

GAMMA DOSE RATES AND RADIONUCLIDE CONCENTRATIONS IN AND AROUND CONTRASTING SOIL AND SEDIMENT CONTEXTS

C.I. Burbidge^{1,3}, A. Cresswell², M.I. Prudêncio^{1,3}, J. Ribeiro³, J.D.N. Franco¹, G. Carvalhal¹, G. Cardoso¹, D. Franco¹, R. Marques¹, M. Reis¹, D.C.W. Sanderson², F. Rocha³

 ¹C²TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal
² Scottish Universities Environmental Research Centre (SUERC), UK
³GeoBioTec Research Centre - Universidade de Aveiro, Portugal

PTDC/AAC-AMB/121375/2010- VADOSE

SPATIAL VARIATION OF DOSE RATES IN SOILS AND SEDIMENTS - VADOSE

Project Aims:

- Determine radioactivity and absorption characteristics at different spatial scales (µm - hm) for contrasting soils and sediments.
- Develop MC models tailored to each soil/sediment calibrated by the experimental determinations.
- Assess the accuracy of dose rates predicted from geochemical and radiometric measurements using common methodologies, geometries, and deterministic calculations, to bodies of different sizes within sample media.
- Produce / refine simple recipes for combination with standard experimental measurements / existing baseline values / maps.

Seven Sites

Centre-North Portugal Coast to Interior circa Aveiro

- 1. Terra-rossa. Limestone (SBV) JVI 1. Combragoinera
- 2. Poorly sorted quartz + clay. Alluvial (ADC1)
- 3. Clay. Alluvial (ADC3)
- 4. Organic soil. Granite (ALL)
- 5. Subsoil. Schist (ME)
- 6. Dune sand (GA)
- 7. Subsoil. Uraniferous schist (EC)

sample with `intact' peds / structure

Analytical Methods

Field Gamma Spectrometry Backpack area survey

- 3" x 3" NaI SUERC, 10 s integrals
- Threshold/Windows

Grid of surface measurements, 1 m elevation 4π in sampling location, 50 cm from section face

- 3" x 3" NaI Nanospec and HPI, 600 s or 1200 s
- Windows

Laboratory Gamma Spectrometry

HPGe 150 cm³ Canberra

<2 mm fraction, quartered

Comparative measurements relative to 4 geochemical reference samples (milled, sealed)

Gamma Spectrometry of Unactivated Samples

- Unmilled, 6 cm diameter petri ~30 g, unsealed
- 25 lines: K; wtMean ²³²Th,²³⁸U pre/postRn,²¹⁰Pb,²³⁵U

Neutron Activation Analysis

- Milled, ~200 mg
- Portuguese Research Reactor
- 30 elements inc. K, Th, U

Rn ~ OK

 σ_v survey $\approx 20\%$

Sample <2 mm \approx 6 x NaI

2. Poorly sorted quartz + clay. Alluvial (ADC1)

Quarry pit Exposed alluvial sequences ²³⁵U ²³⁸U $D\gamma$ U ADC1 Κ Th σ_{v} <Rn >Rn ²¹⁰Pb Bq.kg⁻¹ mGy.a⁻¹ NaI Survey Mean 0.63 0.09 328 30 11 Grid Mean 0.81 0.19 258 31 27 15 13 Buried 0.42 156 15 HPGe <2 mm 0.41 148 14 2 16 15 21 INAA <2 mm 0.37 119 12 16

U, Rn ~ OK

 σ_v survey $\approx 15\%$

Sample \approx Buried NaI. Surface higher

3. Clay. Alluvial (ADC3)

Quarry

Wooded surficial $\sim 2 \text{ m clay}$ and stripped areas

ADC3		Żγ	σ_{γ}	К	Th	U	²³⁵ U	²³⁸ U		
		mGy.a ⁻¹		Bq.kg ⁻¹				<rn< td=""><td>>Rn</td><td>²¹⁰Pb</td></rn<>	>Rn	²¹⁰ Pb
NaI	Survey Mean	0.6	0.1	328	11	30				
	Grid Mean	1.0	0.2	319	40	32				
	Buried	1.0		500	37	24				
HPGe	<2 mm	1.8		794	54	58	65	62	56	78

U, Rn ~ OK

 σ_{γ} survey $\approx 15\%$

```
Local surface grid \approx Buried NaI, Survey lower.
```

Sample <2 mm \approx 1.5-2.5 x Buried NaI (K, Th & U)

4. Organic soil. Granite (ALL)

Outcrop with deep organic rich soil accumulated at the base

Partly wooded

 σ_{γ} survey $\approx 20\%$

ALL		Żγ	σ_{γ}	К	Th	U	²³⁵ U	²³⁸ U			
		mGy.a⁻¹	•	Bq.kg ⁻¹				<rn< th=""><th>>Rn</th><th>²¹⁰Pb</th><th></th></rn<>	>Rn	²¹⁰ Pb	
NaI	Survey Mean	1.5	0.3	982	23	55					
	Grid Mean	2.4	0.5	931	97	55					
	Buried	1.7		776	67	37					203
HPGe	<2 mm	2.7		1114	94	77	93	118	65	147	Ľ
INAA	<2 mm	2.4		878	84	86					

U: Rn loss. ²¹⁰Pb: not pre-excavation? K: Buried NaI vs. HPGe vs INAA, range ~ 30%

Sample <2 mm \approx 1.5 x Buried NaI

5. Subsoil. Schist (ME)

Hillslope, forrested

Section by forrest track

U, Rn = OK

 σ_v survey $\approx 12\%$

Survey: lower Th

Sample <2 mm \approx 1.4-1.8 x Buried NaI (K, Th & U)

6. Dune sand (GA)

Aforrested sand ridges

"Remodelled dunes"; original allignment identified by area survey

U, Rn ~ OK

 σ_v survey $\approx 8\%$

GA		Ďγ	σ_{ν}	K	Th	U	²³⁵ U	²³⁸ U	7		
		mGy.a ⁻¹	· É	Bq.kg⁻	1			<rn< td=""><td>>Rn</td><td>²¹⁰Pb</td><td></td></rn<>	>Rn	²¹⁰ Pb	
NaI	Survey Mean	0.28	0.02	262	1.5	11					
	Grid Mean	0.44	0.03	274	9	14					
	Buried	0.39		285	9	7					
HPGe	<2 mm	0.48		365	9	11	-7	8	12	12	

Survey: lower Th

Sample <2 mm \approx 1.2 x Buried NaI (K & U)

7. Subsoil. Uraniferous schist (EC)

Remediated U mine

 hydrothermal mineralization along fault

Hotspots: outflow and outcrop

- rapidly identified in area survey

EC		Ďγ	σ_{γ}	К	Th	U	²³⁵ U	²³⁸ U				
		mGy.a⁻¹		Bq.kg ⁻¹	L			<rn< td=""><td>>Rn</td><td>²¹⁰Pb</td><td></td><td></td></rn<>	>Rn	²¹⁰ Pb		
NaI	Survey Mean	3.7	2.8	1184	23	382						
	Grid Mean	11	13	989	71	1121					-	1
	Buried	9.5		746	59	936						
HPGe	<2 mm	14		993	92	1376	1649	1024	1691	2328	1	
INAA	<2 mm	6.7		665	51	640						

Rn = OK; U variable: specific activity much higher than reference

 σ_{γ} survey $\approx 76\%$

Max survey: U \approx 4500 Bq.kg⁻¹, $\gamma(2\pi) \approx 0.8$ Gy.a⁻¹ - site is known, but potential public exposure issues...

NaI Surface vs. Buried

Z score: significance of difference given observed variability

Ζ	= (S-	Β)/σ _s	5			
	Site	K	Th	U	γ	Туре
1	SBV	0.8	1.3	0.2	0.8	Terra-Rossa, Limestone
2	ADC1	2.0	1.5	4.6	2.0	Poorly sorted quartz + clay. Alluvia
3	ADC3	-4.1	0.5	1.2	-0.2	Clay. Alluvial
4	ALL	1.7	1.1	1.9	1.3	Organic soil. Granite
5	ME	1.3	0.4	-0.6	0.5	Subsoil. Schist
6	GA	-0.7	0.7	5.0	1.8	Dune sand
7	EC	1.0	0.8	0.1	0.2	Subsoil. Uraniferous schist

- 2. Surface detected/included areas richer in clay
- 3. Slope wash preferentially removed K
- 4. Surface detected/included areas of bedrock

6. Surface U enrichment: evapotranspiration / concentration in forest litter / allocthonous ²²⁰Rn?

Summary

7 well characterised sites and reference materials in the lab

Surface/buried NaI results most similar for schist (as expected) and limestone (surprisingly, but allowing moderately high variability).

Some calibration harmonisation to be further pursued.

Significant differences in gamma dose rate, between methods and measured geometries, were often observed: explainable context by context, but indicate the importance of making a range of dosimetric measurements.

Inside the samples...

OSLD enclosure dosimetry Neutron activation & tomography XRD, SEM, granulometry, water retention...

