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Abstract

We report a generalisation of previous works where artificial neural networks (ANNs) were successfully applied for

specific implantations such as Er in sapphire or Ge in Si. We have now developed a code that it is able to analyse data

from implantations of any element with Z between 18 and 83 into any target composed of one or two lighter elements.

Although this problem is considerably more complex than single-system ANNs, the ANN developed produced excellent

results when applied to experimental data.

� 2004 Elsevier B.V. All rights reserved.

PACS: 82.80.Yc; 68.55.Ln; 07.05.Mh; 07.05.Kf

Keywords: Rutherford backscattering; Artificial neural networks; Ion implantation
1. Introduction

We have previously used artificial neural net-

works (ANNs) to analyse Rutherford backscat-

tering (RBS) data in a fully automated and

instantaneous way [1,2], and also to develop a
method for automated control and of the experi-

mental conditions such as the angle of incidence,

angle of scattering, and beam energy and their

optimisation for given samples [3].
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The accuracy reached in the analysis is only

slightly worse than what is achievable with state of

the art methods [4]. The main disadvantage of

ANNs is that they are better suited for single-

systems, of similar data. When the data fall into

different categories, it is often necessary to develop
separate ANNs for each category in order to ob-

tain reliable results [3]. This should mean that the

goal of having an all-purpose ANN, able to ana-

lyse any RBS spectrum, is not attainable.

Generalisation of the ANNs for classes of

systems or problems would nevertheless be an

important goal. We started with an ANN able to

deal with a given single element implanted in a
given one-element substrate (Ge in Si [1]), then

one-element in a two-element substrate (Er in
ved.
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Al2O3 [5]), then any element in a given lighter two-

element substrate (anything in Al2O3 [6]). We now

present an ANN able to analyse RBS data from

any element with Z between 18 and 83 implanted
into any lighter one- or two-element substrate.
2. Experimental data

RBS spectra of implanted sapphire [7] and Ge-

implanted Si [1] previously presented were used to

test the ANN. They include data from three
experimental setups and five detectors. A wide

range of implant dose and energy and of experi-

mental conditions is covered.
3. Artificial neural networks

The theory of feedforward ANNs [8] and their
application to RBS [3] is described elsewhere.

The number of layers and nodes determines the

ANN architecture, which can be represented by

(N ; I1; . . . ; In;M), where N is the number of inputs

and M the number of outputs (in our case, the

implanted dose and depth, and M ¼ 2), and Ii the

number of nodes in each intermediate layer. In

supervised learning, the training is done by pre-
senting a large set of known examples (the training

set), and minimising the difference between the

ANN outputs and the known results. The cor-

rectness of the training is verified by testing the

ANN with another set of data, the test set. Root

mean square errors are calculated for both sets.

We generated a training set consisting of theo-

retical spectra. The atomic number of the im-
planted element was chosen randomly between 18

and 83. The elements of the substrate were chosen

randomly but imposing that they should be lighter

than the implanted ion, and in 40% of the cases we

chose a monoatomic substrate. The atomic frac-

tions of the two substrate elements were also

chosen randomly. The implant doses were between

1015 and 1017 at/cm2, for depths between 100 and
3700 at/cm2. Each implant was simulated as a

perfect Gaussian. Only spectra where the signal of

the implanted element was at least partially sepa-

rated from the substrate signal were generated.
The spectra were calculated for different beam

and detection parameters chosen at random, in

order to simulate a very broad range of realistic

experimental conditions. The beam was He, with
energy between 1 and 2.1 MeV and resolution

between 10 and 40 keV FWHM. The scattering

angle was between 135� and 180�, and the detec-

tion angle was between )20� and 20� in the IBM

geometry. The charge was between 1 and 200 lC

for a solid angle of 1 msr. Pulse pileup and Poisson

noise were added to the theoretical spectra [9].

The inputs consists of four experimental
parameters to characterize the setup (beam energy,

incidence angle, scattering angle and charge), and

an extra set of six describing the atomic charge (Z)

and mass (M) of the implanted element, and the

atomic charge ðZ1; Z2Þ of the substrate elements

and their atomic fraction ðf1; f2Þ. Note that a

monoelemental substrate was given simply by

Z1 ¼ Z2, with the fractions taking random values.
Instead of increasing the complexity of the

ANN to match the problem, we reduced the

complexity of the problem by using appropriate

pre-processing. We used a peak identification

routine to extract automatically the centroid and

area of each implant, which were made part of the

input instead of the 512 channel yields. These two

features are enough to calculate a good first
approximation of the implanted depth and dose.

The routine uses Poisson statistics to find statisti-

cally significant peaks and edges, and then, from

the peaks found at higher channels than the edges,

chooses the one with the highest yield. This peak is

then fitted with a joined half Gaussian function,

used to calculate its position and area accurately.

The peak identification routine is not perfect
and fails in about 10% of the cases. This is gen-

erally due to a small peak, a large pileup back-

ground, or partial superposition to the substrate

signal, and sometimes to the fact that the peak

recognition routine itself fails. These ‘‘wrong data’’

would lead to a high ANN error. We used the

worst case elimination strategy [1], whereby the

spectra for which the error is substantially above
the average are eliminated.

We tested several network architectures as

shown in Table 1. They show very similar results,

and we choose the (12:30:10:2) topology as it is the



Table 1

Train and test errors for different networks after automatic

worst case elimination

Network

topology

Train error

(%)

Test error

(%)

# Eliminated

cases (%)

(12:30:10:2) 3.15 3.37 19.7

(12:30:20:2) 3.12 3.70 20.7

(12:40:10:2) 3.20 3.25 19.8

(12:40:20:2) 2.98 3.22 20.5
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simplest one and has the smallest number of
eliminated cases, for a comparable error. Although

this architecture is much simpler, and the number

of eliminated cases has not increased substantially

compared to ANNs dedicated to single-systems

[4], the performance of the network is similar.
Table 2

Results for samples with all parameters well within the training rang

N Nominal

dose

(at/cm2)

Implant

energy

(keV)

Beam

energy

(MeV)

Setup/

scattering

angle

Angle o

incidenc

(�)

TiAl2O3

29 1 · 1016 100 1.6 II/160� 5

33 1 · 1016 100 1.6 II/180� 5

30 5 · 1016 100 1.6 II/160� 4

34 5 · 1016 100 1.6 II/180� 4

FeAl2O3

36 1 · 1016 160 1.6 II/160� 4

40 1 · 1016 160 1.6 II/180� 4

37 4 · 1016 160 1.6 II/160� 5

41 4 · 1016 160 1.6 II/180� 5

CoAl2O3

22 5 · 1016 150 2 I/180� 3

ErAl2O3

11 4 · 1015 200 1.6 II/160� 0

15 4 · 1015 200 1.6 II/180� 0

AuAl2O3

26 6 · 1016 160 2 II/180� 2

GeSi

44 15 · 1015 100 1.5 III/165� 7

45 15 · 1015 100 1.5 III/165� 7

46 15 · 1015 100 1.5 III/165� 7

48 15 · 1015 100 1.5 III/165� 7

49 10 · 1015 100 1.5 III/165� 7

50 25 · 1015 100 1.5 III/165� 7

51 10 · 1015 100 1.5 III/165� 7

52 10 · 1015 100 1.5 III/165� 7

53 10 · 1015 100 1.5 III/165� 7
4. Results and discussion

We show the results obtained for experimental
data in Table 2 for cases with all parameters well

within the training range, in Table 3 for cases with

at least one parameter outside the training range,

and in Table 4 for border cases. The numbering

of samples 1–43 follows that of [6]; samples 44–53

are samples 1–10 of [1].

For samples with parameters outside the train-

ing range, the ANN performs very poorly. This is
a known feature of ANNs, which are able to do

non-linear mappings and interpolations, but are in

general unable of extrapolation [8]. That is, they

can only analyse data that lies within the training

universe.
e

f

e

Solid angle-

charge

(lC msr)

Dose (1015 at/cm2) Depth (1015 at/cm2)

ANN NDF ANN NDF

9.86 10.8 9.8 701 848

54.0 11.4 9.3 907 795.8

9.82 55.4 58.9 593 769

55.3 52.7 53.0 722 565

17.55 16.2 10.6 1223 1222

99.0 9.8 10.3 880 904

9.02 46.0 41.7 999 1180

50.2 42.7 38.2 860 912

94.8 58.5 48.4 814 730

6.87 3.5 3.75 698 726

20.48 4.0 3.83 615 736

52.0 60.1 59.3 668 395

7.72 13.1 16.7 361 333

5.41 9.7 14.4 367 302

6.91 10.5 13.6 364 318

8.68 11.7 15.7 353 378

140.73 7.3 9.3 309 251

104.98 24.7 26.8 322 246

63.93 7.8 9.8 347 349

113.49 8.1 9.6 348 357

96.54 7.9 9.7 331 316



Table 4

Results for samples with at least one parameter near the limits of the training range

N Nominal

dose

(at/cm2)

Implant

energy

(keV)

Beam

energy

(MeV)

Setup/

scattering

angle

Angle of

incidence

(�)

Solid

angle-charge

(lC msr)

Dose (1015 at/cm2) Depth (1015 at/cm2)

ANN NDF ANN NDF

TiAl2O3

28 1· 1015 100 1.6 II/160� 6 18.0 2.3 1.34 599 742

32 1· 1015 100 1.6 II/180� 6 104.4 1.6 1.08 647 706

35 1· 1017 100 1.6 II/180� 5 57.6 76.3 92.4 644 633

FeAl2O3

42 1· 1017 160 1.6 II/180� 4 52.9 82.9 98.5 791 869

ErAl2O3

14 1· 1015 200 1.6 II/180� 0 20.97 2.1 1.05 695 636

GeSi

47 15· 1015 100 1.5 III/165� 7 4.12 8.5 14.7 379 335

7 1.3 · 1015 800 1.6 I/180� 0 92.0 2.1 1.64 1012 1649

3 1.3 · 1015 800 1.6 I/140� 0 18.98 2.1 1.60 1192 1577

4 5· 1015 800 1.6 I/140� 0 20.03 4.9 5.17 1432 1590

5 2· 1016 800 1.6 I/140� 0 19.63 9.0 25.21 1340 1756

Table 3

Results for samples with at least one parameter outside the training range

N Nominal

dose

(at/cm2)

Implant

energy

(keV)

Beam

energy

(MeV)

Setup/

scattering

angle

Angle of

incidence

(�)

Solid

angle-charge

(lC msr)

Dose (1015 at/cm2) Depth (1015 at/cm2)

ANN NDF ANN NDF

TiAl2O3

31 1· 1017 100 1.6 II/160� 5 9.89 70.6 106 618 769

FeAl2O3

38 1· 1017 160 1.6 II/160� 4 9.63 73.7 105 1029 1163

39 5· 1017 160 1.6 II/160� 4 10.68 120.8 417 520 603

43 5· 1017 160 1.6 II/180� 4 55.7 133.6 407 495.1 488

CoAl2O3

21 1· 1015 150 2 I/180� 7 99.2 1.7 0.96 851 681

23 2· 1017 150 2 I/180� 2 124.1 131 187 821 734

24 5· 1017 150 2 I/180� 2 64.3 156 448 555 623

ErAl2O3

8 8· 1013 200 1.6 II/160� 0 5.83 2.4 0.07 1120 770

12 8· 1013 200 1.6 II/180� 0 94.59 1.6 0.07 928 805

6 3· 1014 800 1.6 I/180� 0 92.1 1.4 0.33 1401 1658

9 6· 1014 200 1.6 II/160� 0 6.94 1.9 0.67 885 701

13 6· 1014 200 1.6 II/180� 0 31.14 1.8 0.70 677 715

10 1· 1015 200 1.6 II/160� 0 3.31 1.9 0.99 842 744

1 3· 1014 800 1.6 I/140� 0 19.96 1.5 0.31 1437 1595
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For the samples within the training range, the

general ANN developed here performs in most

cases as well or better than the specialized ANNs

developed previously. This is, by all means, a great
success. We calculated the ANN results as com-

pared to NDF, averaged for all the samples, for

the ANN developed here and for previously

developed single-system ANNs [1,5,6]. The results



Table 5

Average results for different ANNs

ANN DoseANN=DoseNDF jDepthANN � DepthNDFj
(1015 at/cm2)

Ge in Si 1.11 53

Er in

Al2O3

1.17 106

All in

Al2O3

1.02 235

All in all 0.96 83

The ‘‘all in all’’ row refers to the present work for samples with

all parameters well within the training range.
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are shown in Table 5. Using as input only the peak
position and area instead of the entire spectrum,

which leads for instance to ignoring the dip in the

substrate signal, might lead to reduced accuracy.

This is, however, more than compensated by the

increased efficiency and accuracy of a much

smaller and simpler ANN architecture.

Finally, border cases are relatively well analy-

sed, but with a large error. In particular, samples
with small implanted doses are difficult to analyse

no matter what the method of analysis, and the

ANN error is consequently large.
5. Summary and outlook

We developed a ANN able to analyse RBS data
of any element with Z between 18 and 83 im-

planted into any lighter one- or two-element sub-

strate. Pre-processing, consisting in reducing each

spectrum to two parameters, namely the peak

position and area, led to a substantial reduction of

the complexity of the problem, and thus to a
general ANN that, within its range of applicabil-

ity, performs as well or better than single-system

ANNs previously developed.

We had previously developed an algorithm for
the automated optimisation of the experimental

parameters in RBS analysis of a well-defined sys-

tem, namely Ge-implanted Si. The prospects of

extending that to any implanted system are now

excellent.
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