in th
yield, and where there were originally many counts, the yi
will decrease. So around the Ge peak the yield increases
to pileup while in the peak itself it decreases, leading to
extra source of error when pileup is not considered.

Finally, we trained an ANN using exactly the same da
as in the reference ANN, but considering the whole spe
~that is, disregarding the first 5 instead of the first 25 ch
nels as in the reference ANN! both in the training proces
and in the analysis of the experimental data. The erro
both the dose and depth increases by a factor of about 2.
is due to the strong distortion in the experimental data tha
introduced by plural scattering. On the one hand, the Ge d
is given by the yield in the Ge peak, but the absolute n
malization is given by the height of the Si signal. The i
crease in the Si yield due to plural scattering is hence bo
to lead to an increase in the dose error. On the other h
the determination of the depth is based on the position of
Ge signal relative to the position where surface Ge would
The difference is determined by the stopping power of
incident He beam in Si, which also strongly influences
shape of the Si signal, particularly at low energies where
stopping power is a strong function of the beam ener
Hence one of the features of the data that the ANN can us
determine the Ge depth is the shape of the Si signal, and
plural scattering distortion will lead to an increased error

V. CONCLUSIONS

As far as we are aware, the artificial neural network alg
rithm demonstrated here is the first method that can ana
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RBS data instantaneously. Other methods developed tha
able to perform automated analysis of RBS data, such
Bayesian inference or simulated annealing, require so
time to perform the analysis, as well as some degree of
derstanding of the physics behind RBS and of the mathem
ics behind the algorithms. In contrast, the ANN algorith
presented here is essentially a push-button black box, w
opens the doors to the integration of RBS and other ion be
analysis techniques in the production line.

The algorithm developed can be applied to a single s
tem, namely, implants of Ge in Si, albeit in a very wid
range of implanted dose and depth, as well as in a very w
range of experimental conditions. For each different syst
to be studied, a new ANN must be built and trained. Wh
this is clearly a shortcoming, many applications require
analysis of a large amount of similar samples. This is
case, for instance, in quality control or in batch production
given systems.

The reliability of the ANN developed was investigated.
was shown that there exist two well-defined classes of sp
tra that the ANN is not able to analyze correctly. These t
classes, however, correspond to cases that are difficu
analyze even using traditional methods. They correspon
either very large implant depths, where the Ge and Si sign
overlap and are difficult to separate, or to very small dos
where it is difficult to distinguish the Ge signal from th
background. The experimentalist’s solution to solving t
problem would be, in one case, to change the angle of i
dence or to increase the beam energy and, in the latter c
to increase the beam fluence. While this normally requi
the presence of a highly trained experimentalist during
measurement, implementation of feedback from the ANN
the experimental setup would lead to on-line automated
timization of the experimental conditions for each giv
sample. Further research in this direction is being develop

The ANN developed was applied to real experimen
data with excellent results. The error in the implanted do
was within the experimental error given by the limited cou
ing statistics, and the error in the implanted depth was wit
the depth resolution of the technique. This means that
results given by the ANN can be taken directly as such
used as the initial guess in a fast local optimization alg
rithm.

ANNs are often trained using real data. For RBS, th
would require measuring thousands or tens of thousand
spectra and analyzing them by traditional methods. This
in practice, not feasible. The alternative found was to tr
the ANN with theoretically generated spectra. On the o
hand, this was validated by the successful application of
ANN so trained to real experimental data. We neverthel
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studied the influence of the theoretical RBS model used
generate the spectra on the ANN performance. The con
sion is that to obtain maximum accuracy of the results
relevant effects should be included in the model. Wh
pileup can be easily taken into account, the effect of plu
and multiple scattering cannot be calculated efficiently a
accurately enough for the purposes of this study. This me
that the low-energy region of the data, which can be stron
,
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affected by plural and multiple scattering, cannot be used
the analysis of experimental data with the ANN develop
here. This does not affect the particular system studied, s
the Ge signal is located in the high-energy region of the d
However, future developments will have to include the effe
of multiple and plural scattering, either by utilization o
some experimental data in the training or by devising
efficient way of calculating it.
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