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Part I
Introduction to R for analysing data

1 Introduction

1.1 Background

This document provides information on the use of computer software called ‘R’

to analyse air pollution data. The document supports an initiative to develop and

make available a consistent set of tools for analysing and understanding air pollution

data in a free, open-source environment.

The amount of monitoring data available is substantial and increasing. In the UK

alone there are thought to be over 1000 continuous monitoring sites. Much of the

data available is only briefly analysed; perhaps with the aim of comparing pollutant

concentrations with national and international air quality limits. However, as it will

hopefully be seen, the critical analysis of air pollution data can be highly rewarding,

perhaps yielding important information on pollutant sources that was previously

unknown or unquantified.

There are however, several barriers that prevent the more effective analysis of

air pollution data. These include user knowledge (knowing how to approach

analysis and which techniques to use), cost (both in time and money) and access

to specialist software that might be necessary to carry out all but the most simple

types of analysis. Part of the aim of this document and its associated tools is to

overcome some of these barriers.

1.2 Using this document

This document has been specifically written for those with an interest in analysing

air quality data, although the techniques also lend themselves to wider atmospheric

science problems and other sources of data e.g. traffic data. It is split into two parts.

Part I gives some background information on R and provides examples of using R

with an air pollution data set from London. The intention here is to give an

overview of how to use R and this is done mostly by considering actual air

pollution data.

Part II describes dedicated functions for analysing air pollution data, which are

available in the R ‘package’ called openair (Carslaw and Ropkins 2012).

Even though the capabilities of the functions in Part II are greater than those

highlighted in Part I, they are easier to apply.

The document assumes no previous knowledge of R. The document itself contains

code which can be used directly in R (just copy and paste it in — see later). All

the code used to make plots is shown in this manual. This code is the code that

can be typed into R and can be copied directly from this document and pasted into

R. The latter makes it easier to become familiar with the R language. The code

also uses ‘mark-up’ to highlight functions, options etc. In addition, where a plot is
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1 Introduction

produced, the code immediately precedes it. Users are encouraged to reproduce

the plots shown and produce their own variations on them — for example, by

plotting different pollutants. The document also contains extensive hypertext links

to make it easy to navigate and cross-reference sections, figures etc. The document

is meant to be a kind of work book, allowing users to work through the examples

from start to finish. However, it also acts as a reference guide to using R for the

specific purposes of analysing monitoring data.

This document was produced entirely using free software. The document it-

self was produced using the LATEX typesetting programme and all the plots were

produced using R.

1.3 The open-source approach

The tools developed that are described here are open-source. This means that

they are freely available to anybody and all the source code is open to scrutiny.

Free software allows users the freedom to run, copy, distribute, study, change

and improve the software. This philosophy is espoused at http://www.gnu.org/

philosophy/free-sw.html.

The open-source approach is fundamental to this initiative. There are many

advantages to open-source software tools beyond their zero direct cost. First is the

belief that making tools open it will encourage their use and scrutiny. Second, by

making tools available in this way it is more likely that others will contribute to

them— perhaps identifying or fixing bugs, or maybe developing them further, as is

the case for many open-source software projects. As described in Chambers (2007),

the open-source approach can help lead to trustworthy software, and this is an

important component of the aims here. It is a community approach that encourages

trust and participation.

There are also difficulties in adopting an open-source approach however, not

least the need for organisations to make money from their work. The development

of these tools needs to be paid for somehow. However, there are organisations

and individuals that see benefit in this way of working and are willing to fund or

contribute to this initiative. Those who have contributed so far to this project are

listed in the acknowledgements section.

In the environmental field there are maybe even more compelling arguments

for using open-source tools. Many believe for example that those affected by

environmental decisions reached through using tools/models/data should be able to

scrutinise them— and why not? However, the reality is often far from this situation

and there is often reliance on ‘black boxes’ where such scrutiny is not possible.

1.4 Aims

The aims of this document are as follows:

• To highlight the importance of looking at data effectively.

• To introduce the statistical software R and provide some background to the

language.
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1 Introduction

• To showhowR can be used to look at and understand air pollutionmonitoring

data typically collected by local authorities, on behalf of governments and

industry. However, the tools should also be very useful for those involved in

academic research.

• To free-up time to think about air quality data rather than spending time

preparing and analysing data. Part II in particular is aimed at providing func-

tions that are easy to use so that more time can be spent on more productive

activities.

The focus is very much on being pragmatic — the basic approach is to learn by

doing. There are many books and on-line documents on R and these notes are

not meant to duplicate them. The approach used here is example-based, as it is

our experience that this is the best way in which to learn to use R. Also, some of

the concepts are easier to digest if applied to a problem or data set that is familiar.

Thisf document cannot cover all the aspects of R that may be relevant or useful for

the analysis of air pollution, but provides more of an introduction to how R can be

used.

It is also important to stress that these functions are most useful when there is a

clear purpose to the analysis. While Exploratory Data Analysis (EDA) is extremely

valuable, there is no substitute for having a clear aim (Tukey 1977). This was

perhaps best expressed by the statistician John Tukey who developed the idea of

EDA:

The combination of some data and an aching desire for an answer does

not ensure that a reasonable answer can be extracted from a given body of

data.
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1 Introduction

How this document was produced

One of the aims of this document was to ensure that users are able to
reproduce all the analyses exactly as intended. This is not a straightforward
task for a complex project under continual development. In addition, the
large amount of code and functions presented provides many opportunities
for things going wrong. It is easy, for example, to show how a function
works and provide the results/plot; update the function and then find out
that the options have changed and it no longer runs as intended. In other
words, the documentation and the tools themselves go out of sync. Even
cutting and pasting text can easily go wrong — as we have discovered.

For this reason we have adopted an innovative approach to ensuring that
everything works as intended. This document blends text with code in that
the whole document must be ‘run’ to produce it. Each time a version of this
documentation is produced, all the code is run at the same time to generate
all the various outputs e.g. plots. This means that all users should be
able to reproduce exactly the same outputs as shown in this report.a

The approach uses a package called knitr (Xie 2013a; Xie 2013b). knitr mixes
a typesetting system (LATEX) with R. When a document is produced, blocks of
code embedded in the LATEX file are recognised and run in R. In some ways it
reverses the ‘normal’ way of doing things — rather than document computer
code, the documentation is written to contain the code. The document will
not compile if the code does not function — it is as simple as that. In our
document, most of the outputs are graphics, but increasingly quantitative
information will also be produced.

In adopting this approach we found many problems with the manual (and
some functions), even though we took care to develop this work. In time we
also have ideas for using this approach to automatically carry out analyses.
Imagine a report similar to this (but written more as a tutorial) where the
data used are your own data. This approach would have the major advant-
age that all the analyses would be directly relevant to the user in question,
and entirely reproducible.

aIt takes around half an hour to compile this document.

1.5 Can I use these tools for commercial purposes?

In short, the answer is yes. Part of the aim of producing these tools was to allow

anybody to use them for any purpose. Indeed, this is the principal purpose of the

Knowledge Exchange grant. Our work is very much released in the true spirit of

the Free Software Foundation http://www.fsf.org/. However, there are a few

points users should note:

1. If you use these tools in reports, publications etc., we ask that you cite their
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2 Statistical software R

source (see the preamble at the beginning concerning how to do this).

2. It is not possible to provide a guarantee or warranty for these tools, although

we have tried hard to ensure they function as documented and are adopting

methods for quality control.

3. We request that should you find these tools useful and enhance them, that

you make such enhancements available to us for wider use.

4. For more detailed information on the various licenses under which R and its

packages operate, the user is referred to the R website.

2 Statistical software R

2.1 Introduction to R

R is a computer programming language developed specifically for the purposes of

analysing data (R-project). It is variously described as a statistical system, a system

for statistical computation and graphics, and an environment for data analysis and

statistics. Its origins go back to innovative developments at Bell Laboratories in

the USA during the 1970s, where the language developed was called S. Since that

time S has become commercial software and is sold as S-Plus by the Insightful

Corporation.

Over the past 10 years or so an open-source version of S has been developed

called R. Unlike some open-source software R is highly developed, highly capable

and well established. It is very robust and works on a wide range of platforms

(e.g. Windows, Mac, and Linux). One of its strengths is the large and growing

community of leading researchers that contribute to its development. Increasingly,

leading statisticians and computational scientists choose to publish their work in R;

making their work available worldwide and encouraging the adoption and use of

innovative methodologies.

R is available as Free Software under the terms of the Free Software Foundation’s

GNU General Public License.

Another key strength of R is the package system of its operation. The base

software, which is in itself highly capable (e.g. offering for example linear and

generalized linear models, nonlinear regressionmodels, time series analysis, classical

parametric and nonparametric tests, clustering and smoothing), has been greatly

extended by additional functionality. Packages are available to carry out a wide

range of analyses including: generalized additive models, linear and non-linear

modelling, regression trees, Bayesian approaches etc.

For air pollution purposes, R represents the ideal system with which to work.

Core features such as effective data manipulation, data/statistical analysis and high

quality graphics lend themselves to analysing air pollution data. The ability to

develop one’s own analyses, invent new plots etc. using R means that advanced

tools can be developed for specific purposes. Indeed, Part II of this document is

focussed on the use of dedicated tools for air quality analysis. The use of R ensures

that analyses and graphics are not constrained to ‘off the shelf’ tools. These tools

will often contain functionalities that are either part of the R base system or that

exist through specific packages.

12

http://www.r-project.org
http://www.gnu.org
http://www.r-project.org/COPYING


2 Statistical software R

F . The basic R console.

The principal difficulty in using R is the steep learning curve in being able to

use it effectively. Many with programming experience (e.g. FORTRAN, C++)

tend to find R an easier language to learn than those that have no experience in

programming. However, for most users this is not the experience. One of the

principal difficulties is the lack of a nice graphical user interface (GUI). However,

the more one develops tools in R, the more it is realised that a GUI approach

significantly constrains capabilities (try plotting trends for each hour of the day.

While it certainly takes considerable effort to learn to use R, the rewards are also

high.

2.2 Why use R?

There are numerous reasons why R is a good choice for analysing data. A few are

listed below.

• It is free! This for many people is the key attraction. For this reason, R

has become increasingly popular among a wide range of users including

universities and businesses.

• It works on several platforms e.g. Windows, Mac OS, and Linux. This makes

it very portable and flexible. It is also extremely robust; it is remarkably

bug-free and crashes are very rare.

• It has been designed with data analysis in mind — to carry out analysis

quickly, effectively and reliably.

• The base system offers a very wide range of data analysis and statistical

abilities.

• Excellent graphics output that will grace any report. Furthermore, all the

default plotting options have been carefully thought out unlike Excel, for

example, whose default plotting options are very poor. There are over 4000

packages that offer all kinds of wonderful analysis techniques not found in any

other software package. R continues to rapidly grow in popularity, which has

resulted in better information for users e.g. there are now many dedicated

books.

13
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2.3 Why not use R?

For all its inherent strengths, R does have drawbacks. Here are a few.

• It is difficult to learn — there is a steep ‘learning curve’.1 Many would argue

this is not the case; particularly if you are familiar with another programming

language such as C++ or Fortran. However, our experience is that it is hard

work for most people.

• There is no Graphical User Interface; instead one has something that looks

like aDOS screenwhere one types commands. This seems very old-fashioned

and at odds with the modern computing experience, but with use you will

begin to see this as real advantage. A whole report can be based on a series

of ‘scripts’ that can be run to carry out analysis. It is not so easy to record

mouse movements and menu choices …

• There is no help or support — or little that is apparent. This is true, especially

compared with commercial software. However, there is extensive on-line

help available and many people have written manuals and guides. This

document also aims to address the lack of direct, specific support for air

pollution analysis.

We have used several systems for data analysis over the years. These have

included databases, Visual Basic, GIS, contouring software, statistics software

and Excel. We always found it frustrating to do some analysis in Visual Basic, for

example, then transfer it to another application for plotting and further analysis.

We wrote code to carry out various statistical analyses too. For us, R does all these

thing in one place to a very high standard.

Another increasingly important aspect is the ability to run simulations. Until

relatively recently computers were not powerful enough to routinely run simulations

using methods such as randomization, Monte Carlo and bootstrap calculations. All

these approaches can greatly enhance many analyses and they are used in many of

the functions described in this document. Often, the reason is to obtain a better

estimate of uncertainties, which are important to consider when trying to draw

inferences from data. Also, many of these methods were essentially inaccessible; or

at least beyond consideration for most. This is where R excels — all these methods

exist or can be coded building on some of the base functions.

2.4 Some useful R resources

Theweb is the best place to find information onR.There aremany useful documents

that people have written (see http://www.r-project.org/) under documenta-

tion/other. The official user guides can be hard going for many that are completely

new to R, but worth a look later.

We also have the RBook by Michael Crawley, which is quite useful (Crawley

2007). This is a big book full of examples. It is not well laid-out and has come in for

some criticism but we have nevertheless found it to be useful. Another useful book

is by John Maindonald and John Braun (Maindonald and Braun 2007). Perhaps

1A steep learning curve means you learn a lot per unit time …
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the best introductory book is that by Dalgaard (2008), which provides a gentle

introduction to R, is well-written and up to date. Dalgaard (2008) also covers basics

statistics, with the added benefit of their use in R. It is worth also having a look

at the R-project pages as they provide a list of R books—even forthcoming titles

not yet published. For those getting into R more seriously, I strongly recommend

Spector (2008) for data manipulation and Sarkar (2007) for graph plotting using

the lattice package.

There are some useful contributed documents on the R web-pages. Under

the Documentation section on the main page have a look at Other | contributed
documentation. We found that ‘An Introduction to R: Software for Statistical

Modelling & Computing’ by Petra Kuhnert and Bill Venables was very useful and

also the document from David Rossiter (also check his web site — he has made

available lots of high quality information on R and its uses at http://www.itc.nl/

personal/rossiter/pubs/list.html#pubs_m_R).

A very good (and free) book is by Helsel and Hirsch (2002) from the US Geolo-

gical Survey (see http://pubs.usgs.gov/twri/twri4a3/). Although the book

does not consider R, it provides an excellent grounding in the types of statistics

relevant to air pollution monitoring. This book is all about water resources and

statistical methods that can be applied to such data. However, there is a great deal

of similarity between water pollution and air pollution (e.g. seasonal cycles). One

of the authors (Hirsch) is responsible for developing several important methods

for analysing trends that are very widely used; including in this document. The

document is also very well written and applied in nature — ideal reading for a

background in statistical methods relevant to air pollution.

For those that really want to learn R itself, then Matloff (2011) is well worth

considering. The book is full of useful examples about how R works and how to

use it.

3 Basic use of R

3.1 Introduction

R will of course need to be installed on a computer and this is described in Ap-

pendix A. The install procedure is straightforward for Windows systems (the

operating system most likely used by those with interests in openair). Using R will

be a very different experience for most users used to software such as spreadsheets.

One of the key differences is that data are stored as objects. These objects can take

many forms, but one of the most common is called a data frame, which is widely

used to store spreadsheet-like data. Before working with such data, it is useful to

see how simpler data are stored.

3.2 Use it as a calculator

To use R, one should type directly in the console shown in Figure 2.1. Later, it

will be shown when more than one line needs to be input, alternative methods can

be used to send commands to the console.

R can be used to do simple maths; in this example type in ‘5 + 4’ and press return.

The [1] shows that this is the first (and only in this case) result.
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3 Basic use of R

5 + 4

## [1] 9

The output (9) has a ‘[1]’ next to it showing it is the first (and only in this case)

result. To assign a value to a variable, in this case x, type

x = 5

Often it is useful to recall previous commands that have been entered, perhaps

modifying them slightly. To recall previous commands the up (↑) and down arrow

(↓) keys can be used.
To assign a variable to a value most R users will use the ‘assignment operator’ (<-).

However, most new users to R find this unnecessarily unusual. In this document

we mostly use <- but for most circumstances the = will work the same way.

x

## [1] 5

Note! R is case sensitive
In the case above using a capital 𝑋 gives an error:

x * 5

## [1] 25

X * 5

## Error: object 'X' not found

It is often necessary to modify a line that has been input previously (this is part

of the interactive strength of R). To recall the previous line(s) for editing use the up

arrow (↑) on the keyboard.
One of the very important features of R is that it considers ‘vectors’. In the

example above, x was a single integer 5. However, it can equally represent any

sequence of numbers. In the example below, we are going to define two variables x

and y to be samples of 10 random numbers between 0 and 1. In this case there is a

special in-built function to generate these numbers called runif.
generate
random
numbers x = runif(10)

y = runif(10)

To see what x looks like, just type it in:

x

## [1] 0.35039 0.41816 0.80428 0.77253 0.99884 0.29788 0.55398 0.95462 0.79950

## [10] 0.07252

This is one of the most powerful features of R; it also makes it easier to code
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functions. The ‘traditional’ way of doing this would be to have an array and loops,

something like:

# for i = 1 to 10

# x(i) = runif(1)

# next

The R code is much neater and can also be extended to matrices and arrays.

Another useful thing to do sometimes is to generate a sequence of numbers. Here

the functions seq and rep are very useful. We first show their basic use and then

show a useful example relevant to monitoring data.

To generate a sequence of numbers between 1 and 10:
generate a
sequence
numbers z = seq(1:10)

z

## [1] 1 2 3 4 5 6 7 8 9 10

To divide all these number by 10, simply type:

z / 10

## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This code again highlights vectorised calculations in R: you need not treat each

element of z separately. For more information on selecting parts of vectors, and

subsets of data in general see (§5.2).

In fact, for this particular example you can just type z <- 1:10. Many other

possibilities are also available. For example, to generate a sequence of numbers

between 1 and 10 using 23 numbers (bit odd, but you get the idea!):

z = seq(1, 10, length.out = 23)

z

## [1] 1.000 1.409 1.818 2.227 2.636 3.045 3.455 3.864 4.273 4.682

## [11] 5.091 5.500 5.909 6.318 6.727 7.136 7.545 7.955 8.364 8.773

## [21] 9.182 9.591 10.000

The function rep on the other hand repeats numbers a certain number of times.

For example, to repeat 1, 10 times:
repeating a
sequence of
numbers or
characters

rep(1, 10)

## [1] 1 1 1 1 1 1 1 1 1 1

Now, these functions can be combined. A scenario is that you have a data set of

concentrations exactly one year long and you want the hour of the day (if you have

the date/time there are other ways to do this shown later). A year is 365×24 hours
long (8760 hours). What is needed is to repeat the sequence 0–23, 365 times. This

is done by:

hour = rep(seq(0, 23), 365)
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plot(x, y)
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F . Plot of 10 random numbers between 0 and 1.

Easy! There are loads of variations on this theme too. It’s the sort of thing that

should be easy but often is a pain to do in other software.

A very common thing to do in R is combine a series of numbers. This is done by

concatenating them. For example, if one wanted p to represent the numbers 1, 3, 5,

10:

p = c(1, 3, 5, 10)

p

## [1] 1 3 5 10

The use of c() is extremely common in R and is used in almost every analysis.

One example is when setting the axis limits in plots. A long-hand way of doing this

might be to separately set the lower and upper ranges of the limits (e.g. x.lower = 0,

x.upper = 100). However, with the c command, it is more compactly written as

xlim = c(0, 100).

3.3 Basic graph plotting

One of R’s strengths is the ease with which graphs can be plotted. Almost all

graphs in R use an ‘ink on paper’ approach — once something is added it cannot

be changed. You will need to plot it again.

To plot x against y as a scatter plot, simply use the plot function.

You should end up with something similar to Figure 3.1 (but not exactly the same,

because we are plotting random numbers).

Because R is mostly considered as a system for doing statistics, it should come as

no surprise that doing some basic statistics and plotting some basic graphs is easy.

One useful plot is a histogram. There is an in-built function called hist. To make

it a bit more interesting, we are first going to draw 1000 random samples from a

normal distribution, again the in-built function rnorm can do this for you, as shown

for Figure 3.2.

The plot should look something like Figure 3.2. This should give you some idea
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z <- rnorm(1000)

hist(z)

Histogram of z
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F . Histogram of 1000 random numbers drawn from a normal distribution.

that using R can be very efficient and straightforward for basic plotting. To make a

histogram in Excel by contrast is pretty painful. Note also that the bin width size

has been automatically chosen — in this case to be 0.05.

3.4 Getting help

There are various ways to get help. For particular functions like plot, hist, seq

etc., simply type help(plot) or ?plot (or whatever) to bring up a screen that lists

all the options of a function. Almost always shown are examples of use too. Failing

that, try the R-project website, choose ‘Search’ on the first page and then ‘R site

search’. These web pages are very useful because they contain questions asked by

R-users and answered by R experts. You need to read the ‘posting guide’ before

sending question to this site — people supply answers in their own time so make

sure you have explored all avenues first.

To search for information in installed packages, help.search is useful e.g.

help.search("polar plot")

4 Using R to analyse air pollution monitoring data

4.1 Getting data into R

So far we have just made up our data using some in-built R functions. A more likely

scenario is that you have a data file that you want to analyse. R has many powerful

facilities for importing data. However, we are going to keep things simple because

it is worth getting your data into a simple format in the first place. Data more

often than not is represented as columns on a rectangular grid — and unfortunately
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4 Using R to analyse air pollution monitoring data

is often in Excel with all of its complexity of sheets and formatting. It is strongly

recommended that you work with data in a .csv format. The files are simple, small

and easily read by a wide variety of software.

The importance of data preparation

Experience shows that it is well worth putting a lot of effort into making
sure your data are correct before you start analysing them. When you pre-
pare a file carry out some basic checks. For R it is advisable to have variable
names with no spaces. It is also more convenient to keep variable names in
lower case because it is more difficult to type in capital letters.
It is also convenient to keep your variables names simple because you may
need to refer to them lots. Also, we find it is a good idea to keep everything
in lower case letters, again because they are quicker to type.

A file containing real monitoring data from Marylebone Road in London has

been put together. This is a ‘warts n’ all’ file and contains missing data — typical

of that available elsewhere. We have also put in some basic meteorological data

(wind speed and direction). The file is called ‘example data long.csv’. This file

contains a column representing dates/times in the format dd/mm/yyyy HH:MM,

which is very common in data sets of monitoring data. The file is available from

http://www.openair-project.org.

The easiest way to work with this file is first to set the working directory of R

to be the same as that where the file is. This is done using the File|Change dir…
command in R.

To read the file in, type (or better still copy and paste this directly into R):
Read in a csv

file
## note! - remember to change the directory

mydata <- read.csv("~/openair/Data/example data long.csv", header = TRUE)

mydata$date <- as.POSIXct(strptime(mydata$date, format = "%d/%m/%Y %H:%M", "GMT"))

Note that the openair package has tools to make this easier — see Getting data

into openair. The information presented here shows how to do things using basic

R functions.
format

date-times This reads the file into something called a data.frame, which is themost common

way in which R stores data (others include vectors, matrices and arrays).

An alternative if you want to bring up a dialog box that allows you to browse the

file system (and then format the date) is:

mydata <- read.csv(file.choose(), header = TRUE)

mydata$date <- as.POSIXct(strptime(mydata$date, format = "%d/%m/%Y %H:%M", "GMT"))

Another neat way of getting data into R if you are interested in having a quick

look at data is to read data directly from the clipboard. If you are using Excel you

can copy some data (which may or may not include column headers; better if it

does) and read it into R easily by:

mydata <- read.delim("clipboard", header = TRUE)
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Which assumes that the data did have a header field. If not R will provide column

names like V1, V2 etc. and the option header = FALSE should be used instead.

We will come onto the second line in a minute. It is always useful to check to see

what has been loaded and using the summary command in R is one useful way to

check:
view a

summary of
the data

summary(mydata)

## date ws wd nox

## Min. :1998-01-01 00:00:00 Min. : 0.0 Min. : 0 Min. : 0

## 1st Qu.:1999-11-14 15:00:00 1st Qu.: 2.6 1st Qu.:140 1st Qu.: 82

## Median :2001-09-27 06:00:00 Median : 4.1 Median :210 Median : 153

## Mean :2001-09-27 06:00:00 Mean : 4.5 Mean :200 Mean : 179

## 3rd Qu.:2003-08-10 21:00:00 3rd Qu.: 5.8 3rd Qu.:270 3rd Qu.: 249

## Max. :2005-06-23 12:00:00 Max. :20.2 Max. :360 Max. :1144

## NA's :632 NA's :219 NA's :2423

## no2 o3 pm10 so2 co

## Min. : 0.0 Min. : 0.0 Min. : 1.0 Min. : 0 Min. : 0.0

## 1st Qu.: 33.0 1st Qu.: 2.0 1st Qu.: 22.0 1st Qu.: 2 1st Qu.: 0.6

## Median : 46.0 Median : 4.0 Median : 31.0 Median : 4 Median : 1.1

## Mean : 49.1 Mean : 7.1 Mean : 34.4 Mean : 5 Mean : 1.5

## 3rd Qu.: 61.0 3rd Qu.:10.0 3rd Qu.: 44.0 3rd Qu.: 6 3rd Qu.: 2.0

## Max. :206.0 Max. :70.0 Max. :801.0 Max. :63 Max. :19.7

## NA's :2438 NA's :2589 NA's :2162 NA's :10450 NA's :1936

## pm25

## Min. : 0

## 1st Qu.: 13

## Median : 20

## Mean : 22

## 3rd Qu.: 28

## Max. :398

## NA's :8775

The summary function is extremely useful. It shows that there are 9 variables:

date, ws, wd …. It provides the minimum, maximum, mean, median, and the first

and third quantiles. It shows for example that NOx ranges from 0 to 1144 ppb and

the mean is 178.8 ppb. Also shown is something called NA's, which are missing

data. For NOx there are 2423 missing values for example. These missing values are

very important and it is also important to know how to deal with them. When R

read the .csv file, it automatically assigned missing data the value NA.

Also note that the date is read in as a character string and R does not know it is a

date. Dealing properly with dates and times in any software can be very difficult and

frustrating. There are time zones, leap years, varying lengths of seconds, minutes,

hours etc.; all in all it is highly idiosyncratic.2 R does however have a robust way

of dealing with dates and times. In this case it is necessary to deal with dates and

times and two functions are used to convert the date to something recognised as

such by R. The function strptime tells R what format the data are in— in this case

day/month/year hour:minute i.e. it ‘strips’ the date out of the character string. In

addition, R is told that the data are GMT. This allows great flexibility for reading in

dates and times in a wide range of formats. The as.POSIXct function then converts

this to a convenient format to work with. This may appear to be complicated, but

2Just to emphasise this difficulty, note that a ‘leap second’ will be added at the end of 2008 due to

the occasional correction needed because of the slowing of the Earth’s rotation.

21



4 Using R to analyse air pollution monitoring data

it can be applied in the same way to all files and once done, it is possible to proceed

without difficulty. The other need for storing dates/times in this way is to deal with

GMT/BST (or ‘daylight savings time’). Some of the functions in Part II use time

zone information to process the data, because, for example, emissions tend to vary

by local time and not GMT. Note that the openair package will automatically do

these conversions if the data are in a format dd/mm/yyyy HH:MM.3

If you just want to know what variables have been read in, it is easier to type
show the
variable
names

names(mydata)

## [1] "date" "ws" "wd" "nox" "no2" "o3" "pm10" "so2" "co" "pm25"

To access a particular variable, one has to refer to the data frame name mydata

and the variable itself. For example, to refer to nox, you must type mydata$nox.

There are other ways to do this such as attaching the data frame and using the with

command, but this is the basic way of doing it.

Now one can get some summary information on one variable in the data frame

e.g.

summary(mydata$nox)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0 82 153 179 249 1140 2423

Missing data can have an important effect on various R functions. For example,

to find the mean NOx concentration use the function mean:
missing data

are
represented
as NA (not

available) in
R

mean(mydata$nox)

## [1] NA

The result NA is because nox contains somemissing data. Therefore, it is necessary

to exclude them using the na.rm command:

mean(mydata$nox, na.rm = TRUE)

## [1] 178.8

Often it is sensible (and easier) to remove all the missing data from a data frame:

newdata <- na.omit(mydata)

This makes a new data frame with all the missing data removed. However, we

will work with the original data which includes missing data.

4.2 More sophisticated plotting

Let’s have a look at a histogram of NO2 concentrations, shown in Figure 4.1. Looks

good, but it can easily be tidied up. It needs a new title and x-axis caption. This is

3The openair package will in time contain several functions to make it easier to import data and

deal with dates and times.
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hist(mydata$no2)

Histogram of mydata$no2
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F . Histogram of NO2 concentrations at Marylebone Road.

hist(mydata$no2, main = "Histogram of nitrogen dioxide",

xlab = "Nitrogen dioxide (ppb)")
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F . Histogram of NO2 concentrations at Marylebone Road — with better labels.

easy using some of the in-built options in the hist function (Figure 4.2).

Or maybe you want to shade the bars (Figure 4.3)…

Another very useful plotting function is a density plot using the density function

(Figure 4.4). This has the advantage over the histogram of avoiding trying to select

a bin width and for some data can give a much clearer indication of its distribution.

4.3 Plotting time series with different averaging times

This is one of the most useful things to do with air pollution data. It can be a pain

in some software to plot time series data with different averaging times — try for
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hist(mydata$no2, main = "Histogram of nitrogen dioxide",

xlab = "Nitrogen dioxide (ppb)", col = "lightblue")
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F . Histogram of NO2 concentrations at Marylebone Road – with better labels

and some colour.

dens <- density(mydata$no2, na.rm = TRUE)

plot(dens, main = "Density plot of nitrogen dioxide",

xlab = "Nitrogen dioxide (ppb)")
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F . Density plot of NO2 concentrations at Marylebone Road.
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plot(mydata$date, mydata$nox, type = "l", xlab = "year",

ylab = "Nitrogen oxides (ppb)")
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F . Hourly time series plot of NOx at Marylebone Road.

example plotting daily or weekly means in Excel. Now that we have a proper date

format in R, we can do all sorts of things. First we show the basic plot of hourly

data using a line plot. This plots all the data in its native format (hours), shown in

Figure 4.5.

Use functions in openair to flexibly aggregate data on
different time bases

The openair package has functions to calculate and plot data on almost any
time-averaging basis. See §(31.4) and §(17) for more details.

Say you just want to plot a section of the data — say the first 500 points. How

do you do this? Selecting subsets of data is another of the real strengths of R.

Remember that the variables are in vector form. Therefore, to select only the first

500 values of a variable 𝑥 you can type x[1:500], or values from the 300th to 400th

data points x[300:400]. In the code below we choose the first 500 of date values

and NOx. The result is shown in Figure 4.6. Note also that R automatically adjusts

the x-axis labels to day of the month, rather than year as before. Also note some

missing data before 4 January. This is the advantage of keeping all the data and not

removing missing values. If we had removed the values, the gap in data would not

have been shown and there would have been a discontinuity. For more information

on selecting parts of a data frame and selecting by date, see (§5.2).

To plot the data over different averaging times requires that the data are summar-

ised in some way. This can seem to get quite complicated — because it is. Here

we use a function called aggregate, which can summarise data in different ways.

The code required to plot monthly means is shown in Figure 4.7.

So what does this code do? The first line is a command that will summarise

the data by month and year. Note that we need to remove missing data from the

calculations, hence the na.rm option. To get monthly maximum values you simply

replace the mean by max. We then generate some dates that are as long as the

monthly time series, means using the seq function. This function generates data
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4 Using R to analyse air pollution monitoring data

plot(mydata$date[1:500], mydata$nox[1:500], type = "l", xlab = "date",

ylab = "Nitrogen oxides (ppb)")
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F . Hourly time series plot of NOx at Marylebone Road — first 500 records.

# calculate monthly means

means <- aggregate(mydata["nox"], format(mydata["date"],"%Y-%m"),

mean, na.rm = TRUE)

# derive the proper sequence of dates

means$date <- seq(min(mydata$date), max(mydata$date), length = nrow(means))

# plot the means

plot(means$date, means[, "nox"], type = "l")
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F . Monthly time series plot of NOx at Marylebone Road.

the same length as means, starting at the beginning of the series mydata$date[1]

and ending at the end mydata$date[nrow(mydata)]. Finally, a plot is produced;

in this case without axes properly labelled shown in see Figure 4.7.

Now, let’s plot some daily averages. Here the averaging time is given as %j

(meaning decimal day of year; see strptime and Table 4.1 for more information

on this), see Figure 4.8. To plot annual mean use %Y and weekly means %U.

The aggregate function can work with more than one column of data at a time.

So, to calculate monthly means of all values, the following code can be used:
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4 Using R to analyse air pollution monitoring data

# calculate daily means

means <- aggregate(mydata["nox"], format(mydata["date"],"%Y-%j"),

mean, na.rm = TRUE)

# derive the proper sequence of dates

means[ ,"date"] <- seq(min(mydata[ , "date"]), max(mydata[ , "date"]), length = nrow(means))

# plot the means

with(means, plot(date, nox, type = "l"))
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F . Daily time series plot of NOx at Marylebone Road.

T . Some commonly used date-time formats useful when averaging data.

Code function

%Y annual means

%m monthly means

%Y-%m monthly averages for whole time series

%Y-%j daily averages for whole time series

%Y-%W weekly averages for whole time series

%w-%H day of week — hour of day

means <- aggregate(mydata[-1], format(mydata[1],"%Y-%m"), mean, na.rm = TRUE)

head(means)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01 5.089 171.4 168.1 42.17 4.346 29.18 5.181 1.945 NaN

## 2 1998-02 4.259 216.7 283.9 58.32 2.486 40.21 9.649 2.904 NaN

## 3 1998-03 4.666 224.6 194.5 49.72 5.288 32.65 8.975 2.045 NaN

## 4 1998-04 4.198 206.4 177.0 47.93 8.815 28.87 6.597 1.780 NaN

## 5 1998-05 3.457 162.6 122.4 43.74 9.458 32.46 5.022 1.254 20.99

## 6 1998-06 4.932 219.1 196.8 47.13 5.507 32.98 6.299 2.048 20.00

In this code the mydata[-1] selects all columns in mydata, except the first column

(which is the date), and mydata[1] is the date column i.e. the one we want to

average by. Functions of this type can be very useful, allowing quite complex

summaries of data to be derived with little effort.

In this case aggregate returns the year-month, which is not recognised as a

date. Because we are averaging the data, it might be better to represent the data as

the middle of each month. We can paste the day onto the end of the year-month

column and then convert it to a Date object:
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4 Using R to analyse air pollution monitoring data

# derive the proper sequence of dates

dates <- with(mydata, seq(date[1], date[nrow(mydata)], length = nrow(means)))

plot(dates, means[, "nox"],

type = "b",

lwd = 1.5,

pch = 16,

col = "darkorange2",

xlab = "year",

ylab = "nitrogen oxides (ppb)",

ylim = c(0, 310),

main = "Monthly mean nitrogen oxides at Marylebone Road.")

grid()
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F . Monthly mean time series plot of NOx at Marylebone Road, with enhanced

plotting options.

means$date <- paste(means$date, "-15", sep = "")

means$date <- as.Date(means$date)

openair has a flexible functions called timeAverage that makes aggregating data

like this much easier so it can be done in a single step for almost any averaging

period (see Section 31.4).

4.3.1 Enhancing plots

This seems a good point at which to describe some of the enhancements that can

be made to plots. There are numerous ways in which plots can be enhanced and it

is worth checking help(plot) to see some of the options available. As an example,

we are going to enhance Figure 4.7 using the data means previously calculated.

The different enhancements are shown separately on each line of the plotting

code. type = "b" plots points and lines, which makes it easier to see that months

are plotted lwd = 1.5 makes the line a bit thicker (1 is the default); pch = 16 is

the code for a solid filled circle (other shapes available too); col = "darkorange2"

makes the plot line and shape a different colour; ylim = c(0, 310) sets the lower

and upper limits for the y-axis, and finally grid() automatically adds grid lines to

help navigate the plot. Other enhancements were made by adding a title etc. The

result is shown in Figure 4.9.

28



4 Using R to analyse air pollution monitoring data

4.4 A more complicated example — plot construction

So far it has been possible to run only a few lines of code to make the plots. This

section considers using many lines of code to design and make a dedicated plot.

This example shows one of the strengths of R comparedwith other plotting software:

you are not restricted by ‘off the shelf’ plots. We work with plotting time series data

but want to put a rather different plot together based on the average diurnal profile

in concentration of pollutant by day of the week. Plots of this type are very useful

for showing how emissions might change by hour of the day and day of the week.

Figure 4.10 shows that the NOx concentrations are higher during the weekdays

and that the weekday variation is very similar on each day. On a Saturday, con-

centrations tend to peak before midday and rise slowly to midnight. By contrast,

concentrations are relatively high in the early hours of the morning (probably due

to traffic activity from late night party-goers!) and peaks later in the afternoon.

These types of patterns can very often reveal important information about source

characteristics — and R allows you to investigate these.

The plot is put together in several parts:

1. First, mean values of NOx are calculated in the same way as shown previously.

In this case the averaging period is %w-%H, which means average by day of

the week (0–6, 0 = Sunday, 1 = Monday …) and then by hour of day.

2. A plot is generated of the means. The main effort involved here is to make a

decent x-axis with appropriate labels. The plot option type = "n" means

that no data are actually plotted. This is chosen because we want to add

some other features (notably grid lines) first before we plot the data. This

is just a neater way of doing things: plotting grid lines on top of data looks

worse. The option xaxt = "n" suppresses the x-axis altogether. This is done

because we want to make our own. Finally, we chose some sensible names

for the axis and title captions.

3. Next, some tick marks are added using the axis function. These are added

every 24 hours starting at 1.

4. We then annotate the x-axis with day of the week names. These are placed

at the middle of each day e.g. hour 13 for Sunday etc.

5. Some grid lines are added using the function abline. In this case, a sequence

of vertical lines are added (hence the v option). These are chosen to have a

light grey colour with the option col = "grey85".

6. Finally, the data themselves are added as a line with the function lines, with

a colour of darkorange2 and a line width of 2.

As an alternative to using grid lines to distinguish between different days, shading

can be useful too. Here, we shade alternate days with the rect function. See

help(rect) for all the options available.
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4 Using R to analyse air pollution monitoring data

# calculate means

means <- aggregate(mydata["nox"], format(mydata["date"],"%w-%H"),

mean, na.rm = TRUE)

plot(means$nox, xaxt = "n", type = "n",

xlab = "day of week",

ylab = "nitrogen oxides (ppb)",

main = "Nitrogen oxides at Marylebone Road by day of the week")

# add some tick marks at 24 hr intervals

axis(1, at = seq(1, 169, 24), labels = FALSE)

# add some labels to x-axis

days = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")

loc.days = seq(13, 157, 24) # location of labels on x-axis

# write text in margin

mtext(days, side = 1, line = 1, at = loc.days)

# add some grid lines

abline(v = seq(1, 169, 24), col = "grey85")

# add the line

lines(means$nox, col = "darkorange2", lwd = 2)
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F . Day of week and hour of day plot of NOx at Marylebone Road.
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4 Using R to analyse air pollution monitoring data

means <- aggregate(mydata["nox"], format(mydata["date"],"%w-%H"), mean,

na.rm = TRUE)

plot(means$nox, xaxt = "n", type = "n",

ylim = c(60, 270),

xlab = "day of week",

ylab = "nitrogen oxides (ppb)",

main = "Nitrogen oxides at Marylebone Road by day of the week")

axis(1, at = seq(1, 169, 24), labels = FALSE)

# add some labels to x-axis

days = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")

loc.days = seq(13, 157, 24) # location of labels on x-axis

# write text in margin

mtext(days, side = 1, line = 1, at = loc.days)

ylow = 60; yhigh = 270 # extent of shading in y direction

xleft = seq(1, 145, 48) # left part of rectangles

xright = xleft + 24 # right part of rectangles

# draw rectangles

rect(xleft, ylow, xright, yhigh, col = "lightcyan", border = "lightcyan")

# addline

lines(means$nox, col = "darkorange2", lwd = 2)
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F . Day of week and hour of day plot of NOx at Marylebone Road, with shading.
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4 Using R to analyse air pollution monitoring data

plot(as.factor(format(mydata$date, "%m")), mydata$o3)

●
●
●
●
●●●●
●

●

●●

●
●●●●●●●

●

●
●
●

●
●

●●●
●●●
●

●●●●●●●

●
●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●
●●●

●
●●●●

●●●
●
●●●●

●●

●

●

●●

●

●

●●
●●●

●●

●●●

●●
●●
●

●●
●
●●
●

●●●●●

●●
●●
●

●●

●●

●●●●
●●●●●●
●●

●●
●●

●

●●

●●

●●●●●

●●

●●

●

●●

●

●●

●

●●
●

●●●

●
●
●
●
●

●

●●

●
●●
●

●●●●
●
●●●

●
●
●

●●

●
●
●
●

●●●

●

●●

●

●●

●
●●●

●

●

●
●
●

●
●●

●●
●

●●

●

●
●
●

●

●

●●

●
●

●●

●●●

●
●

●
●●
●

●

●

●●●
●

●

●●

●●●

●●●

●
●

●●●●

●
●

●
●

●

●
●
●
●●●

●

●

●●●●
●

●●●

●●●●●●

●●●
●●●
●●

●●●●

●

●●●●●

●●
●●●●●●●
●

●●●●●

●●
●●

●●

●●

●
●

●●●

●●●

●

●
●

●

●●
●●●

●●

●

●●

●●●

●●●

●

●

●●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●●●●
●●●
●

●●

●●●

●●●
●

●●●

●

●●●

●●
●
●●

●
●●
●

●●●●●

●

●

●

●●
●

●
●

●●●●●

●●

●

●●

●●●

●

●

●●●

●

●

●
●●●
●

●
●

●●
●●
●

●

●
●

●●●

●●●
●

●

●

●●●
●●
●
●●
●●
●●
●●●
●
●●●
●●
●●
●●
●●
●

●
●
●

●

●●●
●●

●

●●●●●

●
●●

●

●●
●●●●●●

●

●●

●●●●

●

●
●●●●●

●●

●●●

●

●

●

●
●●●●●
●

●

●
●●

●

●●●●
●

●

●

●●

●●

●●●●

●
●●
●●

●
●
●●●

●

●

●●

●

●

●

●●●
●

●●●●

●

●●

●

●●

●

●●●

●

●
●●●

●●
●●●●
●●●

●
●●●

●

●

●

●●●●●●●
●
●
●

●
●

●

●
●●

●

●

●●
●●
●●●
●

●●●●●

●●
●

●

●●
●

●●
●

●
●●●

●●●

●

●

●
●●

●●●●

●
●
●●●
●
●●●●●●●●●●

●

●●

●
●●●

●
●●
●

●

●●
●●●
●

●
●●

●●●●●●
●

●●
●●

●●●●
●●●●
●●●●

●

●●●
●

●

●
●

●●

●

●

●●
●●

●

●
●●●●
●●●●●●●●●●●
●●

●●

●●

●●●

●
●●

●●●
●●●●

●

●●●●●
●●●●●●●●●●

●●
●●●

●
●
●●
●●

●●

●

●●

●

●●
●●
●●●●●
●●
●
●

●

●

●

●
●
●●
●●●●
●
●

●

●

●

●●●●

●●●●●

●

●●●

●●●●●

●●●●
●●
●

●●
●

●
●
●

●●
●●

●
●

●

●
●●●

●

●●●●●
●●
●●●●●●

●
●●●
●●

●
●●
●
●●
●
●

●●

●●●●

●

●●

●

●

●
●
●●
●

●
●●
●●

●

●

●●

●●●●●

●
●●

●

●●●●

●

●
●

●

●●●

●●●
●●●
●●

●
●●
●
●●●

●
●●
●●

●

●●

●●●

●

●●
●●●●

●●
●

●
●●
●

●
●●●
●
●●

●
●

●●

●●
●

●
●●

●
●●●

●
●

●

●

●
●●

●●
●

●●

●●●●●●●

●

●

●

●

●

●

●

●●●
●●

●

●●●●●●●
●●

●

●●

●

●●

●
●

●●●●●

●
●●
●●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●●
●

●●●

●

●

●●●●
●

●

●●●●●●
●
●
●●●●●
●

●
●●●

●●
●
●●

●

●●●
●●

●
●●
●

●●
●
●

●●
●

●

●●●
●

●

●

●

●●●●

●●●●●

●
●●●
●●●●

●●●●●

●●●●●

●●●

●

●●
●

●●●

●

●●
●
●

●●●●
●

●

●

●●●
●

●●

●●

●●
●●
●●

●

●●●●●
●
●●●

●

●

●●●
●

●

●

●
●
●
●

●

●
●●●●●●

●●●
●
●
●

●●●●●
●

●
●
●

●
●●

●

●

●●●●

●

●●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●●●

●
●●
●●

●
●●●●
●●●●

●●
●

●
●●●●●
●● ●●●●

●

●

●

●●●●●

●

●
●

●●

●

●

●●●●●

●●●●●●●●

●●
●

●●
●
●●
●●●
●

●●

●●●●●●
●
●●●
●●●
●
●●

●

●●
●●●●●

●

●●●
●●
●
●●

●
●

●

●●
●
●
●
●●●
●●●●
●
●●●
●

●
●
●●●
●●

●

●

●●

●●

●●

●
●

●●●
●

●●
●

●

●
●
●

●

●

●

●

●

●●
●

●●●●●●

●

●●

●

●●●

●

●

●

●

●
●●
●●●
●

●
●

●
●
●
●●●●●

●●●●

●
●●

●

●

●

●
●
●●●

●

●●●●

●
●●●●

●

●

●
●

●

●●

●
●
●●
●

●
●

●

●

●

●●

●●
●
●

●●

●

●
●●●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●
●●●
●●●●●
●
●

●
●

●

●

●
●●

●

●●

●●

●●●

●

●●

●

●
●
●

●

●●

●

●●

●

●●

●

●

●●
●●●

●

●●●
●

●
●
●

●

●

●

●

●●

●

●
●●●●●
●●

●

●
●

●

●

●●
●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●
●●●●●●●
●●
●

●●●●●
●

●●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●
●
● ●

●

●

●
●
●
●●

●●

●
●●●

●
●●
●

●
●

●

●
●●

●●●

●

●
●

●
●●●●●●●

●●
●

●

●

●

●

●

●●●
●

●●●

●●●●

●●

●●●
●

●●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●●●●

●

●●●
●
●●

●●

●
●

●●

●

●

●
●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●●●

●●

●

●●

●
●

●

●
●●
●

●●
●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●
●●

●

●
●
●
●

●
●
●●

●●●

●●
●●
●

●●

●●●
●●

●●●●

●
●

●●
●
●

●

●●
●

●●

●
●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●●●●●●
●

●●

●●
●

●●

●
●

●

●●
●

●

●●●●●●●●●●

●

●

●●

●

●

●

●
●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●
●

●

●●

●●

●●
●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●●
●●
●

●

●●●●●
●
●●●

●

●
●

●

●

●

●●

●

●●

●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●●●
●●
●
●●
●●
●●
●●

●

●

●

●●
●
●●●

●

●

●
●

●

●●●●
●

●
●

●

●

●●●
●●

●

●

●

●●●●●
●

●
●●●●●
●

●●●●●●●●
●●●●●●●●●
●

●●

●

●●

●
●

●

●

●●●
●●
●
●

●●

●●

●

●

●

●

●●●

●
●

●

●

●

●●

●
●
●●
●●●

●

●

●●●●
●●
●

●

●
●
●●

●
●●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●●

●
●

●
●

●●
●

●

●

●

●●●

●

●
●
●●●
●
●●

●
●

●●●

●

●●●
●

●
●
●

●
●

●

●

●

●

●●●
●

●

●
●●

●●●●
●
●

●●
●●
●●●●●●●●●●●
●
●
●

●●
●
●●●●

●●

●●

●

●

●

●
●●●

●

●

●
●

●
●

●

●●
●

●●●

●
●
●●
●

●

●

●●●

●●●

●●

●●
●

●
●

●
●

●

●
●
●●

●●●●

●

●

●

●

●
●●
●

●

●●

●●

●●

●
●

●
●

●

●

●
●●
●●●
●

●

●

●
●●●
●

●●●●●●
●

●

●●

●

●

●●●●●●

●

●●
●
●

●

●●

●●●●●●
●
●●●

●
●●●

●

●
●

●●●●

●

●●
●
●
●●

●●

●●

●

●

●

●●

●

●
●

●●●●●●
●●
●

●

●●

●●●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●
●●

●
●

●

●●●●

●

●●

●

●
●

●
●
●●
●●
●
●

●●

●

●
●

●

●

●●●

●

●

●

●

●
●
●●
●

●

●
●●

●
●
●
●
●●●
●●
●

●●
●

●

●

●
●
●●●
●
●●

●

●●●

●
●●

●
●

●

●

●

●●●●

●

●
●

●●●

●

●

●●

●

●●
●●●●●●
●

●

●
●●

●●●
●●

●●
●●
●

●

●

●

●●
●●●●

●

●
●
●

●●

●●

●

●●●●

●

●
●
●

●●

●
●

●
●
●●

●

●

●●

●●
●

●
●●
●●
●

●

●
●
●

●

●●
●●
●

●●

●
●●●●●

●
●●●●●

●

●●●
●
●●
●●●●

●●●●

●
●●
●

●●
●

●

●●

●
●
●
●●
●

●

●●

●●●●●

●

●●
●
●
●●●

●
●
●
●
●●●
●
●●●●

●●

●
●
●●●●

●●

●

●

●●
●●●
●

●
●

●●●●

●

●●

●●

●●

●●

●

●

●●●●

●●

●

●●

●●●●
●●●

●●

●●●

●
●●
●●
●

●●

●

●

●●●●

●

●●

●

●●●●●●●●
●
●●●
●
●

●●●●

●
●

●

●●●

●
●

●●●●
●

●●●●●●●
●●

●●
●

●
●●
●●●
●●

●

●
●
●●

●
●

●●●●

●

●●●
●●●

●
●●●●

●

●

●

●
●

●
●
●●

●●

●●
●

●●●●

●●

●●

●●

●●

●●●
●
●●
●

●●
●
●

●

●●●
●●●●●

●●●
●

●

●

●●●●
●

●

●

●

●●●●
●

●●
●●●●●●●●●

●●●●
●●●●●●

●●●●
●
●

●
●

●
●
●●

●●●●●
●

●●●

●

●
●
●
●

●●●●●●●●●
●
●
●●●●
●●

●

●

●

●●

●●●●

●●
●●

●
●●●●
●●●

●

●

●
●

●●●

●

●●●●

●
●
●

●●

●●
●●
●●
●●●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●●

●●●●●●
●
●●

●

●●
●●

●

●

●
●●●
●

●
●
●

●
●●●
●●●

●

●
●
●●
●●●●

●
●
●●●
●

●
●●●●

●

●

●●

●●●
●●●●●●●●

●●

●●

●

●●●●●
●

●

●●

●●

●

●

●

●

●●
●
●
●●

●

●●●
●

●●●●●●●
●●
●
●

●

●●

●●

●●●●

●●

●●

●

●
●●●●

●●
●

●●
●
●●●

●●●●●

●

●●●●
●
●

●●●
●●●●

●●

●

●

●●●●

●

●●●

●●●

●●●●
●●

●
●●

●●●●●●●●
●

●
●

●
●

●●

●●●●

●
●
●●
●●
●

●

●

●
●

●●
●●●
●
●●
●
●●●

●

●
●

●●●●

●

●

●

●
●●

●

●●

●●●

●●●●●

●

●
●●●
●
●

●

●

●●●

●
●

●

●

●●●●
●
●

●

●

●

●
●●

●●

●●●

●

●

●

●
●●●

●

●
●●●

●●●●●●●●
●
●
●
●

●

●

●

●●

●●
●●
●
●
●
●●●●●
●●

●●
●

●●

●

●●●●
●●●●
●●

●
●
●●●

●●●●
●●●
●

●

●●
●●

●●

●

●

●●
●

●
●

●

●
●
●
●

●

●

●

●

●●●●
●

●●

●
●●●

●
●

●●

●
●
●
●

●
●●●

●●●

●

●

●
●
●●●●
●●

●●

●

●
●●
●●
●●●●

●●●●●

●

●●●
●
●●●●

●

●

●●●

●

●●
●●

●●

●

●●●

●
●●●●

●

●●●●●●●

●●●

●

●●●
●●●
●●

●

●
●●●

●●●

●
●●
●

●

●●

●

●●●

●●
●●
●●●●●●
●●

●
●
●●

●

●

●
●

●●●

●●●

●

●●

●

●●

●●

●

●●●●

●●

●●
●

●●●

●●●●●

●
●●

●
●

●

●

●

●●

●●

●

●

●
●●

●●●●●
●●●●

●

●
●●●

●

●●●
●

●●

●

●

●

●●

●●
●●●
●

●●

●●●●
●●●●●●

●

●●
●
●●

●●

●

●

●
●

●●

●

●

●

●
●
●
●●
●

●●●●●
●●●●●●●
●●●

●

●●●●
●●
●
●●●

●
●
●
●●●●●●
●●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●
●●●
●

●

●●
●

●●
●●
●●

●●
●●
●
●●
●

●

●●
●●

●

●

●●
●

●
●●
●

●●

●●●●

●

●
●●

●

●
●●

●
●

●●●
●●
●

●

●●

●

●
●

●

●

●

●●

●●●

●●

●

●
●●

●●●
●●●

●

●●●●●●●

●●

●

●

●

●●●●
●●

●●

●●

●
●

●

●

●

●

●

●
●

●●

●●●●

●●●●
●

01 03 05 07 09 11

0
10

20
30

40
50

60
70

F . Monthly box and whisker plot of O3 at Marylebone Road.

4.5 Summarising time series data

There are some nice ways of quickly summarising data over different time scales

including day of year, month of year and day of week. The way pollutant concentra-

tions vary over different time scales can provide some useful clues as to what sources

are important. Again, this is the sort of thing that can be tricky in other software.

One of the most useful; plots available is called a box andwhisker plot, which is a

very effective way of summarising large amounts of data. Say for example, we were

interested to see how ozone concentrations vary by month of the year as shown in

Figure 4.12.

The results shown in Figure 4.12 show several interesting features. The dark

lines shows the median concentration, which peaks in May. However, the highest

hourly concentrations are observed in August — presumably due to regional-scale

photochemical pollution episodes.

It is also possible to view an entire series of data as monthly means, as shown in

Figure 4.13. This plot shows quite nicely that the median and the peak concen-

trations of NO2 increased in 2003, which is now known to be due to increased

emissions of primary NO2. Other useful summary functions include day of the

week (%A) and year (%Y). There are many possibilities for plotting here and it is

suggested you try some of your own.

4.6 Relationships between variables

Exploring how variables are related to one another is a very useful thing to do, but

often tricky when you have lots of variables and lots of data. At a basic level, a

scatter plot of one variable against another is useful. However, when you have

more than a few variables it becomes quite an effort to manually plot one against

another. Luckily, R has some excellent facilities to help you out; in particular the

pairs function. We could just use the command pairs(mydata) and this would

plot each variable all other variables. Our data frame now has 11 columns, so this
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4 Using R to analyse air pollution monitoring data

plot(as.factor(format(mydata$date, "%Y-%m")), mydata$no2, col = "lightpink")
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F . Yearly-monthly box and whisker plot of NO2 at Marylebone Road.

would be 121 plots! Furthermore, each variable is of length 65,533 long — so the

plots would look busy to say the least.

We therefore take the opportunity to introduce a new function in R called sample.

What we want to do is randomly select 500 lines from our data set, which is the

function sample(1:nrow(mydata), 500). What this does is randomly select 500

numbers from a sample a long as our data set i.e. nrow(mydata). We also want to

limit the columns chosen to plot. We will plot date, ws, wd, nox, no2; which

correspond to columns 11, 2, 3, 4 and 5. You can of course choose others, or more

or less than 500 points. The code below is one function but is spread over several

lines for clarity. The plot is shown in Figure 4.14.

So what does this plot show? Well, if you look at the first column (date), the plots

essentially show the trend in the different variables i.e. no change in wind speed,

slight dip in wind direction, a decrease in NOx in 2001 and an increase in NO2 from

around 2003. They also show that concentrations of NOx and NO2 do not change

much with wind speed (street canyon effects) and that the highest concentrations

are recorded when the wind is westerly. These plots can be extremely useful and

are worth exploring in different ways.
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5 General use of R — advice and examples

pairs(mydata[sample(1:nrow(mydata), 500), c(1, 2, 3, 4, 5)],

lower.panel = panel.smooth,

upper.panel = NULL,

col = "skyblue3")
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F . Pairs plot for 500 randomly selected hours of data from Marylebone Road.

5 General use of R — advice and examples

5.1 Data input and output

Getting data into and out of R is an obvious requirement. There are many options

for doing so, but we only cover some of the common methods in this section.

5.1.1 Data import

Sometimes it is useful to input just a few bits of data where it is unnecessary to

import from a file. This is simply done using the c function:
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small <- c(1, 5, 10, 16)

small

## [1] 1 5 10 16

More commonly it is necessary to import data from a file. As has been discussed

before it is best to keep the format of such files as simple as possible e.g. coma-

delimited (.csv) or text (.txt). You can use R to list files in a particular directory.

Usually a user would have set a ‘working directory’, and all file commands will

relate to that (in the Windows version of R, go to File menu and choose Change

Dir …It is also possible to set working directories with a command e.g.

setwd("~/openair/Documentation")

Or if you want to know what the current working directory is:

getwd()

## [1] "c:/Users/david/openair/Documentation"

Rather than using an external program to list files, you can do that in R too (in

this case using the ‘pattern’ option to list only csv files:

list.files(pattern = ".csv")

## [1] "example data long.csv" "f-no2 input.csv" "hour-day.csv"

## [4] "import.aurn.csv.tex"

Now we have a working directory set it is possible just to refer to the file name

and not the path. So, to import the file ‘hour-day.csv’ we can:

hour.day <- read.csv("hour-day.csv", header = FALSE)

head(hour.day)

## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21

## 1 15 27 32 17 21 11 15 32 29 21 25 32 42 34 31 44 63 71 59 34 29

## 2 31 19 25 25 21 32 38 78 109 128 105 88 86 86 94 97 NA 176 208 126 86

## 3 59 31 29 29 31 34 55 65 130 134 113 107 117 115 126 113 103 88 92 50 31

## 4 15 13 10 17 19 31 44 53 126 128 96 71 103 82 90 94 120 97 139 94 74

## 5 53 31 25 31 21 46 53 82 162 174 149 136 113 126 120 157 201 220 174 149 92

## 6 73 52 42 42 29 34 52 59 97 122 204 269 323 285 248 193 264 254 241 183 124

## V22 V23 V24

## 1 29 25 36

## 2 111 92 113

## 3 36 21 27

## 4 67 65 59

## 5 109 134 86

## 6 97 92 55

In this case the data did not have a header line and we told R not to expect one.

R automatically labels the fields V1, V2 …

If the filewas tab-delimited then the read.table function should be used (read.csv

is a version of read.table).

One potentially useful capability is the direct reading of data over the internet.
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For example, we have example data on a web server, and this can be read directly

just like a file on a computer file system:

test.data <- read.csv("http://www.openair-project.org/CSV/OpenAir_example_data_long.csv",

header = TRUE)

This capability might be useful for making data available for anyone to access

easily.

5.1.2 Data export

Exporting data can also take a number of forms. A common issues is exporting a

data frame(s) as a csv file.

write.csv("exportedData.csv", row.names = FALSE)

To save data in an ‘R format’ (.RData file), it is necessary to use the save function.

If, for example there was a data frame called ‘test.data’, this can be save directly:

save(test.data, file = "testData.RData")

in fact several objects can be saved at one in this way:

save(test.data, more.data, file = "testData.RData")

To load this data back into R, use the load function:

load("testData.RData")

5.2 Selecting and replacing parts of vectors and data frames

Selecting parts of a data frame is one of the more useful things that one can learn.

This often causes new users lots of difficulties, in part because of the way variables

are stored in R. Earlier it was seen that in the data frame mydata, one could refer to

all nox values simply as mydata$nox. What if one just wanted to select parts of this

large data frame? Here are some examples of the sorts of things you might want to

do, and in each case we read data into a new data frame called subdata4. We first

consider various ways of selecting parts of vectors.

Consider the vector 𝑥 defined as integers 1, 4, 5, 18, 22, 3, 10, 33, −2, 0.

x = c(1, 4, 5, 18, 22, 3, 10, 33, -2, 0)

To select the 4th element, we use the square brackets [] to subsample:

x[4]

## [1] 18

4You might not always wish to make a new data frame because it will take up extra memory –

many of the examples shown can be done ‘on the fly’.
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To select the 3rd to 6th integers:

x[3:6]

## [1] 5 18 22 3

To select everything except the first and second value, elements can be omitted

using the − sign.

x[c(-1, -2)]

## [1] 5 18 22 3 10 33 -2 0

Values greater than 5:

x[x > 5]

## [1] 18 22 10 33

The indexes corresponding to integers > 5 can be found using the which command.

This basically finds the location of numbers in a vector that meet a certain criterion.

In this example, the fourth element is 18. This is a very useful function for subsetting.

which(x > 5)

## [1] 4 5 7 8

To select a specific value it is necessary to use the double = sign i.e.

x[x == 18]

## [1] 18

It is also easy to reverse a sequence of numbers, which is useful onmany occasions:

rev(x)

## [1] 0 -2 33 10 3 22 18 5 4 1

The next thing to do is consider how to replace parts of a vector. This is something

that is often necessary when preparing data. To replace the −2 by 0:

x[x == -2] = 0

x

## [1] 1 4 5 18 22 3 10 33 0 0

Note that all the usual operators such as > can be used here.

Next we are going to select different parts of the data frame mydata. This can

be more complicated because the data comprise both rows and columns. Select

the first 500 rows of data. This selects rows 1 to 500 and the blank space after the

comma means ‘select all columns’ i.e. all variables:

subdata = mydata[1:500, ]
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One can check the number of rows selected:

nrow(subdata)

## [1] 500

Select a few variables from a data frame. Here the function subset is easy to use.

We select just the nox and no2 data. Note that when using this command, one does

not need to use the $ operator, which makes selecting a bit easier to see.
the subset
function is
very useful

in R

subdata = subset(mydata, select = c(nox, no2))

If one wanted to select all nox, no2 and date values where nox concentrations

were greater than 600 ppb:

subdata = subset(mydata, nox > 600, select = c(nox, no2, date))

Selecting by date is very useful but a bit more complicated. However, once learnt

it is extremely flexible and useful. We want to select all nox, no2 and date values

for 2004, although any start/end time can be used. We start by defining a start and

end date, then carry out the actual selection. In this example, we must first convert

our date (which is in character format) into a date/time format that R understands.

Note that dates/times in R conventionally work in a hierarchical way (biggest to

smallest component). Therefore ‘2004-02-03 00:00’ is the 3rd of February and

not the 2nd March. In most cases dates would have been read in and converted

appropriately anyway, but in this particular case we need to specify a particular

date. The conversion from character string to a recognised date/time in R is done

using the as.POSIXct function. This may seem complicated, but once learnt is

both convenient and powerful. The openair package makes this much easier —

see (§31.1) for more details.

start.date <- as.POSIXct("2004-01-01 00:00", tz = "GMT")

end.date <- as.POSIXct("2004-12-31 23:00", tz = "GMT")

subdata <- subset(mydata, date >= start.date & date <= end.date,

select = c(date, nox, no2))

One can easily check what this subset looks like the the functions head and tail,

which give the first and last few lines of a data frame:
View the

first or last
few lines of
a data frame

head(subdata)

## date nox no2

## 52585 2004-01-01 00:00:00 98 38

## 52586 2004-01-01 01:00:00 141 62

## 52587 2004-01-01 02:00:00 159 56

## 52588 2004-01-01 03:00:00 97 44

## 52589 2004-01-01 04:00:00 60 26

## 52590 2004-01-01 05:00:00 64 31

and,
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tail(subdata)

## date nox no2

## 61363 2004-12-31 18:00:00 114 53

## 61364 2004-12-31 19:00:00 183 67

## 61365 2004-12-31 20:00:00 206 69

## 61366 2004-12-31 21:00:00 237 73

## 61367 2004-12-31 22:00:00 232 68

## 61368 2004-12-31 23:00:00 212 68

Another useful way of selecting subsets is using the %in% (or match) function.

Some examples are given below with dates.
selecting
different

time periods
subdata <- subset(mydata, format(date, "%Y") %in% 1998)

# select 1998 and 2005

subdata <- subset(mydata, format(date, "%Y") %in% c(1998, 2005))

# select weekends

subdata <- subset(mydata, format(date, "%A") %in% c("Saturday", "Sunday"))

This function is very useful for selecting subsets of data where there are multiple

search criteria. For example, if a data frame had a field such as site name and the

aim was to select data from several sites, this would be a good way to do it.
selecting
columns
based on

characters in
them

It is sometimes useful to select columns (or rows) of a data frame based on their

names. One extremely powerful command in R is grep. grep does character

matching. It is potentially useful in numerous circumstances, but we only consider

a simple case here. Say, for example we had a very large data frame with 50 column

names, but we only want to extract those with the characters ‘nox’ in. We could

search through and find those columns by number and refer to them in that way —

but that requires a lot of manual work and has lots of potential to go wrong. In the

example below we create a simple dummy data frame as an example.

test.dat <- data.frame(lond.nox = 1, lond.no2 = 3, nox.back = 4, no2.back = 1)

test.dat

## lond.nox lond.no2 nox.back no2.back

## 1 1 3 4 1

First, for information we can print the names of the data frame:

names(test.dat)

## [1] "lond.nox" "lond.no2" "nox.back" "no2.back"

To find those names that contain the character string ‘nox’ we use grep:

grep(pattern = "nox", names(test.dat))

## [1] 1 3

So, columns 1 and 3 contain the character string ‘nox’. We can put this altogether

and do it in one line to select those columns in the data frame that contain ‘nox’:
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sub.dat <- test.dat[ , grep(pattern = "nox", names(test.dat))]

sub.dat

## lond.nox nox.back

## 1 1 4

The grep command is potentially useful for selecting pollutants to plot in openair
plots e.g. to choose any column with ‘pm’ (PM10 and PM2.5) in it:

timePlot(mydata, pollutant = names(mydata)[grep(pattern = "pm", names(mydata))])

5.3 Combining and cleaning up files

So far the emphasis has been on manually importing a single .csv file to a data frame.

Often with monitoring data there are numerous files all in the same format that

somehow need to be read and merged. R has some very powerful and convenient

ways of dealing with this situation and only the simplest case is shown here. The

scenario is that you have loads of .csv files in a directory, all the same headings

(although not necessarily so) and the aim is to read and combine them all. This can

be done using the code below.
reading in
lots of files

path.files <- "D:\\temp\\" # directory containing files

test.data <- lapply(list.files(path = path.files, pattern = ".csv"),

function(.file) read.csv(paste(path.files, .file, sep = ""),

header = TRUE))

test.data <- do.call(rbind, test.data)

There are a few things to note here. In R for Windows, file paths are shown

using ‘\\’. The function list.files will search for files (in this case .csv) in the

D:\Temp. In the code above it is assumed a header is also present. For more refined

searching see help(list.files). The lapply function is extremely useful in R and

can help avoid looping through data. In this case the function function(.file) is

applied to the list of file names/paths supplied by list.files. This is a neat way

of applying a function without knowing beforehand how many files there are. The

traditional way of doing it would be to have a loop such as for i = 1 to n where

n would be the number of files.

Note, different numbers of columns can also be dealt with using the rbind.fill

function from the reshape2 package as described below. In this case, the do.call(rbind,

test.data) would be modified to do.call(rbind.fill, test.data).

A common task is combining different files into one for processing. First we

consider the scenario of a file with air pollution measurements and another with

meteorological data. The aim is to combine them into one data frame. Rather than

import data, we generate it instead. The first is a data frame called airpol with 1

day of data at the beginning of 2007 with pollutants NOx and SO2. The other is a

meteorological data set, with the same dates but with wind speed and direction.
combine
two data
frames

airpol <- data.frame(date = seq(as.POSIXct("2007-01-01"),

by = "hours", length = 24), nox = 1:24, so2 = 1:24)

met <- data.frame(date = seq(as.POSIXct("2007-01-01"),

by = "hours", length = 24), ws = rep(1, 24), wd = rep(270, 24))
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You can check the contents of these data frames:

head(airpol)

## date nox so2

## 1 2007-01-01 00:00:00 1 1

## 2 2007-01-01 01:00:00 2 2

## 3 2007-01-01 02:00:00 3 3

## 4 2007-01-01 03:00:00 4 4

## 5 2007-01-01 04:00:00 5 5

## 6 2007-01-01 05:00:00 6 6

head(met)

## date ws wd

## 1 2007-01-01 00:00:00 1 270

## 2 2007-01-01 01:00:00 1 270

## 3 2007-01-01 02:00:00 1 270

## 4 2007-01-01 03:00:00 1 270

## 5 2007-01-01 04:00:00 1 270

## 6 2007-01-01 05:00:00 1 270

To combine them, use the merge function:

test.data <- merge(airpol, met)

head(test.data)

## date nox so2 ws wd

## 1 2007-01-01 00:00:00 1 1 1 270

## 2 2007-01-01 01:00:00 2 2 1 270

## 3 2007-01-01 02:00:00 3 3 1 270

## 4 2007-01-01 03:00:00 4 4 1 270

## 5 2007-01-01 04:00:00 5 5 1 270

## 6 2007-01-01 05:00:00 6 6 1 270

When called like this the merge function combines data frames only where both

had data. So, for example, if the met data frame only had the first 12 hours of 2007,

merging would produce a file with only 12 hours i.e. where they match (a natural

join in database terminology). The behaviour can be changed by selecting various

options in merge. Following on from the previous example, the option all could

have been set to TRUE, thus ensuring all records from each data frame would be

combined—with the missing 12 hours in the met data frame included as NA. Type

help(merge) to see the details. Functions of this type can save lots of time aligning

various time series in spreadsheets.

Note, that given a data frame with multiple air pollution sites and a column called

‘site’ (i.e. values for the field ‘date’ are repeated the same number of times there

are numbers of sites) it is easy to merge a single meteorological data set. This is

the type of analysis where several air quality sites in a region are associated with a

single meteorological data set. Given a data frame aqwith multiple sites in a format

like ‘date’, ‘nox’, ‘site’ and a meteorological data set met in the form something like

‘date’, ‘ws’, ‘wd’ then the merging is done by:

all.data <- merge(aq, met, by = "date", all = TRUE)
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This code ensures that for each site for a particular date/time there are associated

meteorological values. In other words, it is not necessary to think about separately

joining meteorological and air quality data for each individual air quality site. See

(§9) for scenarios where doing this may be useful, such as importing data formultiple

 sites from the UK air quality archive.

Sometimes it is necessary to combine data frames that have the same field names.

For example, data from two monitoring sites that measure the same pollutants. In

the example below, we make two copies of the data frame airpol and name them

site1 and site2, respectively. Normally, of course, the data frames would contain

different data, perhaps spanning different time periods. A new data frame is made

using the merge function but with additional options set. Now, we explicitly state

that we want to merge on the date field (by = "date"). In order to tell the NOx

and SO2 fields apart, suffixes are used. The resulting data frame has now been

merged and the NOx from site1 is called nox.st1 etc.

site1 <- airpol

site2 <- airpol

both <- merge(site1, site2, by = "date", suffixes = c(".st1", ".st2"), all = TRUE)

head(both)

## date nox.st1 so2.st1 nox.st2 so2.st2

## 1 2007-01-01 00:00:00 1 1 1 1

## 2 2007-01-01 01:00:00 2 2 2 2

## 3 2007-01-01 02:00:00 3 3 3 3

## 4 2007-01-01 03:00:00 4 4 4 4

## 5 2007-01-01 04:00:00 5 5 5 5

## 6 2007-01-01 05:00:00 6 6 6 6

A problem that is often encountered is combining files for different years, perhaps

with different numbers of columns. We consider the slightly more difficult latter

situation; although the former one is tackled in the same straightforward way. This

situation can arise frequently with monitoring data. For example, in year 1, two

pollutants are measured (say NOx and NO2), then in year 2 another pollutant is

added as the monitoring is expanded. In year 2 data are available for NOx, NO2 and

PM10. This is a straightforward enough problem to deal with but can be surprisingly

frustrating and time consuming to do in spreadsheets (particularly if the column

order changes). However, help is at hand with the merge function. Given the

situation mentioned, merge will deal with this:
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# make some data

year1 <- data.frame(date = seq(as.POSIXct("2007-01-01"),

by = "hours", length = 24), nox = 1:24, so2 = 1:24)

year2 <- data.frame(date = seq(as.POSIXct("2008-01-01"),

by = "hours", length = 24), nox = 1:24, so2 = 1:24, pm10 = 1:24)

test.data <- merge(year1, year2, all = TRUE)

head(test.data)

## date nox so2 pm10

## 1 2007-01-01 00:00:00 1 1 NA

## 2 2007-01-01 01:00:00 2 2 NA

## 3 2007-01-01 02:00:00 3 3 NA

## 4 2007-01-01 03:00:00 4 4 NA

## 5 2007-01-01 04:00:00 5 5 NA

## 6 2007-01-01 05:00:00 6 6 NA

In this example, year1 contains hourly data for all of 2007 for NOx and NO2,

and year2 contains hourly data for all of 2008 for NOx, NO2 and PM10. The data

frame test.data then contains two years of data and has all variables present. For

year 1 where there are no PM10 data, these data are shown as missing i.e. NA.

Another useful application of the merge function is to fill in gaps due to missing

data. The scenario is that you have a file (say a year long of hourly data), but some

lines are missing. This sort of situation arises frequently and can be time consuming

to sort out. What is needed is to ‘pad out’ the file and fill in the gaps with the

missing dates and set the other fields to missing (NA, in R-speak). To show this,

we first deliberately remove 2 of the hours from the airpol data frame. We then

create a data frame with all the hours (note that only 24 are used here, but it can of

course be any length), then the data are merged:
padding-out

missing
hours

airpol <- airpol[-c(2, 3), ] # select everything except record 2 and 3

# create all the dates that should exist

all.dates = data.frame(date = seq(as.POSIXct("2007-01-01"),

by = "hours", length = 24))

# merge the two

test.data <- merge(all.dates, airpol, all = TRUE)

head(test.data)

## date nox so2

## 1 2007-01-01 00:00:00 1 1

## 2 2007-01-01 01:00:00 NA NA

## 3 2007-01-01 02:00:00 NA NA

## 4 2007-01-01 03:00:00 4 4

## 5 2007-01-01 04:00:00 5 5

## 6 2007-01-01 05:00:00 6 6

Themissing hours are thus inserted, but the variables themselves are set to missing.

Finally (and not surprisingly) a package already exists that does this for you.

The reshape2 package can manipulate data in very flexible ways. However, the

function rbind.fill is particularly useful if you have lots of different data frames

to combine because merge can only merge two data frames at once. Note you can

download this package from CRAN.

library(reshape2)

test.data <- rbind.fill(year1, year2)
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interpolate
missing data

Sometimes it is useful to fill in missing data rather than ignore it. Here, we show

two options from the zoo (zero-ordered observations) package. The first function

na.locf will fill missing data with the value of the last non-missing data point. To

do a linear interpolation between points, the na.locf function should be used:

library(zoo)

##

## Attaching package: 'zoo'

##

## The following objects are masked from 'package:base':

##

## as.Date, as.Date.numeric

# make some data with missing values

a = c(1, NA, NA, NA, 3, NA, 18, NA, NA, 20)

# show data

a

## [1] 1 NA NA NA 3 NA 18 NA NA 20

# fill with last non-missing point

na.locf(a)

## [1] 1 1 1 1 3 3 18 18 18 20

# interpolate missing points

na.approx(a)

## [1] 1.00 1.50 2.00 2.50 3.00 10.50 18.00 18.67 19.33 20.00

There are various other options that can be used with these functions, which

can be considered by typing help(zoo). These functions can also be applied to

data frames (or columns of). Say we want to interpolate all the missing NOx

concentrations:

mydata$nox <- na.approx(mydata$nox, na.rm = FALSE)

Note that the na.rm = FALSE option ensures that trailing NAs are not removed,

making the number of records the same as the original data. The code above would

replace the NOx concentrations. If preferred, a new column could be made, in this

case called nox.all:

mydata$nox.all <- na.approx(mydata$nox, na.rm = FALSE)

Once data are imported into R — say by loading a .csv file into a data frame,

there are often tasks that need to be carried out to alter the data before processing

it. Some of these common tasks are considered in this section.

One of themost immediate tasks with air pollution data is to convert the date/time

field into something understood by R and this has already been discussed.
changing
variable
names

Next, it may be necessary to change the name of a variable. To list the existing

variables names:
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names(mydata)

## [1] "date" "ws" "wd" "nox" "no2" "o3" "pm10"

## [8] "so2" "co" "pm25" "nox.all"

You can also refer to a single column name. In the code below, we show an

example of how to change one of the names (in this case nox) to nitrogen.oxides.

names(mydata)[4] # display name of 4th column (nox)

## [1] "nox"

names(mydata)[4] = "nitrogen.oxides" # change the name

names(mydata) # show new names

## [1] "date" "ws" "wd" "nitrogen.oxides"

## [5] "no2" "o3" "pm10" "so2"

## [9] "co" "pm25" "nox.all"

# change it back again

names(mydata)[4] = "nox"

To change more than one name at a time (say the 4th and 5th column names):

names(mydata)[c(4, 5)] = c("new1", "new2")

If you have imported data that has lots of upper case names and you want them

all in lower (because they are easier to refer to), use the tolower function e.g.

names <- c("NOx", "PM10") #make some upper case names

tolower(names)

## [1] "nox" "pm10"

If you import data that has rather verbose descriptions, which become a pain to

refer to, you can abbreviate them. In this example, we have two site names and the

aim is to abbreviate them using only two letters.

names = c("North Kensington", "Marylebone Road")

abbreviate(names, 2)

## North Kensington Marylebone Road

## "NK" "MR"

There is potential for this going wrong, if, for example two of the names were

very similar:

names <- c("North Kensington roadside", "North Kensington background",

"Marylebone Road")

abbreviate(names, 2)

## North Kensington roadside North Kensington background

## "NKr" "NKb"

## Marylebone Road

## "MR"
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However, R is clever enough to work this out, and uses an extra letter as necessary.

The abbreviate function can be very effective at simplifying files for processing

and generally makes logical simplifications. Note that in the examples above, one

could have chosen to abbreviate the names to any length.

Data can easily be ordered and this might be necessary if for example, the date

field was not sequential in time. An example is:

mydata <- mydata[order(mydata$date), ]

which keeps data in the same data frame mydata but ensures that all the data are

ordered by date.

5.4 Reshaping data

Data are stored in a wide variety of ways and it is often necessary to do some data

manipulation in order to analyse or plot data. This section distinguishes between

two main storage options: stacked or column format (narrow or wide). By way

of an example, consider the simple case of two sites each measuring NOx. One

way of storing all this data in a single data frame would be to have columns: ‘date’,

‘site1.nox’, ‘site2.nox’. An alternative would be to stack the data and have columns

‘date’, ‘nox’, ‘site’. For such a simple example there isn’t much difference between

the two options. But what if there were 10, 20 or 100 sites? Having columns

‘site1.nox’, ‘site2.nox’ …would get rather tedious, whereas the stacked data would

still only have three columns.

For openair functions there is a big advantage in stacking data like this, and all

the openair import functions do this. This is because it then becomes easy to plot

any number of quantities without referring to them individually and without

knowing how many there are. This will become clearer as openair functions are
used, but imagine trying to plot NOx at 10 sites using the two different approaches

using the openair timePlot function:
For column format:

timePlot(mydata, pollutant = c("site1.nox", "site2.nox", "site3.nox", ...,

"site10.nox"))

And stacked data:

timePlot(mydata, pollutant = "nox", type = "site")

The latter example works for any number of sites without having to know the

number.

So how can data be re-shaped to get it into the appropriate format? This is best

answered with an example using the reshape2 package that is loaded with openair.
We’ll work with the first 3 lines of mydata.
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## select first 3 lines

thedata <- head(mydata, 3)

thedata

## date ws wd nox no2 o3 pm10 so2 co pm25 nox.all

## 1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0

## 2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3

## 3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7

The reshape2 package comes with two main functions melt and dcast. melt

organises data according to ‘measured’ and ‘id’ variables. In our example the

measured values are the pollutants and id is the date. It is possible to list either the

measured or id values, but in this case it is easier with id because there is only one:

library(reshape2)

library(plyr)

thedata <- melt(thedata, id.vars = "date")

thedata

## date variable value

## 1 1998-01-01 00:00:00 ws 0.600

## 2 1998-01-01 01:00:00 ws 2.160

## 3 1998-01-01 02:00:00 ws 2.760

## 4 1998-01-01 00:00:00 wd 280.000

## 5 1998-01-01 01:00:00 wd 230.000

## 6 1998-01-01 02:00:00 wd 190.000

## 7 1998-01-01 00:00:00 nox 285.000

## 8 1998-01-01 01:00:00 nox 354.333

## 9 1998-01-01 02:00:00 nox 423.667

## 10 1998-01-01 00:00:00 no2 39.000

## 11 1998-01-01 01:00:00 no2 NA

## 12 1998-01-01 02:00:00 no2 NA

## 13 1998-01-01 00:00:00 o3 1.000

## 14 1998-01-01 01:00:00 o3 NA

## 15 1998-01-01 02:00:00 o3 3.000

## 16 1998-01-01 00:00:00 pm10 29.000

## 17 1998-01-01 01:00:00 pm10 37.000

## 18 1998-01-01 02:00:00 pm10 34.000

## 19 1998-01-01 00:00:00 so2 4.723

## 20 1998-01-01 01:00:00 so2 NA

## 21 1998-01-01 02:00:00 so2 6.830

## 22 1998-01-01 00:00:00 co 3.373

## 23 1998-01-01 01:00:00 co NA

## 24 1998-01-01 02:00:00 co 9.602

## 25 1998-01-01 00:00:00 pm25 NA

## 26 1998-01-01 01:00:00 pm25 NA

## 27 1998-01-01 02:00:00 pm25 NA

## 28 1998-01-01 00:00:00 nox.all 285.000

## 29 1998-01-01 01:00:00 nox.all 354.333

## 30 1998-01-01 02:00:00 nox.all 423.667

which makes two columns: ‘variable’ (pollutant name) and ‘value’.

It is possible to go from this ‘long’ format back to wide:

thedata <- dcast(thedata, ... ~ variable)
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Anything to the right of ∼ will make new columns for each unique value of

‘variable’.

Imagine now we have data from two sites that is stacked (first we’ll make some):

site1 <- thedata

## add column with site name

site1$site <- "site1"

site1

## date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site

## 1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site1

## 2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site1

## 3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site1

site2 <- thedata

site2$site <- "site2"

site2

## date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site

## 1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site2

## 2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site2

## 3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site2

## combine all the data

alldata <- rbind.fill(site1, site2)

alldata

## date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site

## 1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site1

## 2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site1

## 3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site1

## 4 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site2

## 5 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site2

## 6 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site2

Now we have data that is stacked — but how do we get it into column format?

## this time date AND site are the id variables

library(reshape2)

alldata <- melt(alldata, id.vars = c("site", "date"))

## want unique combinations of site AND variable

alldata <- dcast(alldata, ... ~ site + variable)

alldata

## date site1_ws site1_wd site1_nox site1_no2 site1_o3 site1_pm10

## 1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29

## 2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37

## 3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34

## site1_so2 site1_co site1_pm25 site1_nox.all site2_ws site2_wd site2_nox

## 1 4.723 3.373 NA 285.0 0.60 280 285.0

## 2 NA NA NA 354.3 2.16 230 354.3

## 3 6.830 9.602 NA 423.7 2.76 190 423.7

## site2_no2 site2_o3 site2_pm10 site2_so2 site2_co site2_pm25 site2_nox.all

## 1 39 1 29 4.723 3.373 NA 285.0

## 2 NA NA 37 NA NA NA 354.3

## 3 NA 3 34 6.830 9.602 NA 423.7
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These functions are very useful for getting data into the right shape for analysis.

5.5 Example: converting hour-day data to column format

In this examplewe deal with a common problem inmanipulating data – reformatting

data in one format to another. Often data are stored as rows representing days and

columns representing hours. This is often a format used by AEA for  data.

However, this example highlights a more general requirement to reformat data.

The aim is to convert the 24 × 365 ‘matrix’ of data to a single column of data.

An example file is provided called ‘hour-day.csv’. To make it simple the file only

contains hourly data with no column headings (hour of day) or row names (days).

Fortunately there are some built-in functions available in R that make the reformat-

ting of these data easy:

nox <- read.csv("~/openair/Data/hour-day.csv", header = FALSE)

nox <- as.data.frame(t(nox))

nox <- stack(nox)

nox <- nox$values

In the code above, the data are first read in — note the option header = FALSE

in this case. Next, the data are transposed using the t (transpose) function, which

produces a matrix of data and transposes the rows/columns. Transposing the data

ensures that the hours are now in columns. Note that this operation instead of

representing hours in rows, puts them into 365 columns. The columns can now

be stacked on top of each other. We convert the matrix back to a data frame with

the as.data.frame function. Next we use the stack function that literally stacks

columns of data, working from column 1 to column 365. Finally, we extract the

values resulting from applying the stack function. This sort of data manipulation

is straightforward in R but would be much trickier in Excel. The code can actually

be written in two lines, but becomes less easy to understand:

nox <- read.csv("~/openair/Data/hour-day.csv", header = FALSE)

nox <- stack(as.data.frame(t(nox)))[, "values"]

Even if you don’t understand this code, this example should provide sufficient

information on how to apply it.

In fact, in this case, there is an easier way to do this:

nox <- read.csv("~/openair/Data/hour-day.csv", header = FALSE)

nox <- t(nox)

nox <- as.vector(nox)

In this code, the data are transformed as before, producing a matrix, and the

matrix is converted to a vector. When converting a matrix to a vector, it works on

columns rather than by rows. The stack function is therefore a better choice if we

were interested in groups of data for further processing, as in the example below:
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test.data = data.frame(grp1 = 1:3, grp2 = 10:12, grp3 = 20:22)

test.data

## grp1 grp2 grp3

## 1 1 10 20

## 2 2 11 21

## 3 3 12 22

stacked = stack(test.data)

stacked

## values ind

## 1 1 grp1

## 2 2 grp1

## 3 3 grp1

## 4 10 grp2

## 5 11 grp2

## 6 12 grp2

## 7 20 grp3

## 8 21 grp3

## 9 22 grp3

This then makes it much easier to work with the different groups e.g. calculate

means, or plotting the data.

5.6 Daily means from hourly means — processing wind direction data

Sometimes it is necessary or useful to calculate daily means from hourly data. Many

particle measurements, for example, are measured as daily means and not hourly

means. If we want to analyse such particle data for example, by considering how it

varies with meteorological data, it is necessary to express the meteorological (and

maybe other data) as daily means. It is of course straightforward to calculate daily

means of concentrations and wind speeds, as shown elsewhere in this document.

However, this is not the case for wind directions. For example the average of

10° and 350° is 0° (or 360°) and not 180°.

Theway to deal with this is to average with 𝑢 and 𝑣wind components. A function

has been written to do this:

dailymean <- function(mydata) {

## for wind direction, calculate the components

mydata$u = sin(2 * pi * mydata$wd / 360)

mydata$v = cos(2 * pi * mydata$wd / 360)

dailymet = aggregate(mydata, list(Date = as.Date(mydata$date)), mean,

na.rm = TRUE)

## mean wd

dailymet = within(dailymet, wd <- atan2(u, v) * 360 / 2 / pi)

## correct for negative wind directions

ids = which(dailymet$wd < 0) # ids where wd < 0

dailymet$wd[ids] = dailymet$wd[ids] + 360

dailymet = subset(dailymet, select = c(-u, -v, -date))

dailymet

}

In this function a data frame is supplied containing hourly data and the returned

data frame contains correctly formatted daily data. Note that very similar functions
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can be used to calculate means over other time periods e.g. hourly means from

15-minute data. The code below shows the use of this function.

mydaily = dailymean(mydata) # calculate daily means

# show top of data frame

head(mydaily)

## Date ws wd nox no2 o3 pm10 so2 co pm25 nox.all

## 1 1998-01-01 6.835 190.2 173.5 39.36 6.870 18.17 3.153 2.699 NaN 173.5

## 2 1998-01-02 7.070 225.9 129.8 39.48 6.478 27.75 3.945 1.768 NaN 129.8

## 3 1998-01-03 11.015 221.5 119.6 37.96 8.409 20.17 3.204 1.742 NaN 119.6

## 4 1998-01-04 11.485 219.2 106.0 35.26 9.609 20.96 2.963 1.620 NaN 106.0

## 5 1998-01-05 6.610 238.2 170.6 46.04 4.957 24.21 4.523 2.126 NaN 170.6

## 6 1998-01-06 4.375 196.2 211.1 45.30 1.348 34.62 5.703 2.533 NaN 211.1

5.7 Using an Editor

5.7.1 Using the built-in editor

As you begin to use R, you will quickly realise there are more efficient ways to

do things other than just typing in commands. Often, you will want access to a

series of commands for say, plotting a graph with defaults of your choosing. What is

needed is an Editor. R has an in-built editor — just select File|New script… and the

editor window will open. This is a bit like Notepad in Windows. While working it

can be useful to put together lines of code in the editor, select the code, right-click

and run it.

Advice

As you increase the amount of coding you do, it becomes increasingly dif-
ficult to remember what the code actually does. It is always a good idea
to liberally comment your code with lines starting with a #. This is espe-
cially important if you intend making your code available to others. See
Figure 5.1 for an example of how commented lines are coloured differently in
a dedicated editor, making it easy to distinguish between the code and code
comments.

5.7.2 Using a dedicated editor

The built-in editor is useful for small amounts of work. However, with use you will

find a ‘dedicated’ editor easier to use. We recommend something called RStudio, a

screen shot is shown in Figure 5.1. At the time of writing RStudio is a beta version

of the software, but is already very good — and likely to get much better in time.

More details can be found at http://http://rstudio.org/. There are also a

lot of well-written ‘knowledge base’ articles, see http://support.rstudio.org/

help/kb. Below are a few features that makes RStudio useful for working with

openair and other R projects.

• It works on Windows, linux and Apple Mac.
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F . RStudio is one of the best R editors around.

• It has been developed by people that clearly use R.

• In the top left pane of Figure 5.1 is where you can work on your R script e.g.

use it to develop and save a series of analyses for a report. Note that if you

type the name of a function (or part of) R Studio will offer completions if you

press TAB. This feature also works in the R consule, shown in the bottom

left pane.

• It is easy to send a selection or line from the script to the R console by selecting

‘Run Line(s)’.

• In the top right pane you can view the objects in your workspace. If you click

on one you can view all or most of an object as appropriate. The ‘history’ tab

gives a summary of all the commands you have input, which you can search

through.

• At the bottom right there are several tabs. In Figure 5.1 the plot tab is shown,

which shows the most recent plot made using the console. The ‘Packages’

tab provides a neat way of loading a package — just select the one you want

and it will load it and all dependent packages.
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5.8 Several plots on one page

Often it is useful or necessary to plot more than one plot on a page. This is the sort

of task that can be fiddly to carry out if the plots are produced separately and then

need to be combined. Problems include alignment and sizing, which as a minimum

can be frustrating to get right. R makes it easy to plot any number of plots on a

page in a neat and consistent way. The key is to use the par function to set up the

page as you want it before you plot your graphs. The par function can control and

fine-tune a vast number of plot options — see help(par) for specific information.5

To set up a page to plot several plots in a regular grid, the esoterically named

mfrow or mfcol option is set. For example, to plot two graphs side-by-side one

types in:

par(mfrow = c(1, 2))

This sets up the plot window for 1 row and 2 columns. And par(mfrow = c(2,

3)) therefore would allow for six plots in 2 rows and 3 columns etc.

Therefore, the code below produces two plots, side-by-side of NOx and NO2, of

montly mean concentrations as shown in Figure 5.2.

Note, however that all openair functions use lattice graphics, where a slightly
different approach is required. See Section 8.7 for more details on how to plot

several openair plots on one page.

5Note that this will only work with base graphics and not lattice.
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par(mfrow = c(1, 2))

# first plot

means <- tapply(mydata$nox, format(mydata$date,"%Y-%m"), mean, na.rm = TRUE)

dates <- seq(mydata$date[1], mydata$date[nrow(mydata)], length = nrow(means))

plot(dates, means,

type = "l",

col = "darkgreen",

xlab = "year",

ylab = "nitrogen oxides (ppb)")

means <- tapply(mydata$no2, format(mydata$date,"%Y-%m"), mean, na.rm = TRUE)

dates <- seq(mydata$date[1], mydata$date[nrow(mydata)], length = nrow(means))

# second plot

plot(dates, means,

type = "l",

col = "skyblue3",

xlab = "year",

ylab = "nitrogen dioxide (ppb)")
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F . Plotting two plots side-by-side using the par setting.
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5.9 Saving and using plots

There are several ways of saving and using plots and some general advice is given

in this section. The simplest way to use a plot from the R GUI is to size to the

required size, right-click on it and choose to copy as a metafile or a bitmap; this

being on Windows. A metafile is a Windows-specific format, whereas a bitmap is a

more general system independent format. An important difference between the

two formats is that a metafile is in a vector graphics format whereas a bitmap is a

raster format made up of a regular grid of pixels. Vector-based graphics are made

up of lines and shapes that remain sharp at any resolution. Zoom in on a metafile

plot and it will remain sharp. By contrast zooming in on a bitmap image will reveal

fuzziness — and eventually the individual pixels. Other vector formats include pdf

and encapsulated postscript (eps) and other bitmap images include png (portable

network graphics) and jpeg (the format most often used for photographs).

Most plots in openair work best using vector graphics. This manual for example

uses LaTeX and the plots are in pdf format i.e. they are sharp when you zoom in.

However, most users of openair probably use applications such as Microsoft

Word. Word does accept a wide range of graphic formats, but unfortunately even

recent versions cannot use pdf graphics. In this case it will generally be best to copy

plots as metafiles. Unfortunately, Windows metafiles in R cannot handle alpha

transparency. What this means is for certain plots that use semi-transparent shading

(e.g. timeVariation, Section 21), copying the plot as a metafile will not work for

those semi-transparent areas in the plot. The other problem with metafiles is that a

Word document containing many of them will be slow to render and frustrating to

work with, as well as being potentially very large in file size.

So what’s best? A good compromise is the png format. These images capture

openair graphics well, are generally small file sizes and can be used by almost all

applications. They also capture alpha transparency. It is possible to save as a png

format using the R GUI and RStudio from the file menu, or the export button,

respectively. By default the png will be saved at 72 dots per inch, which might not

be sufficiently detailed, especially if it is resized later. A better way to work (in

my view) is to always use scripts to make the plots. This has two main advantages.

First, all analyses including plots will entirely and easily reproducible, which is a

major advantage. Second, it is possible to have more control over how the plots are

saved.

The way to save a plot using code is as follows.

png("myPlot.png")

polarPlot(mydata, pollutant = "so2")

dev.off()

The code above first prepares a device for printing on (in this case a png device)

and save myPlot.png in your working directory. Second, a plot is produced and

third (importantly!) the device is closed. Note that if you fail to add the final line

the device will remain open and the file will not be written. By default, png will

save a file 480×480 pixels; see ?png for details. This resolution might be fine for

simple graphics, but a much better approach is to be sure of the final resolution.

Most commonly it is recommended that bitmap graphics in printed documents are

300 dpi (dots per inch). So, an approach that guarantees this resolution is as follows.

55



5 General use of R — advice and examples

Think about the size of the plot needed in inches (in this case 5 inches wide by 4.5

inches high) and use this in the call to png:

png("myPlot.png", width = 5 * 300, height = 4.5 * 300, res = 300)

polarPlot(mydata, pollutant = "so2")

dev.off()

This will produce a sharp plot which at 5×4.5 inches will be 300 dpi. In some

cases e.g. in quality publications, it might be necessary to save at an even higher

resolution. For example to save at 600 dpi just replace the 300 above with 600.

It should also be noted that this approach can usefully control the relative size of

the font in a plot. Users often ask how to change font size — but this is currently

hard-wired in most functions. To see the effect try comparing the output of the

plot above (5×4.5 inches) with the one below (3.5×3 inches). You will see that the
latter has font that is relatively larger compared with the rest of the plot.

png("myPlot.png", width = 3.5 * 300,

height = 3 * 300, res = 300)

polarPlot(mydata, pollutant = "so2")

dev.off()

Another point worth mentioning is that in some cases it is useful to overlay plots

on a map. In these cases it is useful to set the background to be transparent rather

than white (the default). To do this just supply the option bg = "transparent".

5.10 Graphing lots of data — using level plots

It is often the case when plotting monitoring data that there are so many data points

it gets hard to see relationships. Consider the scatter plot for NOx and NO2 shown

in Figure 5.3 — it is very difficult to see how NOx and NO2 are related because of

the large number of points. An alternative way of plotting such data is to ‘bin’ it

first and count the number of points in each bin and plot it as a level plot.

The first part of the code in above will produce a basic plot using the base graphics

function image, shown in Figure 5.3. Now it is possible to see the relationship

between NOx and NO2 much more clearly. It also has the benefit of showing where

most of the data are, which is not very apparent in Figure 5.3.

A better looking plot can be produced with a bit more work using lattice graphics,

as shown in Figure 5.4. This plot has the advantage of also showing a scale, which

in this case in the number of points in each bin. Lattice graphic are considerd more

in(§6).

5.11 Special symbols for use in plotting air pollution data

Air pollution concentrations are expressed in many ways, perhaps most commonly

in µg m−3. It is always preferable to display these units properly rather than, for

example as ug/m3. The same is also true for subscripts in pollutant names such as

NOx and PM2.5. R has its own way of dealing with specialist symbols, which is

similar to LATEX. This section provides code for commonly used expressions. For

more information type help(plotmath). We illustrate the use of these symbols

through examples shown in Table 5.1, by setting the y-axis label. However, these
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x <- mydata$nox

y <- mydata$no2

# find maximum values

x.max <- max(x, na.rm = TRUE)

y.max <- max(y, na.rm = TRUE)

# set the bin interval

x.int <- 5

y.int <- 2

# bin the data

x.bin <- cut(x, seq(0, x.max, x.int))

y.bin <- cut(y, seq(0, y.max, y.int))

# make a frequency table

freq <- table(x.bin, y.bin)

# define x and y intervals for plotting

x.range <- seq(0 + x.int/2, x.max - x.int/2, x.int)

y.range <- seq(0 + y.int/2, y.max - y.int/2, y.int)

# plot the data

image(x = x.range, y = y.range, freq, col = rev(heat.colors(20)))
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F . Using the image function to plot NOx against NO2.

labels can be used elsewhere too, such as in titles or to annotate specific parts of a

plot.

T . Examples of commonly used text formats for air pollution.

Text required Expression

NOx ylab = expression("NO"[X])

PM2.5 ylab = expression("PM"[2.5])

(µg m−3) ylab = expression("(" * mu * "g m" ^-3 * ")")

PM10 (µg m−3) ylab = expression("PM"[10] * " (" * mu * "g m" ^-3 * ")")

Temperature (∘C) xlab = expression("Temperature (" * degree * "C)")

To demonstrate what these symbols look like, Figure 5.5 provides an example.

The code is shown below.
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library(lattice)

grid <- expand.grid(x = x.range, y = y.range)

z <- as.vector(freq)

grid <- cbind(grid, z)

levelplot(z ~ x * y, grid, col.regions = rev(heat.colors(20)))
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F . Using the lattice graphics levelplot function to plot NOx against NO2.

plot(1, 1,

xlab = expression("Temperature (" * degree * "C)"),

ylab = expression("PM"[10]~"(" * mu * "g m" ^-3 * ")"),

main = expression("PM"[2.5] * " and NO"[x] * " at Marylebone Road"),

type = "n")

text(1, 1, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

text(.8, .8, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})), cex = 1.2)

text(1.2, 1.2, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

PM2.5 and NOx at Marylebone Road

Temperature (°C)

P
M

10
 (µ

g 
m

−3
)

x = ∑
i=1

n xi

n

1

σ 2π
 e

−(x−µ)2
2σ2

β̂ = (XtX)−1Xty

F . Examples of different symbols that can be used in R plots.
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5.12 Using databases with R

So far the discussion has focussed on working with .csv files, which might be

adequate for most purposes. However, as the amount of data increases, the storage

of it in this way is not to be recommended. A much better approach is to store

data in a database. There are several advantages in doing so. First, it forces a more

disciplined approach to storage (e.g. variables names and formats). Second, it is

possible to store a lot more information in this way. Finally, for very large amounts

of information R can run out of memory because all the calculations are done in

RAM.6 In the latter case it can be much better to use the SQL database language

to do some of the work first and then bring smaller data sets into R.

There are several database types that R can work with; perhaps the most common

being Microsoft Access. For those interested in open-source databases MySQL is

highly recommended (we use this with many large data sets). However, a discussion

of MySQL goes beyond the aims of this document. It should also be noted that

you do not actually need to have Microsoft Access to read or write data to it.

Here is an example of how to connect to an Access database file (Access 2007)

(file available from David Carslaw), which contains exactly the same data as the

‘example data long.csv’.

6Now that there is a 64-bit version of R for Windows, this is less of a problem and the limitation is

more to do with the amount of RAM the computer has.
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library(RODBC)

## set time zone to GMT

Sys.setenv(TZ = "GMT")

## connect to a database file

channel <- odbcConnectAccess2007("c:/users/david/openair/Data/example data long.mdb")

## read all data in

test.data <- sqlQuery(channel, "select * from dbdata")

## read date, nox and no2

test.data <- sqlQuery(channel, "select date, nox, no2 from dbdata")

head(test.data)

## date nox no2

## 1 1998-01-01 00:00:00 285 39

## 2 1998-01-01 01:00:00 NA NA

## 3 1998-01-01 02:00:00 NA NA

## 4 1998-01-01 03:00:00 493 52

## 5 1998-01-01 04:00:00 468 78

## 6 1998-01-01 05:00:00 264 42

## select data where nox > 500 ppb

test.data <- sqlQuery(channel, "select * from dbdata where nox > 500")

head(test.data)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01-15 14:00:00 7.2 230 504 83 3 54 7.645 4.505 NA

## 2 1998-01-15 17:00:00 4.8 230 508 74 2 42 7.812 6.622 NA

## 3 1998-01-15 19:00:00 5.4 200 535 48 2 47 9.260 7.162 NA

## 4 1998-01-15 20:00:00 4.8 190 587 79 2 49 10.275 8.123 NA

## 5 1998-01-21 07:00:00 1.2 180 578 75 2 65 17.427 3.595 NA

## 6 1998-02-02 07:00:00 2.4 0 607 85 3 79 17.052 4.702 NA

## select between two dates

test.data <- sqlQuery(channel, "select * from dbdata where date >= #1/1/1998# and date <= #31/12/1999 23:00:00#")

tail(test.data)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 17515 1999-12-31 18:00:00 4.68 190 226 39 NA 29 5.455 2.375 23

## 17516 1999-12-31 19:00:00 3.96 180 202 37 NA 27 4.785 2.150 23

## 17517 1999-12-31 20:00:00 3.36 190 246 44 NA 30 5.875 2.450 23

## 17518 1999-12-31 21:00:00 3.72 220 231 35 NA 28 5.280 2.225 23

## 17519 1999-12-31 22:00:00 4.08 200 217 41 NA 31 4.787 2.175 26

## 17520 1999-12-31 23:00:00 3.24 200 181 37 NA 28 3.483 1.775 22

In the code above a connection is first made to the data base file, followed

by examples of various SQL queries. When connecting to databases in the way

described above, the date field is automatically recognised by R and there is no need

to convert it as in the case for the .csv file. For those interested in using databases

with R, it is worth looking in the help files of RODBC for a more comprehensive

explanation of the capabilities.

The RODBC package will automatically try and preserve data formats, including

those for date/time. We have experienced a few difficulties here to do with British

Summertime and GMT. RODBC will bring data in in a format consistent with what

the operating system is set to, which can be either BST or GMT (or other time

zones). The best option in our view is that before the data are imported, set the
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system to GMT as above. This will avoid all sorts of potential problems.

6 Multivariate plots — introduction to the Lattice
package

6.1 Introduction to the Lattice package

In (§2.1) one of the benefits highlighted in using R was the extensive number of

packages available that extend the core features of R. One package called lattice

is particularly useful for plotting and analysing monitoring data. The lattice

package is based on the original S (S-Plus) Trellis package that provides excellent

multivariate plotting capabilities.7 This is one of the stronger capabilities that R

has and greatly enhances the possibilities for plotting monitoring data. The original

trellis graphics were designed by William Cleveland at Bell laboratories and were

based on research into how best to visualise graphics. For those interested in this

there are a couple of books available (Cleveland 1985; Cleveland 1993). Lattice

graphics can be used to produce similar plots to those shown elsewhere in this

document, but in some cased can produce better looking plots with better-chosen

defaults. However, the real strength of Lattice is the ability to deal with multivariate

data and to plot several plots on one page.

Installing and loading a package in R

The capabilities of R are greatly enhanced by a number of optional packages.
To use different packages, they must first be installed. Many packages such
as lattice are installed as part of the R installation itself. However, they
need to be loaded to use them. This can be done in two principal ways: use
the menu and choose Packages | Load package… and choose from the avail-
able packages listed; or in code you can issue a command library(pack-

age name).
In many cases the package you want may not be installed on your system.
In this case you can choose Packages | Install package(s)…, where you are
then prompted for a location to install from (chose one in the UK). It is pos-
sible that this option will not work due to firewalls etc. information is being
downloaded from a remote server. An alternative way of doing this is to
go the main R web pages, select CRAN (Comprehensive R Archive Network),
choose the appropriate web site address (again UK) and under the heading
‘Software’ choose ‘packages’. Choose the package you want (for Windows,
choose Windows binary zip file). Download the file to your hard disk and
then choose Packages | Install package(s) from local zip files….

The drawback of using the lattice package is that most new users (and some

experienced one too) find it difficult to use. The emphasis is very much on the

use of code to make plots. The focus of this section therefore is to provide some

7The names trellis and lattice are meant to reflect the idea of multiple plots i.e. like a garden trellis.
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xyplot(nox ~ date, data = mydata, type = "l")

date

no
x

0

200

400

600

800

1000

1998 2000 2002 2004

F . Example plot using the lattice package to plot hourly concentrations of NOx

at Marylebone Road

examples of the use of Lattice graphics on our data set that can be readily applied

to other data sets with minimum or no alteration.

6.2 Example simple plots

We start with plotting the basic time series of NOx as shown in Figure 4.5. The

code is shown below. For basic plotting like this, the terminology is straightforward.

One of the first things to note is the use of a formula to represent the plot nox ∼
date. You can think of this as an equation for plotting data i.e. y = fn(x). Therefore,

what appears on the y-axis is given first (in this case nox), then the x-axis data (in

this case date). Also given is the argument data = mydata, and the type of plot

type = "l" as before.

The plot generated is shown in Figure 6.1, which can be comparedwith Figure 4.5.

There are a few differences to note: the default colour is blue, the y-axis labels

are horizontal (for easier reading) and their are tick marks shown on all all sides

(outside the plot so that they do not clutter-up the data actually shown). The lattice

plot can be annotated in much the same way as the base plots, with options such as

ylim, ylab etc.

Much of the power of lattice graphics lies in the ability to plot one variable against

another dependent on a third. To get an idea of what is meant here, consider how

NO2 varies by NOx by day of the week. Now, day of the week is a categorical

variable, which in R is referred to as a factor. We illustrate the use of this type of

plotting by making some simple artificial data. In the code below we first define the

days of the week. We then make a data frame where the NOx concentrations are 70

random numbers between 0 to 5 (nox = 5 * runif(70)) i.e. 10 for each day of

the week. TheNO2 concentrations are similarly assumed to be 70 random numbers,

which are between 0 to 1 in this case and the days of the week weekday are each of

the days repeated 10 times. When lattice plots a factor, it does so alphabetically.

However, this makes little sense for the days of the week and therefore we force the

ordering of the days with the code shown. Finally, a plot is produced. Note that

in the plot command the formula no2 ∼ nox | weekday is used. This means in
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# weekday names

weekdays <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday", "Sunday")

# make data frame

test.data = data.frame(nox = 5 * runif(70), no2 = runif(70),

weekday = as.factor(rep(weekdays, each = 10)))

# order the days i.e. do not want the default alphabetical

test.data$weekday = ordered(test.data$weekday, levels = weekdays)

# plot

xyplot(no2 ~ nox | weekday, data = test.data, as.table = TRUE)
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F . Example plot using the lattice package to plot two variables against each

other (nox and no2) , but dependent on a third (weekday).

simple terms ‘plot no2 against nox, but show how it varies by day of the week’. For

some reason, lattice always fills plots from the bottom left corner to the top right.

The as.table = TRUE command forces it to plot it from the top left to the bottom

right, which more most applications seems like a more logical way of plotting. The

result of the plotting is shown in Figure 6.2.

6.3 A more complicated plot — plot each year of data in a separate
panel

Nowwe get onto the real power of Lattice: multiple plots on a page that can convey

lots of useful information. When a lot of data are available, it is very useful to be

able to plot it all quickly and view it. In our data set we have over 65,000 lines of

data, which if plotted as a typical x-y plot would be hard to assess. A better way is

to plot each year separately and plot all years on 1-page. The code below performs

this function. The code is explained in three main sections.

Section 1 What is needed first is to convert the date to a year and convert this

year to a factor, so that it can be plotted as a categorical variable. The

code format(mydata$date, "%Y") converts the date to year format and the

as.factor converts this (numerical value) to a factor. The year is then added

to the data frame mydata using the column bind command cbind.
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Section 2 This bit of code simply finds the start and end years of the data, which

are read into two variables begin.year and end.year. These variables are

used in the plot function and makes the function rather more easy to read.

Section 3 The third part of the code plots the data. The aspect option sets the

dimensions of the plot (1 would be a square; 0.5 is a plot twice as wide

as it is long). The scales option is quite complicated. What this does is

manually set the x-axis points every two months and uses the three letter

month summary option %b. The plot itself contains several panel functions

that add grid lines and plot the actual data. Again, it will take some digesting

to understand this code, but it should be usable with most hourly data sets

and can be applied without knowing all the details.

What Figure 6.3 shows is a huge amount of data in a very compact form. It is

easy to see for example some missing data in July 1999, or very high concentrations

of NOx in January 1999.

6.4 Showing trends dependent on a third variable

We now analyse the data in quite a complex way. Here we see the real power of

lattice plots in analysing data. The code below can be modified to look at the data

in all kinds of ways with only simple modification. For this analysis however, we

aim to do three things:

1. Average the data by month of the year. Monthly averages are a convenient

way of summarising data.

2. Split these averages by different wind sectors. By considering the trends by

different wind sectors, some insights can be gained the trends in different

source types.

3. Apply a smoothing line to highlight the trends. In this case a locally-weighted

regression line is applied.

This analysis also makes use of some very useful functions, which are part of the

base system of R. The first is cut, which provides a powerful way of dividing data

up in different ways; in this case creating eight different wind direction sectors.

The second is aggregate, which neatly summarises the data by monthly mean and

wind sector. A summary of the main parts of the analysis is given next.

Divide the wind directions into eight sectors This code uses the cut command.

Define the levels for the different wind sectors This code gives a nicer descrip-

tion of the wind sectors that will be used when plotting the graphs.

Summarise the data This part of the code calculates the mean concentrations of

NOx by year-month and by wind sector.

The results from the analysis are shown in Figure 6.4, which highlights several

interesting features.
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# SECTION [1]

mydata$year <- as.factor(format(mydata$date, "%Y"))

# SECTION [2]

# determine begin/end year (+1) for gridlines and axis

begin.year <- min(mydata$date)

end.year <- max(mydata$date)

# SECTION [3]

xyplot(nox ~ date | year,

data = mydata,

aspect = 0.4,

as.table = TRUE,

scales = list(relation = "free", x = list(format = "%b",

at = seq(begin.year, end.year,

by = "2 month"))),

panel = function(x, y) {

## add grid lines every month by finding start/end date

panel.abline(v = seq(begin.year, end.year, by = "month"),

col = "grey85")

panel.abline(h = 0, col = "grey85")

panel.grid(h = -1, v = 0)

panel.xyplot(x, y, type = "l", lwd = 1)

})
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F . Example plot using the lattice package to plot hourly concentrations of NOx

at Marylebone Road
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# divide-up date by wd

wd.cut <- cut(mydata[, "wd"], breaks = seq(0, 360, length = 9))

# define the levels for plotting

wd <- seq(0, 360, by = 45)

levels(wd.cut) <- paste(wd[-length(wd)], "-", wd[-1], " degrees", sep = "")

# summarise by year/month and wd

summary.data <- aggregate(mydata["nox"], list(date = format(mydata$date,"%Y-%m"),

wd = wd.cut), mean, na.rm = TRUE)

# need to get into year/month/day

newdate = paste(summary.data$date,"-01", sep = "")

newdate = as.Date(newdate, format = "%Y-%m-%d")

# add to summary

summary.data <- cbind(summary.data, newdate)

# plot

xyplot(nox ~ newdate | wd,

data = summary.data,

layout = c(4, 2),

as.table = TRUE,

xlab = "date",

ylab = "nitrogen oxides (ppb)",

panel = function(x, y) {

panel.grid(h = -1, v = 0)

panel.abline(v = seq(as.Date("1998/1/1"), as.Date("2007/1/1"),

"years"),

col = "grey85")

panel.xyplot(x, y, type = "l", lwd = 1)

panel.loess(x, y, col = "red", lwd = 2, span = 0.2)

})
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F . Example plot showing how a time series can a) be summarised by monthly

means, b) split by wind sector, and c) show a locally-weighted smooth trend for each panel.
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7 Functions in R

This section highlights the importance of functions in R to carry out specific tasks.

Most of the rest of Part II of this report considers the use of dedicated functions

written to analyse air pollution data. This section gives an overview ofwhy functions

are important and how they work. Functions are useful in many ways:

• For repetitive tasks they help take the effort out of processing data. An

example would include a function to import and clean-up data.

• Functions provide a much more structured way of working. They help to

break down big problems into smaller bits that are easier to work with.

• For air pollution analysis, dedicated functions can (and have) been written to

offer unique analysis capabilities that are not offered in any other software.

R offers excellent capabilities here for creating new analyses and plots.

Let’s consider a very simple function that adds two numbers (although one would

not actually ever need to write such a simple function!):

add.two <- function(a = 1, b = 2)

{a + b}

The function name is add.two, it accepts two arguments a and b. The body of

the function is written within the braces {}. This function can be read into R simply

by pasting it is — and it then becomes available for use. Let’s use the function to

add 10 and 5:

add.two(10, 5)

## [1] 15

add.two(c(1, 2, 3), 2)

## [1] 3 4 5

add.two(c(1, 2, 3), c(5, 6, 7))

## [1] 6 8 10

Easy! Note that in the definition of the function itself, we provided default values

for a and b. If one called the function without supplying a or b it would return 3:

add.two()

## [1] 3

This functionality is useful for testing purposes, but also for providing defaults for

some of the variables. If the user does not want to alter a default value, there is no

need to supply it.
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Part II of this report focuses on the development and use of dedicated functions

written to process air pollution data. These functions greatly extend the capabilities

outlined in Part I, where the focus was on developing an understanding of R.

While many of the options in these functions allow quite a sophisticated analysis

to be undertaken, the defaults generally use the simplest (and fastest) assumptions.

A more detailed analysis can refine these assumptions e.g. by accounting for

autocorrelation, or fine-control over the appearance of a plot.

It should be noted that while the aim is to keep this documentation up to date, the

primary source of information related to the different functions is contained within

the package itself. Once loaded, type ?openair to see all the help pages associated

with the package. The website for openair is http://www.openair-project.org.
This section contains important information on loading the openair package

for the first time and the input data requirements. Users will need to consider

the advice in this section to ensure that openair can be used without problems.

8.1 Installing and loading the openair package

The dedicated functions for the analysis of air pollution data have been made

available in the openair package. As of September 2010, openair is available on
CRAN.This means it should be very straightforward to install. InWindows, choose

the packages menu in R and then choose ‘Install package(s)’. You will be prompted

for a location from which to download — so scroll down to the appropriate country.

Once selected you will then be shown a large list of available packages — choose

openair.

Second approach to installing openair

The second approach to installing openair is slightly more involved but should

still be easy. This situation arises if you are using a computer that does not let R

communicate externally. These are the steps:

1. Download the Windows binary (zip) files from http://cran.r-project.

org/web/packages/ for the following packages and store them somewhere

convenient on your computer: ‘openair’, ‘reshape2’, ‘plyr’ and ‘RColor-

Brewer’. This is done by clicking on the link for each package, which will

show a page with a downloads section where the zip file is shown.

2. Install openair and all the other dependent packages by choosing ‘Packages’

from the R menu, then ‘Install packages(s) from local zip files…’, and choose

all the zip files that were downloaded.
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The package can be tested by going into the ‘Packages’ menu in R and choosing

‘Load package’ and then choose openair. The package comes with some test data

— several years of data from the Marylebone Road site in London (‘mydata’). Test

it by trying a function e.g.

summaryPlot(mydata)

Note that it is only necessary to install packages once — unless a package has

been updated or a new version of R is installed. Occasionally it is useful to update

the packages that have been installed through the ‘Update packages’ option under

the Packages menu. Because the openair package (and R itself) are continually

updated, it will be useful to know this document was produced using R version

3.0.2 and openair version 0.9-0.

8.2 Where is the source code?

All R code is accessible. On CRAN, you will see there are various versions of

packages: Package source, MacOS X binary and Windows binary. The source

code is contained in the Package source, which is a tar.gz (compressed file). For

Windows users not familiar with this format, you can download 7zip (http://www.

7-zip.org/), which is an open source, free data compression program. The R

source code is contained in the R sub directory.

8.3 Brief introduction to openair functions

This section gives a brief overview of the functions in openair. The core functions
are summarised in Table 8.3, which shows the input variables required, the main

purpose of the function, whether multiple pollutants can be considered and a

summary of the type option. The type option given inTable 8.3 gives themaximum

number of conditioning variables allowed in each function — more on this later.

Having read some data into a data frame it is then straightforward to run any

function. Almost all functions are run as:

functionName(thedata, options, ...)

The usage is best illustrated through a specific example, in this case the polarPlot

function. The details of the function are shown in Section 15 and through the

help pages (type ?polarPlot). As it can be seen there are a large number of options

associated with polarPlot — and most other functions and each of these has a

default. For example, the default pollutant considered in polarPlot is ‘nox’. If the

user has a data frame called theData then polarPlot could minimally be called

by:

polarPlot(theData)

which would plot a ‘nox’ polar plot if ‘nox’ was available in the data frame

theData.

Note that the options do not need to be specified in order nor is it always necessary

to write the whole word. For example, it is possible to write:
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polarPlot(theData, type = "year", poll = "so2")

In this case writing poll is sufficient enough to uniquely identify that the option

is pollutant.

Also there are many common options available in functions that are not expli-

citly documented, but are part of lattice graphics. Some of the common ones are

summarised in Table 8.1. The layout option allows the user to control the layout

of multi-panel plots e.g. layout = c(4, 1) would ensure a four-panel plot is 4

columns by 1 row.

T . Common options used in openair plots that can be set by the user but are

generally not explicitly documented.

option description

xlab x-axis label

ylab y-axis label

main title of the plot

pch plotting symbol used for points

cex size of symbol plotted

lty line type used

lwd line width used

layout the plot layout e.g. c(2, 2)

The openair ‘type’ option

One of the central themes in openair is the idea of conditioning plots. Rather

than plot 𝑥 against 𝑦, considerably more information can usually be gained by

considering a third variable, 𝑧. In this case, 𝑥 is plotted against 𝑦 for many different

intervals of 𝑧. This idea can be further extended. For example, a trend of NOx

against time can be conditioned in many ways: NOx vs. time split by wind sector,

day of the week, wind speed, temperature, hour of the day…and so on. This type

of analysis is rarely carried out when analysing air pollution data, in part because it

is time consuming to do. However, thanks to the capabilities of R and packages

such as lattice, it becomes easier to work in this way.

In most openair functions conditioning is controlled using the type option. type
can be any other variable available in a data frame (numeric, character or factor).

A simple example of type would be a variable representing a ‘before’ and ‘after’

situation, say a variable called period i.e. the option type = "period" is supplied.

In this case a plot or analysis would be separately shown for ‘before’ and ‘after’.

When type is a numeric variable then the data will be split into four quantiles and

labelled accordingly. Note however the user can set the quantile intervals to other

values using the option n.levels. For example, the user could choose to plot a

variable by different levels of temperature. If n.levels = 3 then the data could be

split by ‘low’, ‘medium’ and ‘high’ temperatures, and so on. Some variables are

treated in a special way. For example if type = "wd" then the data are split into 8

wind sectors (N, NE, E, …) and plots are organised by points of the compass.

There are a series of pre-defined values that type can take related to the temporal

components of the data. To use these there must be a date field so that the can
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be calculated. These pre-defined values of type are shown in Table 8.2 are both

useful and convenient. Given a data frame containing several years of data it is easy

to analyse the data e.g. plot it, by year by supplying the option type = "year".

Other useful and straightforward values are ”hour” and ”month”. When type =

"season" openairwill split the data by the four seasons (winter =Dec/Jan/Feb etc.).
Note for southern hemisphere users that the option hemisphere = "southern" can

be given. When type = "daylight" is used the data are split between nighttime

and daylight hours. In this case the user can also supply the options latitude and

longitude for their location (the default is London).

T . Pre-defined time-based values for the openair type option.

option splits data by …

”year” year

”hour” hour of the day (0 to 23)

”month” Month of the year

”season” spring, summer, autumn, winter

”weekday” Monday, Tuesday, …

”weekend” Saturday, Sunday, weekday

”monthyear” every month-year combination

”gmtbst” separately considers daylight saving time periods

”daylight” nighttime and daylight

Table 8.3 summarises the functions that accept the option ‘type’ and the number

of types that can be set. Numerous examples of conditioning are given throughout

this document.
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T . Summary of main openair analysis functions. Click on function name to be

taken to the section on that function.

Function Mandatory variables Purpose Multiple type

pollutants option

calcFno2 see §(30) for details estimate primary NO2 emissions

ratio from monitoring data

no no

calendarPlot date, one numeric field Calendar-type view of mean val-

ues

no no

conditionalEval observed and modelled values

and other variables(s)

extensions to condition-

alQuantile

no yes [1]

conditionalQuantile observed and modelled values quantile comparisons for model

evaluation

no yes [2]

GoogleMapsPlot two numeric fields for latit-

ude/longitude

annotate Google maps no Yes [2]

kernelExceed date, ws, wd, one other numeric

field

bivariate kernel density estim-

ates for exeedance statistics

no Yes [1]

linearRelation date, two numeric fields explore linear relationships

between variables in time

no limited

TheilSen date, one numeric field Calculate Theil-Sen slope estim-

ates and uncertainties

no Yes [2]

modStats observed and modelled values calculate a range of model evalu-

ation statistics

no yes [≥1]

percentileRose wd, one other numeric field percentiles by wind direction no Yes [2]

polarAnnulus date, ws, wd, one other numeric

field

polar annulus plot for temporal

variations by wind direction

yes Yes [2]

polarCluster ws, wd, one other numeric field cluster analysis of bi-variate po-

lar plots for feature extraction

No No

polarFreq ws, wd alternative to wind rose/pollu-

tion rose

no Yes [2]

polarPlot ws, wd, one other numeric field bi-variate polar plot yes Yes [2]

pollutionRose ws, wd, one other numeric field pollution rose no Yes [2]

scatterPlot x and y values to plot traditional scatter plots with en-

hanced options

no Yes [2]

smoothTrend date, one numeric field smooth trend estimates yes Yes [2]

summaryPlot date, one numeric field summary view of a data frame yes no

TaylorDiagram two numeric fields model evaluation plot no Yes [2]

timePlot date, one numeric field Time-series plotting yes Yes [1]

timeProp date, one numeric, one category

field

Time-series plotting with cat-

egories as stacked bar chart

yes Yes [1]

timeVariation date, one numeric field diurnal, day of week and

monthly variations

yes Yes [1]

trajCluster data from importTraj  back trajectory cluster

analysis

no Yes [2]

trajPlot data from importTraj  back trajectory plots —

points of lines

no Yes [2]

trajLevel data from importTraj  back trajectory plots —

binned or smoothed

no Yes [2]

trendLevel date, one other numeric field flexible level plots or ‘heat maps’ no Yes [2]

windRose date, ws, wd traditional wind rose no Yes [2]

72



8 Introduction

T . Summary of openair utility functions. Click on function name to be taken to

the section on that function.

Function Mandatory variables Purpose Multiple type

pollutants option

calcPercentile date, one numeric vari-

able

calculate percentiles for

numeric variables in a

data frame

NA NA

corPlot a data frame correlation matrix with

conditioning

yes yes [1]

cutData a data frame partition data into groups

for conditioning plots and

analysis

yes yes [≥1]

importADMS an ADMS output file e.g.

.pst, .met, .mop, .bgd

import outputs from the

ADMS suite of disper-

sion models (McHugh et

al. 1997)

NA NA

importAURN site code and year import hourly data

from the UK air quality

data archive (http:

//www.airquality.

co.uk/data_and_

statistics.php)

NA NA

importKCL site code and year import hourly data

from the London Air

data archive (http:

//www.londonair.org.

uk/LondonAir/Default.

aspx)

NA NA

importTraj site code and year import  back tra-

jectory data from KCL

servers

NA NA

quickText a string properly format common

pollutant names and units

NA NA

selectByDate date and one other vari-

able

flexibly select date peri-

ods by year, day of week

etc.

NA NA

selectRunning date and one other vari-

able

select contiguous peri-

ods of a certain run-

length above a specified

threshold

NA NA

splitByDate date and one other vari-

able

partition and label a data

frame by time periods

NA NA

timeAverage date, one numeric vari-

able

calculate statistics over

flexible time periods ac-

count for data capture

rates etc.

NA NA
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8.4 Input data requirements

The openair package applies certain constraints on input data requirements. It

is important to adhere to these requirements to ensure that data are correctly

formatted for use in openair. The principal reason for insisting on specific input
data format is that there will be less that can go wrong and it is easier to write code

for a more limited set of conditions.

The openair package requires as an input a data frame, which generally consists

of hourly date/time, pollution and meteorological data. As shown elsewhere in this

document, the recommended way of inputting data into R is through reading a

.csv file. This in itself avoids potential issues with ‘awkward’ file formats e.g. with

varying header lines. Of course, anyone familiar with R will know how to do this

and may choose to import their data from a range of sources such as databases. A

few important requirements and advice are given below.

Use openair functions to help import data!

There are several functions in (§9) that make the process of importing data
into openair much simpler. Where possible, these functions should be used.
(§9) also contains some useful functions for manipulating data.

1. Data should be in a ‘rectangular’ format i.e. columns of data with a header

on the first line. The file ‘example data long.csv’ provides a template for the

format and users should refer to that file if in doubt. The best approach is to

use the import function that is part of openair, described in (§9).

2. Where fields should have numeric data e.g. concentrations of NOx, then the

user should ensure that no other characters are present in the column, accept

maybe something that represents missing data e.g. ‘no data’. Even here, it is

essential to tell the import function how missing data are represented; see

(§9).

3. The date/time field should be given the heading date— note the lower case.

No other name is acceptable.

4. The wind speed and wind direction should be named ws and wd, respectively

(note again, lower case). There is an implicit assumption that wind speed data

are in units of m s−1. Most functions have been written assuming reasonable

ranges in wind speed in m s−1. However, the functions will work if the units

were in knots, for example and several functions allow the user to annotate

the plots with the correct units. Wind directions follow the UKMet Office

format and are represented as degrees from north e.g. 90° is east. North is

taken to be 360°.

5. Other variables names can be upper/lower case but should not start with a

number. If column names do have white spaces, R will automatically replace

them with a full-stop. While ‘PM2.5’ as a field name is perfectly acceptable,

it is a pain to type it in—better just to use ‘pm25’ (openair will recognise
pollutant names like this and automatically format them as PM2.5 in plots).

74



8 Introduction

Note if users wish to assume non-zero wind speeds to be calm e.g. any wind

speed below 0.5 m s−1, then these can be set directly e.g.

mydata$ws[mydata$ws < 0.5] <- 0

It should be mentioned again that any reasonably large amount of data should be

kept in a database and not Excel sheets and the like. Much less will go wrong if

this is the case; see §(5.12) for some information on Access databases.

8.4.1 Dealing with more than one site

In many situations users will have more than one site available and most openair
functions can deal with this situation. However, it does require that the data are in a

certain format. If the data are available via the  archive or via the KCL LAQN

then it is possible to use the importAURN or importKCL functions to select multiple

sites at once and the data will be correctly formatted for use by the functions.

If it is not possible to import the data in this way, it is necessary to format the

data in such a way that can be used. The format is very similar to that described

above for several pollutants at a single site. With more than one site it is necessary

to have another column (with name site) with the site name in. Data are therefore

‘stacked’.

Sometimes data will not be in this format and site data will be in separate columns.

(§31.7.2) shows the approach that can be used to format such data.

If users need help with formatting their data, please contact us for advice.

8.5 Using colours
Type colors()
or colours()

into R to see
full list of
named
colours

Many of the functions described require that colour scales are used; particularly for

plots showing surfaces. It is only necessary to consider using other colours if the

user does not wish to use the default scheme, shown at the top of Figure 8.1. The

choice of colours does seem to be a vexing issue as well as something that depends

on what one is trying to show in the first place. For this reason, the colour schemes

used in openair are very flexible: if you don’t like them, you can change them

easily. R itself can handle colours in many sophisticated ways; see for example the

RColorBrewer package.

Several pre-defined colour schemes are available to make it easy to plot data.

In fact, for most situations the default colour schemes should be adequate. The

choice of colours can easily be set; either by using one of the pre-defined schemes

or through a user-defined scheme. More details can be found in the openair open-
Colours function. Some of the defined colours are shown in Figure 8.1, together

with an example of a user defined scale that provides a smooth transition from

yellow to blue. The code that produced this plot is shown for Figure 8.1:8

The user-defined scheme is very flexible and the following provides examples of its

use. In the examples shown next, the polarPlot function is used as a demonstration

of their use.

8This is given for interest, the user does not need to know this to use the colours.
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library(openair)

## small function for plotting

printCols <- function(col, y) {

rect((0:200) / 200, y, (1:201) / 200, y + 0.1, col = openCol-

ours(col, n = 201),

border = NA)

text(0.5, y + 0.15, deparse(substitute(col)))

}

## plot an empty plot

plot(1, xlim = c(0, 1), ylim = c(0, 1.6), type = "n", xlab = "", ylab = "",

axes = FALSE)

printCols("default", 0)

printCols("increment", 0.2)

printCols("heat", 0.4)

printCols("jet", 0.6)

printCols("hue", 0.8)

printCols("brewer1", 1.0)

printCols("greyscale", 1.2)

printCols(c("tomato", "white", "forestgreen" ), 1.4)

"default"

"increment"

"heat"

"jet"

"hue"

"brewer1"

"greyscale"

c("tomato", "white", "forestgreen")

F . Pre-defined colour scales in openair. The top colour scheme is a user-defined

one.

# use default colours - no need to specify

polarPlot(mydata)

# use pre-defined "jet" colours

polarPlot(mydata, cols = "jet")

# define own colours going from yellow to green

polarPlot(mydata, cols = c("yellow", "green"))

# define own colours going from red to white to blue

polarPlot(mydata, cols = c("red", "white", "blue"))
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8.6 Automatic text formatting

openair will increasingly try to automate the process of annotating plots. It can

be time consuming (and tricky) to repetitively type in text to represent µg m−3

or PM10 (µg m−3) etc. in R. For this reason, an attempt is made to automatically

detect strings such as ‘nox’ or ‘NOx’ and format them correctly. Where a user

needs a y-axis label such as NOx (µg m−3) it will only be necessary to type ylab =

"nox (ug/m3)". The same is also true for plot titles.

Over time we will add to the number of text strings that could be automatically

formatted. It is suggested that users get in touch if they have a specific request that

is not yet covered. Most functions have an option called auto.text that is set to

TRUE by default. Users can override this option by setting it to FALSE.

Note that there will be occasions when the user will want to format the text them-

selves, as shown by the examples in Table 5.1. In this case the option auto.text

= FALSE should be set when using a function and the user should supply their own

expression.

8.7 Multiple plots on a page

We often get asked how to combine multiple plots on one page. Recent changes to

openair makes this a bit easier. Note that because openair uses lattice graphics
the base graphics par settings will not work.

It is possible to arrange plots based on a column × row layout. Let’s put two plots

side by side (2 columns, 1 row). First it is necessary to assign the plots to a variable:

a <- windRose(mydata)

b <- polarPlot(mydata)

Now we can plot them using the split option:

print(a, split = c(1, 1, 2, 1))

print(b, split = c(2, 1, 2, 1), newpage = FALSE)

In the code above for the ‘split’ option, the last two numbers give the overall

layout (2, 1) — 2 columns, 1 row. The first two numbers give the column/row

index for that particular plot. The last two numbers remain constant across the

series of plots being plotted.

There is one difficulty with plots that already contain sub-plots such as timeVari-

ation where it is necessary to identify the particular plot of interest (see the

timeVariation help for details). However, say we want a polar plot (b above)

and a diurnal plot:

c <- timeVariation(mydata)

print(b, split = c(1, 1, 2, 1))

print(c, split = c(2, 1, 2, 1), subset = "hour", newpage = FALSE)

Formore control it is possible to use the position argument. position is a vector

of 4 numbers, c(xmin, ymin, xmax, ymax) that give the lower-left and upper-right

corners of a rectangle in which the plot is to be positioned. The coordinate system

for this rectangle is [0–1] in both the x and y directions.
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As an example, consider plotting the first plot in the lower left quadrant and the

second plot in the upper right quadrant:

print(a, position = c(0, 0, 0.5, 0.5), more = TRUE)

print(b, position = c(0.5, 0.5, 1, 1))

The position argument gives more fine control over the plot location.

8.8 Annotating openair plots

A frequently asked question about openair and requested feature is how to annotate

plots. While all openair functions could have options to allow annotations to be

made, this would make the functions cumbersome and reduce flexibility. Neverthe-

less it is useful to be able to annotate plots in lots of different ways. Fortunately there

are existing functions in packages such as lattice and latticeExtra that allow for

plots to be updated. An example of the sorts of annotation that are possible is shown

in Figure 8.2, which is an enhanced version of Figure 17.1. These annotations

have been subsequently added to Figure 17.1 and built up in layers. This section

considers how to annotate openair plots more generally and uses Figure 8.2 as an

example of the types of annotation possible. Also considered specifically is the

annotation of plots that are in polar coordinates, as these can sometimes benefit

from different types of annotation.

There are several different types of objects that can be useful to add to plots

including text, shapes, lines and other shading. Given that many openair plots can
consist of multiple panels, it is also useful to think about how to annotate specific

panels. The examples given in this section will apply to all openair plot, the only
difference being the coordinate system used in each case.

The basis of openair annotations is through the use of the latticeExtra package,
which should already be installed as part of openair. In that package there is a

function called layer that effectively allows annotations to be built up ‘layer by

layer’.

Adding text

To add text (or other annotations) it is necessary to know the coordinates on a plot

for where the text will go, which will depend on the data plotted. In this extended

example using the timePlot function, the y-axis will be in ordinary numerical

units, whereas the x-axis will be in a date-time format (POSIXct).

There are various ways that annotations can be added, but the method used here

is to add to the previous plot using a function called trellis.last.object() to

which we want to add a later. This may seem complicated, but once a few examples

are considered, the method becomes very powerful, flexible and straightforward. In

a multi-panel plot such as Figure 8.2 it is also useful to specify which rows/columns

should be added to. If they are not specified then the annotation will appear in all

panels.

First, a plot should be produced to which we wish to add some text.
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F . Examples of different ways of annotating a plot in openair.

## make sure latticeExtra is loaded

library(latticeExtra)

timePlot(selectByDate(mydata, year = 2003, month = "aug"),

pollutant = c("nox", "o3", "pm25", "pm10", "ws"))

So, considering Figure 8.2, this is how the text ‘some missing data’ was added to

the top panel.

trellis.last.object() +

layer(ltext(x = as.POSIXct("2003-08-04"), y = 200,

labels = "some missing data"), rows = 1)

So what does this do? First, the trellis.last.object() is simply the last plot

that was plotted. Next the layer function is used to add some text. The text itself

is added using the ltext (lattice) function. It is worth having a look at the help for

ltext as that gives an overview of all the common annotations and other options.

We have chosen to plot the text at position x = ‘2003-08-04’ and y = 200 and

the label itself. A useful option to ltext is pos. Values can be 1, 2, 3 and 4, and

indicate positions below (the default), to the left of, above and to the right of the

specified coordinates

Adding text and a shaded area

This time we will highlight an interval in row 2 (O3) and write some text on top.

Note that this time we use the lpolygon function and choose to put it under
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everything else on the plot. For the text, we have chosen a colour (yellow) font

type 2 (bold) and made it a bit bigger (cex = 1.5). Note also the ‘y’ values extend

beyond the actual limits shown on the plot — just to make sure they cover the

whole region.

The polygon could of course be horizontal and more than one producing a series

of ‘band’ e.g. air quality indexes. A more sophisticated approach is shown later for

PM2.5.

## add shaded polygon

trellis.last.object() +

layer(lpolygon(x = c(as.POSIXct("2003-08-07"),

as.POSIXct("2003-08-07"), as.POSIXct("2003-08-12"),

as.POSIXct("2003-08-12")), y = c(-20, 600, 600, -20),

col = "grey", border = NA), under = TRUE, rows = 2)

## add text

trellis.last.object() +

layer(ltext(x = as.POSIXct("2003-08-09 12:00"), y = 50,

labels = "!!episode!!", col = "yellow",

font = 2, cex = 1.5), rows = 2)

The small shaded, semi-transparent area shown in the bottom panel was added

as follows:

## add shaded polygon

plt <- plt +

layer(lpolygon(x = c(as.POSIXct("2003-08-21"), as.POSIXct("2003-08-21"),

as.POSIXct("2003-08-23"), as.POSIXct("2003-08-23")),

y = c(4, 8, 8, 4), col = "blue", border = NA,

alpha = 0.2), rows = 5)

Adding an arrow

The arrow shown on the first panel of Figure 8.2 was added as follows. Note the

code = 3 placed arrows at both ends. Note that angle is the angle from the shaft

of the arrow to the edge of the arrow head.

trellis.last.object() +

layer(larrows(as.POSIXct("2003-08-01"), 100,

as.POSIXct("2003-08-08 14:00"),

100, code = 3, angle = 30), rows = 1)

Adding a reference line and text

This code adds a vertical dashed reference line shown in the 4th panel (PM10) along

with some text aligned at 90 degrees using the srt option of ltext.

trellis.last.object() +

layer(panel.abline(v = as.POSIXct("2003-08-25"), lty = 5),

rows = 4)

trellis.last.object() +

layer(ltext(x = as.POSIXct("2003-08-25 08:00"), y = 60,

labels = "reference line", srt = 90), rows = 4)
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Highlight a specific point

Up until now annotations have been added using arbitrary coordinates in each

panel. What if we wanted to highlight a particular point, or more generally work

with the actual data that are plotted. Knowing how to refer to existing data greatly

extends the power of these functions.

It is possible to refer to a specific point in a panel simply by indexing the point

of interest i.e. x, y. For example, to mark the 200th PM10 concentration (without

knowing the actual date or value):

## add a specfic point

trellis.last.object() +

layer(lpoints(x[200], y[200], pch = 16, cex = 1.5),

rows = 4)

What if we wanted to highlight the maximum O3 concentration? It is possible

to work out the index first and then use that to refer to that point. Note the ‘;’ to

allow for the code to span multiple commands.

## add a point to the max O3 concentration

trellis.last.object() +

layer({maxy <- which.max(y);

lpoints(x[maxy], y[maxy], col = "black", pch = 16)},

rows = 2)

## label max ozone

trellis.last.object() +

layer({maxy <- which.max(y);

ltext(x[maxy], y[maxy], paste(y[maxy], "ppb"),

pos = 4)}, rows = 2)

Add a filled polygon

It can be seen in the top panel of Figure 8.2 that some of the data are highlighted

by filling the area below the line. This approach can be useful more generally in

plotting. While it is possible to draw polygons easily and refer to the data itself,

there needs to be a way for dealing with gaps in data, otherwise these gaps could

be filled in perhaps unpredictable ways. A function has been written to draw a

polygon taking into account gaps (poly.na).

poly.na <- function(x1, y1, x2, y2, col = "black", alpha = 0.2) {

for(i in seq(2, length(x1)))

if (!any(is.na(y2[c(i - 1, i)])))

lpolygon(c(x1[i - 1], x1[i], x2[i], x2[i - 1]),

c(y1[i - 1], y1[i], y2[i], y2[i - 1]),

col = col, border = NA, alpha = alpha)

}

This time we work out the ids of the data spanning an area of interest. Then the

poly.na function is used. Note that the alpha transparency is by default 0.2 but

another value can easily be supplied, as shown in the air quality ‘bands’ example.
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trellis.last.object() +

layer({id <- which(x >= as.POSIXct("2003-08-11") &

x <= as.POSIXct("2003-08-25"));

poly.na(x[id], y[id], x[id], rep(0, length(id)),

col = "darkorange")}, rows = 1)

Add air quality bands as polygons

It is a simple extension to go from using a polygon below the data to polygons at

certain intervals e.g. air quality indexes. These are shown for PM2.5 and the bands

considered are 0–20, 20–30, 30–40 and >40.

trellis.last.object() +

layer(poly.na(x, y, x, rep(0, length(x)),

col = "green", alpha = 1), rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <20, NA, y), x,

rep(20, length(x)), col = "yellow", alpha = 1),

rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <30, NA, y),

x, rep(30, length(x)),

col = "orange", alpha = 1), rows = 3)

trellis.last.object() +

layer(poly.na(x, ifelse(y <40, NA, y),

x, rep(40, length(x)),

col = "red", alpha = 1), rows = 3)

Polar plot examples

Many of the examples considered above are relevant to all other functions e.g.

how to add text, choosing rows and columns to plot in. Polar coordinate plots are

different because of the coordinate system used and this section considers a few

examples.

One useful approach is to be able to draw an arc, perhaps highlighting an area

of interest. A simple, but flexible function has been written to do this. It takes

arguments theta1 and theta2 that define the angular area of interest and lower

and upper to set the lower and upper wind speed, respectively. It also has additional

arguments theta3 and theta4 which optionally set the angles for the ‘upper’ wind

speed.
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F . polarPlot for SO2 with annotations.

arc <- function(theta1 = 30, theta2 = 60, theta3 = theta1, theta4 = theta2,

lower = 1, upper = 10){

## function to work out coordinates for an arc sector

if (theta2 < theta1) {

ang1 <- seq(theta1, 360, length = abs(theta2 - theta1))

ang2 <- seq(0, theta2, length = abs(theta2 - theta1))

angles.low <- c(ang1, ang2)

## for upper angles

ang1 <- seq(theta1, 360, length = abs(theta4 - theta3))

ang2 <- seq(0, theta2, length = abs(theta4 - theta3))

angles.high <- c(ang1, ang2)

} else {

angles.low <- seq(theta1, theta2, length = abs(theta2 - theta1))

angles.high <- seq(theta3, theta4, length = abs(theta4 - theta3))

}

x1 <- lower * sin(pi * angles.low / 180)

y1 <- lower * cos(pi * angles.low / 180)

x2 <- rev(upper * sin(pi * angles.high / 180))

y2 <- rev(upper * cos(pi * angles.high / 180))

data.frame(x = c(x1, x2), y = c(y1, y2))

}

Following on from the previous examples, some annotations have been added to

the basic polar plor for SO2 as shown in Figure 8.3. Note that in these plots (0, 0)

is the middle of the plot and the radial distance will be determined by the wind

speed — or whatever the radial variable is. This way of plotting arcs can also be

applied to other functions that show directional data.
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polarPlot(mydata, pollutant = "so2", col = "jet")

trellis.last.object() + layer(ltext(-12, -12, "A", cex = 2))

trellis.last.object() + layer(ltext(10, 2, "B", cex = 2, col = "white"))

trellis.last.object() + layer(lsegments(0, 0, -11.5, -11.5, lty = 5))

## add and arc to highlight area of interest

trellis.last.object() +

layer(lpolygon(x = arc(theta1 = 60, theta2 = 120, lower = 2,

upper = 15)$x, y = arc(theta1 = 60,

theta2 = 120, lower = 2,

upper = 15)$y, lty = 1, lwd = 2))

Using grid graphics — identify locations interactively

The examples above provide a precise way of annotating plots for single or multi-

panels openair displays. However, these methods won’t work for plots that consist

of completely separate plots such as the four plots in timeVariation. There are

however other methods that can be used to annotate such plots using the package

grid, which forms the basis of lattice graphics. There is enormous capability for

annotating plots using the grid package and only a few simple examples are given

here.

Given a plot such as Figure 21.1, how could texts be added at any location— say

in themiddle monthly plot? One very useful function for this type of annotation that

allows the user to interactively choose a location is the grid.locator() function

in the grid package. That function can be called with different coordinate systems

— but the one we want defines the bottom-left corner as (0, 0) and the top right as

(1, 1).

First of all, make a timeVariation plot like Figure 21.1.

timeVariation(mydata)

Now let’s choose a location on the plot interactively using themouse and selecting

somewhere in the middle of the monthly plot.

library(grid)

## bring up the interactive location chooser

grid.locator(unit="npc")

What should happen is that in the R console the coordinates are given for that

point. In my case these were x = 0.503 and y = 0.338. These coordinates can now

be used as the basis of adding some text or other annotation. In the example below,

the grid.text function is used to add some text for these coordinates making the

font bigger (cex = 2), bold (font = 2) and blue (col = "blue").

grid.text(x = 0.503, y = 0.338, label = "here!",

gp = gpar(cex = 2, font = 2, col = "blue"))

Even with this basic approach, some sophisticated annotation is possible with

any openair plot. There are many other functions that can be used from the grid

package that would allow for polygons, segments and other features to be drawn

is a similar way to the examples earlier in this section. Continuing with the same

example, here is how to add an arrow pointing to the maximum NOx concentration
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shown on the top plot for Saturday (again using the grid.locator function).

grid.lines(x = c(0.736, 0.760), y = c(0.560, 0.778),

arrow = arrow())

grid.text(x = 0.736, y = 0.560, label = "maximum", just = "left")

8.9 Getting help

The principal place for seeking help with openair functions is through the software
itself. The document you are reading will increasingly give the background to

the ideas and wider information. Also, the package itself will always contain the

most up to date help. Furthermore, the process of building and checking packages

is strict. For example, it is checked to see if all the options in a function match

with descriptions in the help files, and all examples given in the help (and there are

many) are run to ensure they all work. Nevertheless, the options shown for each

function in this document are parsed directly from the openair package ensuring
consistency between this document and the package help. To bring up the general

help page (assuming you have loaded openair), type ?openair, which will bring up
the main openair page, from which there are links to all functions. Similarly, if you

want help with a specific function more directly, type something like ?polarPlot.

The help screen will provide the most up to date information on the function

including: a short description, a description of all the options, a more detailed

description and links to other similar functions. Importantly, each function help

will have several examples given of its use, which are easily reproducible; just copy

them into R. These examples use the data set ‘example data long.csv’ mentioned

previously.

Handy tip: use TAB for word completion

If you are typing directly into R you do not always need to type the whole
word of a function or option. Taking the calendarPlot function as an ex-
ample, type ‘calen’ then press TAB and it will complete the whole string
‘calendarPlot’. Similarly, when typing the function options such as ‘pollut-
ant’, just type the first few lines ‘poll’, press TAB and it will complete as
‘pollutant=’. This makes R much quicker to work with. It takes a bit of exper-
imentation to get a feel for how many letters are required before a unique
function name or option can be completed.
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F . The help screen for the function polarPlot.

9 Getting data into openair

Importing data is usually the first step involved in data analysis using openair. As
has been stressed before, the key issue is ensuring the data are in a simple format

avoiding any unnecessary formatting. For this reason data are best stored either

in a database or a .csv file. R itself has lots of capabilities for importing data and

these will be useful in many situations e.g. read.table and read.csv. However,

openair has several dedicated functions to make data import easier for users, as

well as some more specific functions for particular data types. These are described

below.

9.1 The import function

A flexible function import has been written to import .csv or .txt file data and

format the date/time correctly. The main purpose of this function is to help format

dates etc. for use in openair and R. This is the principal means by which most

users should import data unless the data are from UK networks. It is simple to use

with its default assumptions e.g. header on the first line and a column ‘date’ in the

format dd/mm/yyyy HH:MM:

mydata <- import()

Typing this into R will bring up an ‘open file’ dialog box, from which you can

choose a .csv file. Try importing the ‘example data long.csv’ file in this was to see
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how it works. Used without any options like this, it assumes that the date field is

in the format dd/mm/yyyy HH:MM and is called ‘date’.

Often it is better to supply the file path because this makes the analysis more

reproducible e.g.

mydata <- import("d:/temp/my interesting data.csv")

The import function is actually very flexible and can take account of different

date formats, header lines etc. See the options below. For most users, few if any of

these options will need to be used, but for ‘difficult’ data, the flexibility should be

helpful. One option that is often useful is to tell R how missing data are represented.

If the fields are left blank, they will automatically be set to NA. However, it may

be that the file identifies missing data by ‘NoData’, or ‘-999’. In this case, import

should be called like:

mydata <- import(na.strings = "NoData")

or

mydata <- import(na.strings = "-999")

In the case of missing data being represented by several strings e.g. ‘-99.0’ and

‘-999’, it should be called like

mydata <- import(na.strings = c("-99.0", "-999"))

It is essential to supply the import function with details of how missing data

are represented if they are not represented by either a blank cell or NA. This is

because if text is present in a column that should be numeric, then R will consider

that the column is a character and not numeric. When using the import function,

details of the format of each field are printed in R. The user can check that fields

that should be numeric appear as either ‘numeric’ or ‘integer’ and not ‘character’

or ‘factor’.

Another example is a file that has separate date and time fields e.g. a column

called ‘mydate’ and a separate column called ‘mytime’. Further, assume that date

is in the format dd.mm.YYYY e.g. 25.12.2010, and time is in the format HH:MM.

Then the file could be imported as:

import("c:/temp/test.csv", date = "mydate", date.format = "%/d.%m.%Y",

time = "mytime", time.format = "%H:%M")

What if the date was in the format mm.dd.YYYY?:

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H:%M")

…and the time was just the hour as an integer (0–23):

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H")
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Another common situation is that hour is represented as 1–24 in a date-time field.

In this case it is necessary to correct for this. R stores POSIXct format as seconds,

so 3600 need to be subtracted to ensure the time is correct. Note that if there is a

separate column for hour then import will correct that automatically. So, for the

date-time situation:

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y %H",

correct.time = -3600)

Note if time was expressed as HH:MM:ss, then the option time.format =

"%H:%M:%S" should be used.

There are other options for ignoring the first 𝑛 lines i.e. due to header information

and so on. The user can specify the header line row (header.at) and the row the

data starts at (data.at).

Note also that import assumes there are no daylight saving time (DST) issues

in the original data i.e. a missing hour in spring and a duplicate hour in autumn.

Dealing with these issues in R rapidly gets too complicated … users should therefore

ensure the original data do not consider DST.

The options for the import function are:

file The name of the file to be imported. Default, file = file.choose(),

opens browser. Alternatively, the use of read.table (in utils) also

allows this to be a character vector of a file path, connection or url.

file.type The file format, defaults to common ‘csv’ (comma delimited) format,

but also allows ‘txt’ (tab delimited).

sep Allows user to specify a delimiter if not ‘,’ (csv) or TAB (txt). For

example ‘;’ is sometimes used to delineate separate columns.

header.at The file row holding header information or NULL if no header to be

used.

data.at The file row to start reading data from. When generating the data

frame, the function will ignore all information before this row, and

attempt to include all data from this row onwards.

date Name of the field containing the date. This can be a date e.g. 10/12/2012

or a date-time format e.g. 10/12/2012 01:00.

date.format The format of the date. This is given in ‘R’ format according to

strptime. For example, a date format such as 1/11/2000 12:00

(day/month/year hour:minutes) is given the format “%d/%m/%Y

%H:%M”. See examples below and strptime for more details.

time The name of the column containing a time — if there is one. This is

used when a time is given in a separate column and date contains no

information about time.

time.format If there is a column for time then the time format must be supplied.

Common examples include “%H:%M” (like 07:00) or an integer giv-

ing the hour, in which case the format is “%H”. Again, see examples

below.
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na.strings Strings of any terms that are to be interpreted as missing (NA). For

example, this might be “-999”, or “n/a” and can be of several items.

quote String of characters (or character equivalents) the imported file may

use to represent a character field.

ws Name of wind speed field if present if different from “ws” e.g. ws =

"WSPD".

wd Name of wind direction field if present if different from ”wd” e.g. wd

= "WDIR".

correct.time Numerical correction (in seconds) for imported date. Default NULL

turns this option off. This can be useful if the hour is represented as 1

to 24 (rather than 0 to 23 assumed byR). Inwhich case correct.time

= -3600 will correct the hour.

... Other arguments passed to read.table.

9.2 The importAURN function

While import is a useful function for ad-hoc data import, much of the data stored

in the UK and beyond resides on central repositories that are available over the

Internet. The UK  archive and King’s College London’s London Air Quality

Network (LAQN) are two important and large databases of information that allow

free public access. Storing and managing data in this way has many advantages

including consistent data format, and underlying high quality methods to process

and store the data. We are working with AEA and KCL to make things easier to

link with openair functions.
Many users download hourly data from the air quality archive at http://www.

airquality.co.uk. Most commonly, the data are emailed to the user as .csv files

and have a fixed format as shown below. This is a useful facility but does have some

limitations and frustrations, many of which have been overcome using a new way

of storing and downloading the data described below.

The importAURN function has been written to make it easy to import data from

the UK . AEA have provided .RData files (R workspaces) of all individual

sites and years for the . These files are updated on a daily basis. This approach

requires a link to the Internet to work.

There are several advantages over the web portal approach where .csv files are

downloaded. First, it is quick to select a range of sites, pollutants and periods

(see examples below). Second, storing the data as .RData objects is very efficient

as they are about four times smaller than .csv files (which are already small) —

which means the data downloads quickly and saves bandwidth. Third, the function

completely avoids any need for data manipulation or setting time formats, time

zones etc. Finally, it is easy to import many years of data beyond the current limit

of about 64,000 lines. The final point makes it possible to download several long

time series in one go.

The site codes and pollutant names can be upper or lower case. The function

will issue a warning when data less than six months old is downloaded, which may

not be ratified. Type ?importAURN for a full listing of sites and their codes.

89

http://www.airquality.co.uk
http://www.airquality.co.uk


9 Getting data into openair

Note that currently there is no meteorological data associated with the archive.

To use the fill flexibility of the functions it is recommended that the  data are

combined with appropriate local meteorological data. See (§5.3) for more details

on how to combine separate air pollution and meteorological files.

The function has the following options.

site Site cd of the AURN site to import e.g. ”my1” is Marylebone Road.

Several sites can be imported with site = c("my1", "nott")— to

import Marylebone Road and Nottingham for example.

year Year or years to import. To import a sequence of years from 1990

to 2000 use year = 1990:2000. To import several specfic years use

year = c(1990, 1995, 2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants ffrom a

site. To import only NOx and NO2 for example use pollutant =

c("nox", "no2").

hc A few sites have hydrocarbon measurements available and setting hc

= TRUE will ensure hydrocarbon data are imported. The default is

however not to as most users will not be interested in using hydrocar-

bon data and the resulting data frames are considerably larger.

Some examples of usage are shown below.

## import all pollutants from Marylebone Rd from 1990:2009

mary <- importAURN(site = "my1", year = 2000:2009)

## import nox, no2, o3 from Marylebone Road and Nottingham Centre for 2000

thedata <- importAURN(site = c("my1", "nott"), year = 2000,

pollutant = c("nox", "no2", "o3"))

## import over 20 years of Mace Head O3 data!

o3 <- importAURN(site = "mh", year = 1987:2009)

## import hydrocarbon data from Marylebone Road

hc <- importAURN(site = "my1", year = 2008, hc = TRUE)

In future, openair functions will recognise  data and capture units, thus

enabling plots to be automatically annotated. Furthermore, there is the potential to

include lots of other ‘meta data’ such as site location, site type etc., which will be

added to the function in due couse.

9.3 The importKCL function

King’s College London also make available their data in a similar way to the

importAURN. One difference compared to the importAURN is the availability of

meteorological data in London, which is accessible through the option met. We

have provided a ‘typical’ meteorological data set representing London, which is a

composite of data from several instruments co-located with air pollution monitoring

sites. Access to reliable meteorological data can be difficult and expensive, and this

is an issue we hope to improve in time.

The options for importKCL are:
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site Site cd of the network site to import e.g. ”my1” is Marylebone Road.

Several sites can be imported with site = c("my1", "kc1")— to

import Marylebone Road and North Kensignton for example.

year Year or years to import. To import a sequence of years from 1990

to 2000 use year = 1990:2000. To import several specfic years use

year = c(1990, 1995, 2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants from a

site. To import only NOx and NO2 for example use pollutant =

c("nox", "no2").

met Should meteorological data be added to the import data? The default

is FALSE. If TRUE wind speed (m/s), wind direction (degrees), solar

radiation and rain amount are available. See details below.

Access to reliable and free meteorological data is problematic.

units By default the returned data frame expresses the units in mass terms

(ug/m3 for NOx, NO2, O3, SO2; mg/m3 for CO). Use units =

"volume" to use ppb etc. PM10_raw TEOM data are multiplied

by 1.3 and PM2.5 have no correction applied. See details below

concerning PM10 concentrations.

extra Not currently used.

Examples of importing data are given in the help files as part of openair. However,

the example below shows how to import data from the Bexley 1 site (code BX1),

together with the meteorological data.

Like the importAURN function the selection is only possible by site code (all the

site codes and full site descriptions are shown in the help file). In time we will

include other information such as site location and type and develop the functions

to make it easy to use these other fields.

Below is an example of importing data from the Bexley 1 site.

bx1 <- importKCL(site = "bx1", year = 2000:2009, met = TRUE)

in which case a dialog box will appear prompting the user for a file location. The

data frame mydata is now ready for use in openair.

9.4 Importing data from the CERC ADMS modelling systems

The ADMS suite of models is widely used in the UK and beyond. These models

are used for a wide range of purposes and one of the benefits of openair is that many

of the functions are potentially useful for model evaluation. One of the principal

benefits of linking openair with the ADMS models is the access to meteorological

data that is possible. In the UK, the Met Office provides meteorological data in a

specific format for use in ADMS models.9 It is useful to be able to easily import

the meteorological data into openair because analyses are often limited by the

availability of representative meteorological data. However, the use of directly

9Specifically hourly sequential data and not statistical summaries of data.
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F . Typical format of an hourly ADMS met file.

measured input data is only one possibility. When ADMS models run they use a

sophisticated meteorological pre-processor to calculate other quantities that are not

directly measured, but are important to dispersion modelling. Examples of these

other variables are boundary layer height and surface sensible heat flux. These

and many other quantities are calculated by the met pre-processor and output to a

.MOP file. Access to these other quantities greatly increases the potential for model

evaluation and in general provides a much richer source of information for analysis.

Many users may have meteorological data in the ADMS format. This is the

format provided by the UK Met Office for the ADMS model. A an example of

the format is shown in Figure 9.1, which is a simple text file. The importADMSMet

function imports such data into R in a format suitable for openair.
This can be done, for example by:

met <- importADMS("d:/temp/heathrow01.met")

If no file name is supplied, the user will be prompted for one.

Sometimes it may be necessary to import several years. Here’s one approach

for doing so assuming the files are in a folder d:/metdata and all have a file exten-

sion.met:

all.met <- lapply(list.files(path = "d:/metdata", pattern =".met", full.names = TRUE),

function(.file) importADMS(.file))

all.met <- do.call(rbind.fill, all.met)

all.met will then contain met data for all years in one data frame.

9.4.1 An example considering atmospheric stability

One of the significant benefits of working with ADMS output files is having access

to the outputs from the meteorological pre-processor. ADMS uses readily available
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meteorological variables such as wind speed, temperature and cloud cover and

calculates parameters that are used in the dispersion algorithms. When ADMS

is run it produces a .MOP file with all these inputs and processed quantities in.

Access to parameters such as boundary layer height, Monin-Obukov length and so

on can greatly increase the opportunities for insightful data analysis using existing

openair functions. This is almost certainly an area we will cover in more depth

later; but for now, here are a few examples.

We are going to use a .MOP file from 2001 following some dispersion modelling of

stacks in London. The interest here is to use the results from the met pre-processor

to better understand sources in the east of London at the Thurrock background

site. First, we can import the Thurrock data (type ?importKCL for site code listing)

using the importKCL function:

tk1 <- importKCL(site = "tk1", year = 2001)

## show first few lines of tk1

head(tk1)

## date nox no2 o3 so2 co pm10_raw pm10

## 41862 2001-01-01 00:00:00 NA NA NA NA NA 5.2 5.2

## 41863 2001-01-01 01:00:00 7.68 5.76 50 46.40 0.232 11.7 11.7

## 41864 2001-01-01 02:00:00 5.76 3.84 52 57.56 0.232 7.8 7.8

## 41865 2001-01-01 03:00:00 5.76 3.84 56 14.72 0.232 5.2 5.2

## 41866 2001-01-01 04:00:00 1.92 1.92 54 10.71 0.232 10.4 10.4

## 41867 2001-01-01 05:00:00 3.84 1.92 54 10.71 0.232 14.3 14.3

## site code

## 41862 Thurrock - London Road (Grays) TK1

## 41863 Thurrock - London Road (Grays) TK1

## 41864 Thurrock - London Road (Grays) TK1

## 41865 Thurrock - London Road (Grays) TK1

## 41866 Thurrock - London Road (Grays) TK1

## 41867 Thurrock - London Road (Grays) TK1

Next we will import the .MOP file. The function automatically lists all the

variables imported:
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met <- importADMS("~/openair/Data/met01.MOP")

## date1 date2 line run

## "POSIXct" "POSIXt" "integer" "factor"

## fr ws ws.gstar wd

## "numeric" "numeric" "numeric" "numeric"

## delta.wd ftheta0 k recip.lmo

## "numeric" "numeric" "numeric" "numeric"

## h nu delta.theta temp

## "numeric" "numeric" "numeric" "numeric"

## p cl albedo.met albedo.disp

## "numeric" "numeric" "numeric" "numeric"

## alpha.met alpha.disp tsea delta.t

## "numeric" "numeric" "numeric" "numeric"

## sigma.theta rhu q0 lambdae

## "numeric" "numeric" "numeric" "numeric"

## rhu.1 drhdzu process.ws.star process.ws.g

## "numeric" "numeric" "numeric" "numeric"

## process.ws.gstar process.wd.0 process.wd.g process.delta.wd

## "numeric" "numeric" "numeric" "numeric"

## process.wd.sec process.wstar process.ftheta0 process.k

## "numeric" "numeric" "numeric" "numeric"

## process.recip.lmo process.h process.nu process.delta.theta

## "numeric" "numeric" "numeric" "numeric"

## process.temp process.p process.delta.t process.sigma.theta

## "numeric" "numeric" "numeric" "numeric"

## process.q0 process.lambdae process.rhu process.drhdzu

## "numeric" "numeric" "numeric" "numeric"

## process.z0.met process.z0.disp

## "numeric" "numeric"

Now we need to merge these two files using ‘date’ as the common field using the

merge function, which is part of the base R system:

tk1 <- merge(tk1, met, by = "date")

Nowwe have a data framewith all the pollutionmeasurements andmeteorological

variables matched up. A nice first example is to make use of variables that are not

readily available. In particular, those representing atmospheric stability are very

useful. So, let’s see what a polar plot looks like split by different levels of the

atmospheric stability parameter the reciprocal of the Monin-Obukov length,
1

𝐿𝑀𝑂
.

This has the name process.recip.lmo. Note we also set the option min.bin =

2, to ensure the output is not overly affected by a single high concentration.

The results are shown in Figure 9.2. So what does this tell us? Well, first
1

𝐿𝑀𝑂
has been split into three different levels (broadly speaking the more negative the

value of
1

𝐿𝑀𝑂
the more unstable the atmosphere is and the more positive

1
𝐿𝑀𝑂

is, the

more stable the atmosphere is). In Figure 9.2 the plot shows what we might think

of unstable, neutral and stable atmospheric conditions.

The first thing to note from Figure 9.2 is that lower wind speeds are associated

with stable and unstable atmospheric conditions — shown by the smaller plot areas

for these conditions (neutral conditions have a larger ‘blob’ extending to higher

wind speeds). This is entirely expected. Starting with the unstable conditions

(top left panel), SO2 concentrations are dominated by easterly and south-easterly

94



9 Getting data into openair

polarPlot(tk1, pollutant = "so2", type = "process.recip.lmo",

min.bin = 2)
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F . Use of the importADMS function to access atmospheric stability parameters

for use in a polar plot. In this case
1

𝐿𝑀𝑂
is split by three different levels, approximately

corresponding to unstable, neutral and stable atmospheric conditions.

winds. These concentrations are likely dominated by tall stack emissions from

those wind directions. For stable conditions (plot at the bottom), three sources

seem to be important. There is a source to the north-east, the south-east and higher

concentrations for very low wind speeds. The latter is likely due to road vehicle

emissions of SO2. The neutral conditions are perhaps revealing two sources to the

south-east. Taken together, plotting the data in this way is beginning to reveal a

potentially large number of sources in the area. Combined with the results from a

dispersion model, or knowledge of local stacks, there is a good chance that these

sources can be identified.

A polar plot on its own does not reveal such detailed information. Try it:

polarPlot(tk1, pollutant = "so2")

Of course care does need to be exercised when interpreting these outputs, but

the availability of wider range of meteorological data can only improve inference.

Here are some other analyses (not plotted, but easily run). For NOx:

## dominated by stable conditions and low

## wind speeds (traffic sources)

polarPlot(tk1, pollutant = "nox", type = "process.recip.lmo",

min.bin = 2)
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PM10:

## complex, but dominated by stable/unstable easterly conditions

polarPlot(tk1, pollutant = "pm10", type = "process.recip.lmo",

min.bin = 2)

How about the ratio of two pollutants, say the ratio of SO2/NOx? First calculate

the ratio:

tk1 <- transform(tk1, ratio = so2 / nox)

## evidence of a source with high so2/nox ratio ro the SSE

polarPlot(tk1, pollutant = "ratio", type = "process.recip.lmo",

min.bin = 2)

And don’t forget all the other parameters available such as boundary layer height

etc. — and all the other functions in openair that can be used.

10 The summaryPlot function

The summaryPlot function is a way of rapidly summarising important aspects

of data. While many statistical summaries are possible to calculate with R, the

summaryPlot function has been written specifically for monitoring data. The

function provides key graphical and statistical summaries. summaryPlot has the

following options:

mydata A data frame to be summarised. Must contain a date field and at least

one other parameter.

na.len Missing data are only shown with at least na.len contiguous missing

vales. The purpose of setting na.len is for clarity: with long time

series it is difficult to see where individual missing hours are. Further-

more, setting na.len = 96, for example would show where there are

at least 4 days of continuous missing data.

clip When data contain outliers, the histogram or density plot can fail to

show the distribution of the main body of data. Setting clip = TRUE,

will remove the top 1 better display of the overall distribution of the

data. The amount of clipping can be set with percentile.

percentile This is used to clip the data. For example, percentile = 0.99 (the

default) will remove the top 1 percentile of values i.e. values greater

than the 99th percentile will not be used.

type type is used to determine whether a histogram (the default) or a

density plot is used to show the distribution of the data.

pollutant pollutant is used when there is a field site and there is more than

one site in the data frame.

period period is either year (the default) or month. Statistics are calculated

depending on the period chosen.
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breaks Number of histogram bins. Sometime useful but not easy to set a

single value for a range of very different variables.

col.trend Colour to be used to show the monthly trend of the data, shown as a

shaded region. Type colors() into R to see the full range of colour

names.

col.data Colour to be used to show the presence of data. Type colors() into

R to see the full range of colour names.

col.mis Colour to be used to show missing data.

col.hist Colour for the histogram or density plot.

cols Predefined colour scheme, currently only enabled for "greyscale".

date.breaks Number of major x-axis intervals to use. The function will try and

choose a sensible number of dates/times as well as formatting the

date/time appropriately to the range being considered. This does

not always work as desired automatically. The user can therefore

increase or decrease the number of intervals by adjusting the value of

date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters. Commonly used examples include the

axis and title labelling options (such as xlab, ylab and main), which

are all passed to the plot via quickText to handle routine formatting.

As summaryPlot has two components, the axis labels may be a vector.

For example, the default case (type = "histogram") sets y labels

equivalent to ylab = c("", "Percent of Total").

It is called in a very simple way:10
the

summaryPlot

function
should be
used for
checking

input data
before

applying
other

functions

An example of using summaryPlot shown in Figure 10.1. For each numerical

variable in a data frame, a plot is made, shown in the left panel, showing where data

exist (blue) and missing data (red). For clarity, only running sequences of ≥ 24

hours of missing data are shown. It is easy to see therefore that the beginning part

of the time series for PM2.5 is missing and the end part of SO2. It is also clear that

the time series stops half way through 2005. Also shown in each panel are statistical

summaries, which include: number of missing points (with percentage shown in

parentheses), minimum, maximum, mean, median and the 95th percentile. For

each year, the data capture (%) is shown in green font. So, for example, the data

capture for NOx in 2000 was 96.3 %.

The pale yellow line gives an indication of the variation in values over time

expressed as a daily mean. It is in indication because no numerical scale is given.

The data are formatted so that 0 is placed at the lower part of the scale (top of the

10Note that a data frame mydata is automatically loaded when loading the openair package. The
data set consists of several years of pollutant data from Marylebone Road in London.
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library(openair) # load openair

data(mydata) ## make sure data that comes with openair is loaded

summaryPlot(mydata)

## date1 date2 ws wd nox no2 o3 pm10

## "POSIXt" "POSIXct" "numeric" "integer" "integer" "integer" "integer" "integer"

## so2 co pm25

## "numeric" "numeric" "integer"

date

1998 1999 2000 2001 2002 2003 2004 2005

missing = 5227 (7.5%)
min = 0
max = 20.2

mean = 4.5
median = 4.1

95th percentile = 9

96.5 % 98.2 % 98.7 % 99.8 % 99.9 % 100 % 100 % 47.2 %

w
in

d 
sp

d.
 

missing = 4814 (6.9%)
min = 0
max = 360

mean = 200
median = 210

95th percentile = 340

98.6 % 99.7 % 100 % 99.9 % 99.7 % 100 % 100 % 47.2 %

w
in

d 
di

r. 

missing = 7018 (10%)
min = 0
max = 1144

mean = 178.8
median = 153

95th percentile = 414

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.9 % 47.2 %

N
O

x

missing = 7033 (10%)
min = 0
max = 206

mean = 49.1
median = 46

95th percentile = 93

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.8 % 47.2 %

N
O

2

missing = 7184 (10.2%)
min = 0
max = 70

mean = 7.1
median = 4

95th percentile = 23

86.8 % 95.6 % 98.8 % 96.3 % 97 % 96.3 % 100 % 47.2 %

O
3

missing = 6757 (9.6%)
min = 1
max = 801

mean = 34.4
median = 31

95th percentile = 64

98.5 % 94.8 % 98.6 % 89.1 % 98.1 % 98.7 % 98 % 47.1 %

P
M

10

missing = 15045 (21.5%)
min = 0
max = 63.2

mean = 4.8
median = 4

95th percentile = 11.3

93.9 % 95.3 % 95.8 % 84.5 % 96.5 % 96.1 % 66.2 % 0 %

S
O

2

missing = 6531 (9.3%)
min = 0
max = 19.7

mean = 1.5
median = 1.1

95th percentile = 3.7

98.4 % 95.4 % 95.9 % 96.4 % 97.5 % 98.4 % 96.2 % 47.3 %

C
O

 

missing = 13370 (19.1%)
min = 0
max = 398

mean = 21.7
median = 20

95th percentile = 43
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F . Use of summaryPlot function applied to the mydata data frame. The plots in

the left panel show the time series data, where blue shows the presence of data and red

missing data. The daily mean values are also shown in pale yellow scaled to cover the range

in the data from zero to the maximum daily value. As such, the daily values are indicative

of an overall trend rather than conveying quantitative information. For each pollutant, the

overall summary statistics are given. For each year the percentage data capture is shown in

green font. The panels on the right show the distribution of each species using a histogram

plot.
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data indicator strip) and the maximum value at the top of the graph. The intention

is to give the user a feel for how the data vary over the length of the time series.

The plots shown in the right panel are histograms. It is also possible to show

density plots. A density plot is somewhat similar to a histogram but avoids having

to arbitrarily select a ‘bin’ size. The choice of bin size in histograms can often

lead to a misleading impression of how data are distributed — simply because of

the bin size chosen. The default behaviour of this function ‘clips’ the data and

excludes the highest 1 % of values. This is done to help highlight the shape of the

bulk of the data and has the effect of removing the long tail, typical of air pollution

concentration distributions.

It is possible, however, not to clip the histogram or density plot data and select

various other options:

summaryPlot(mydata, clip = FALSE) # do not clip density plot data

summaryPlot(mydata, percentile = 0.95) # exclude highest 5 % of data etc.

# show missing data where there are at least 10 continuous missing values

summaryPlot(mydata, na.len = 10)

summaryPlot(mydata, col.data = "green") # show data in green

summaryPlot(mydata, col.mis = "yellow") # show missing data in yellow

summaryPlot(mydata, col.dens = "black") # show density plot line in black

Depending on the data available, there may be too many plots shown on one

page, making it difficult to see the detail. Currently, the simplest way to reduce

what is shown is to limit the data to be plotted. In the code below, for example,

only columns 2 and 5 to 7 are plotted (column 1 in this case is the date and must

always be supplied). Alternatively, the subset function could be used:

summaryPlot(mydata[, c(1, 2, 5:7)]) # only plot columns 2 and 5-7

summaryPlot(subset(mydata, select = c(date, nox, no2, co))) # alternative se-

lecting

So far the summaryPlot function has been described and used in terms of plotting

many variables from a single site. What happens if there is more than one site?

Because the plot already produces a dense amount of information it does not seem

sensible to plot several variables across several sites at the same time. Therefore, if

there is a site field, summaryPlot will provide summary data for a single pollutant

across all sites. See ?summaryPlot for more details.
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Use summaryPlot first

It is recommended that the summaryPlot function is used before moving
on to using the other functions detailed below. One of the reasons (apart
from getting to know your data) is that it also acts as a way of ensuring that
other functions should work. For example, if wind speed was missing, or was
formatted as a character rather than a number, it will not show up in the
summary plot. In time we intend to use this function to carry out many data
checks and issue warnings if problems are detected.

11 The cutData function

The cutData function is a utility function that is called by most other functions but

is useful in its own right. It’s main use is to partition data in many ways, many of

which are built-in to openair.

For example, to cut data into seasons:

mydata <- cutData(mydata, type = "season")

head(mydata)

## date ws wd nox no2 o3 pm10 so2 co pm25 season

## 1 1998-01-01 00:00:00 0.60 280 285 39 1 29 4.723 3.373 NA winter (DJF)

## 2 1998-01-01 01:00:00 2.16 230 NA NA NA 37 NA NA NA winter (DJF)

## 3 1998-01-01 02:00:00 2.76 190 NA NA 3 34 6.830 9.602 NA winter (DJF)

## 4 1998-01-01 03:00:00 2.16 170 493 52 3 35 7.662 10.217 NA winter (DJF)

## 5 1998-01-01 04:00:00 2.40 180 468 78 2 34 8.070 8.912 NA winter (DJF)

## 6 1998-01-01 05:00:00 3.00 190 264 42 0 16 5.505 3.053 NA winter (DJF)

This adds a new field ‘season’ that is split into four quantiles. There is an option

hemisphere that can be used to use southern hemisphere seasons when set as

hemisphere = "southern".

The type can also be another field in a data frame e.g.

mydata <- cutData(mydata, type = "pm10")

head(mydata)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01-01 00:00:00 0.60 280 285 39 1 pm10 22 to 31 4.723 3.373 NA

## 2 1998-01-01 01:00:00 2.16 230 NA NA NA pm10 31 to 44 NA NA NA

## 3 1998-01-01 02:00:00 2.76 190 NA NA 3 pm10 31 to 44 6.830 9.602 NA

## 4 1998-01-01 03:00:00 2.16 170 493 52 3 pm10 31 to 44 7.662 10.217 NA

## 5 1998-01-01 04:00:00 2.40 180 468 78 2 pm10 31 to 44 8.070 8.912 NA

## 6 1998-01-01 05:00:00 3.00 190 264 42 0 pm10 1 to 22 5.505 3.053 NA

data(mydata) ## re-load my data fresh

This divides PM10 concentrations into four quantiles — roughly equal numbers

of PM10 concentrations in four levels.

Most of the time users do not have to call cutData directly becausemost functions

have a type option that is used to call cutData directly e.g.
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polarPlot(mydata, pollutant = "so2", type = "season")

However, it can be useful to call cutData before supplying the data to a function

in a few cases. First, if one wants to set seasons to the southern hemisphere as

above. Second, it is possible to override the division of a numeric variable into four

quantiles by using the option n.levels. More details can be found in the cutData

help file.

The cutData function has the following options:

x A data frame containing a field date.

type A string giving the way in which the data frame should be split. Pre-

defined values are: “default”, “year”, “hour”, “month”, “season”,

“weekday”, “site”, “weekend”, “monthyear”, “daylight”, “gmtbst” or

“bstgmt”.

type can also be the name of a numeric or factor. If a numeric column

name is supplied cutDatawill split the data into four quantiles. Factors

levels will be used to split the data without any adjustment.

hemisphere Can be "northern" or "southern", used to split data into seasons.

n.levels Number of quantiles to split numeric data into.

start.day What day of the week should the type = "weekday" start on? The

user can change the start day by supplying an integer between 0 and

6. Sunday = 0, Monday = 1, …For example to start the weekday plots

on a Saturday, choose start.day = 6.

is.axis A logical (TRUE/FALSE), used to request shortened cut labels for axes.

... All additional parameters are passed on to next function(s). For ex-

ample, with cutData all additional parameters are passed on to cut-

Daylight allowing direct access to cutDaylight via either cutData

or any openair using cutData for type conditioning.

local.hour.offset,latitude,longitude Parameters used by cutDaylight to

estimate if the measurement was collected during daylight or night-

time hours. local.hour.offset gives the measurement timezone

and latitude and longitude give themeasurement location. NOTE:

The default settings for these three parameters are the LondonMaryle-

bone Road AURN site associated with the mydata example data set.

See ...{} and Details below for further information.

12 The windRose and pollutionRose functions

12.1 Purpose
see also

polarFreq
percentileR-

ose

The wind rose is a very useful way of summarising meteorological data. It is

particularly useful for showing how wind speed and wind direction conditions

vary by year. The windRose function can plot wind roses in a variety of ways:
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12 The windRose and pollutionRose functions

summarising all available wind speed and wind direction data, plotting individual

wind roses by year, and also by month. The latter is useful for considering how

meteorological conditions vary by season.

Data are summarised by direction, typically by 45 or 30° and by different

wind speed categories. Typically, wind speeds are represented by different width

‘paddles’. The plots show the proportion (here represented as a percentage) of time

that the wind is from a certain angle and wind speed range.

The windRose function also calculates the percentage of ‘calms’ i.e. when the

wind speed is zero. UK Met Office data assigns these periods to 0 degrees wind

direction with valid northerly winds being assigned to 360 degrees.

The windRose functionwill also correct for biaswhenwind directions are rounded

to the nearest 10 degrees but are displayed at angles that 10 degrees is not exactly

divisible into e.g. 22.5 degrees. When such data are binned, some angles i.e. N, E,

S, W will comprise of three intervals whereas others will comprise of two, which

can lead to significant bias. This issue and its solution is discussed by Droppo and

Napier (2008) and Applequist (2012).11 openair uses a simple method to correct

for the bias by globally rescaling the count in each wind direction bin by the number

of directions it represents relative to the average. Thus, the primary four directions

are each reduced by a factor of 0.75 and the remaining 12 directions are multiplied

by 1.125.

12.2 Options available

The windRose function has the following options:

mydata A data frame containing fields ws and wd

ws Name of the column representing wind speed.

wd Name of the column representing wind direction.

ws2 The user can supply a second set of wind speed and wind direction

values with which the first can be compared. See details below for

full explanation.

wd2 see ws2.

ws.int TheWind speed interval. Default is 2 m/s but for low met masts with

low mean wind speeds a value of 1 or 0.5 m/s may be better. Note,

this argument is superseded in pollutionRose. See breaks below.

angle Default angle of “spokes” is 30. Other potentially useful angles are

45 and 10. Note that the width of the wind speed interval may need

adjusting using width.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

11Thanks to Philippe Barnéoud of Environment Canada for pointing this issue out.
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e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

bias.corr When angle does not divide exactly into 360 a bias is introduced in

the frequencies when the wind direction is already supplied rounded

to the nearest 10 degrees, as is often the case. For example, if angle

= 22.5, N, E, S, W will include 3 wind sectors and all other angles

will be two. A bias correction can made to correct for this problem.

A simple method according to Applequist (2012) is used to adjust the

frequencies.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet”, “hue” and user defined. For user defined the

user can supply a list of colour names recognised by R (type col-

ours() to see the full list). An example would be cols = c("yel-

low", "green", "blue", "black").

grid.line Grid line interval to use. If NULL, as in default, this is assigned by

windRose based on the available data range. However, it can also be

forced to a specific value, e.g. grid.line = 10.

width For paddle = TRUE, the adjustment factor for width of wind speed

intervals. For example, width = 1.5 will make the paddle width 1.5

times wider.

seg For pollutionRose seg determines with width of the segments. For

example, seg = 0.5 will produce segments 0.5 * angle.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

breaks Most commonly, the number of break points for wind speed in win-

dRose or pollutant in pollutionRose. For windRose and the ws.int

default of 2 m/s, the default, 4, generates the break points 2, 4, 6,

8 m/s. For pollutionRose, the default, 6, attempts to breaks the

supplied data at approximately 6 sensible break points. However,

breaks can also be used to set specific break points. For example, the

argument breaks = c(1, 10, 100) breaks the data into segments

<1, 1-10, 10-100, >100.
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offset The size of the ’hole’ in the middle of the plot, expressed as a percent-

age of the polar axis scale, default 10.

max.freq Controls the scaling used by setting the maximum value for the radial

limits. This is useful to ensure several plots use the same radial limits.

paddle Either TRUE (default) or FALSE. If TRUE plots rose using ‘paddle’ style

spokes. If FALSE plots rose using ‘wedge’ style spokes.

key.header Adds additional text/labels above and/or below the scale key, re-

spectively. For example, passing windRose(mydata, key.header =

"ws") adds the addition text as a scale header. Note: This argu-

ment is passed to drawOpenKey via quickText, applying the auto.text

argument, to handle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments

currently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.

dig.lab The number of signficant figures atwhich scientific number formatting

is used in break point and key labelling. Default 5.

statistic The statistic to be applied to each data bin in the plot. Options

currently include “prop.count”, “prop.mean” and “abs.count”. The

default “prop.count” sizes bins according to the proportion of the fre-

quency of measurements. Similarly, “prop.mean” sizes bins according

to their relative contribution to the mean. “abs.count” provides the

absolute count of measurements in each bin.

pollutant Alternative data series to be sampled instead of wind speed. The

windRose default NULL is equivalent to pollutant = "ws".

annotate If TRUE then the percentage calm and mean values are printed in each

panel.

border Border colour for shaded areas. Default is no border.

... For pollutionRose other parameters that are passed on to windRose.

For windRose other parameters that are passed on to drawOpenKey,

lattice:xyplot and cutData. Axis and title labelling options (xlab,

ylab, main) are passed to xyplot via quickText to handle routine

formatting.

12.3 Example of use

The function is very simply called as shown for Figure 12.1.

Figure 12.2 highlights some interesting differences between the years. In 2000,

for example, there were a large number of occasions when the wind was from the
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windRose(mydata)

Frequency of counts by wind direction (%)

W
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F . Use of windRose function to plot wind speed/direction frequencies. Wind

speeds are split into the intervals shown by the scale in each panel. The grey circles show

the % frequencies.

SSW and 2003 clearly had more occasions when the wind was easterly. It can also

be useful to use type = "month" to get an idea of how wind speed and direction

vary seasonally.

The type option is very flexible in openair and can be used to quickly consider

the dependencies between variables. Section 11 describes the basis of this option

in openair plot. As an example, consider the question: what are the meteorological

conditions that control high and low concentrations of PM10? By setting type =

"pm10", openair will split the PM10 concentrations into four quantiles i.e. roughly

equal numbers of points in each level. The plot will then show four different wind

roses for each quantile level, although the default number of levels can be set by the

user — see ?cutData for more details. Figure 12.3 shows the results of setting type

= "pm10". For the lowest concentrations of PM10 the wind direction is dominated

by northerly winds, and relatively low wind speeds. By contrast, the highest

concentrations (plot furthest right) are dominated by relatively strong winds from

the south-west. It is therefore very easy to obtain a good idea about the conditions

that tend to lead to high (or low) concentrations of a pollutant. Furthermore, the

type option is available in almost all openair functions.
A comparison of the effect that bias has can be seen by plotting the following.

Note the prominent frequencies for W, E and N in particular that are due to the

bias issue discussed by Applequist (2012).
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windRose(mydata, type = "year", layout = c(4, 2))

Frequency of counts by wind direction (%)
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F . Use of windRose function to plot wind speed/direction frequencies by year.

Wind speeds are split into the intervals shown by the scale in each panel. The grey circles

show the 10 and 20 % frequencies.

windRose(mydata, type = "pm10", layout = c(4, 1))

Frequency of counts by wind direction (%)
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F . Wind rose for four different levels of PM10 concentration. The levels are

defined as the four quantiles of PM10 concentration and the ranges are shown on each of

the plot labels.
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pollutionRose(mydata, pollutant = "nox")

Frequency of counts by wind direction (%)
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F . NOx pollution rose produced using pollutionRose and default pollution-

Rose settings.

## no bias correction

windRose(mydata, angle = 22.5, bias.corr = FALSE)

## bias correction (the default)

windRose(mydata, angle = 22.5)

pollutionRose is a variant of windRose that is useful for considering pollutant

concentrations by wind direction, or more specifically the percentage time the

concentration is in a particular range. This type of approach can be very informative

for air pollutant species, as demonstrated by Ronald Henry and co-authors in a

recent paper (Henry et al. 2009).

You can produce similar pollution roses using the pollutionRose function in

recent versions of openair, e.g. as in Figure 12.4:
pollutionRose is wrapper for windRose. It simply replaces the wind speed data

series in the supplied data set with another variable using the argument pollutant

before passing that on to windRose. It also modifies breaks to estimate a sensible

set of break points for that pollutant and uses a slightly different set of default

options (key to right, wedge style plot) but otherwise handles arguments just like

the parent windRose function.

While Figure 12.4 indicates that most higher NOx concentrations are also associ-

ated with the SW, conditioning allows you to be much informative. For example,

conditioning by SO2 (Figure 12.5) demonstrates that higher NOx concentrations

are associated with the SW and much of the higher SO2 concentrations. How-

ever, it also highlights a notable NOx contribution from the E, most apparent at

highest SO2 concentrations that is obscured in Figure 12.4 by a relatively high

NOx background (Figure 12.5).

pollutionRose can also usefully be used to show which wind directions domin-

ate the overall concentrations. By supplying the option statistic = "prop.mean"

(proportion contribution to the mean), a good idea can be gained as to which wind

directions contribute most to overall concentrations, as well as providing informa-

tion on the different concentration levels. A simple plot is shown in Figure 12.6,
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pollutionRose(mydata, pollutant = "nox", type = "so2", layout = c(4, 1))

Frequency of counts by wind direction (%)
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F . NOx pollution rose conditioned by SO2 concentration.

pollutionRose(mydata, pollutant = "nox", statistic = "prop.mean")

Proportion contribution to the mean (%)
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F . Pollution rose showing which wind directions contribute most to overall mean

concentrations.

which clearly shows the dominance of south-westerly winds controlling the overall

mean NOx concentrations at this site. Indeed, almost half the overall NOx con-

centration is contributed by two wind sectors to the south-west. The polarFreq

function can also show this sort of information, but the pollution rose is more effect-

ive because both length and colour are used to show the contribution. These plots

are very useful for understanding which wind directions control the overall mean

concentrations.

Comparing two meteorological data sets

The pollutionRose function is also useful for comparing two meteorological data

sets. In this case a ‘reference’ data set is compared with a second data set. There

are many reasons for doing so e.g. to see how one site compares with another or

for meteorological model evaluation (more on that in later sections). In this case,

ws and wd are considered to the the reference data sets with which a second set of

wind speed and wind directions are to be compared (ws2 and wd2). The first set of

values is subtracted from the second and the differences compared. If for example,
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wd2 was biased positive compared with wd then pollutionRose will show the bias

in polar coordinates. In its default use, wind direction bias is colour-coded to show

negative bias in one colour and positive bias in another.

Note that this plot is mostly aimed at showing wind direction biases. It does also

show the wind speed bias but only if there is a wind direction bias also. However, in

most practical situations the plot should show both wind speed and direction biases

together. An example of a situation where no wind speed bias would be shown

would be for westerly winds where there was absolutely no bias between two data

sets in terms of westerly wind direction but there was a difference in wind speed.

Users should be aware of this limitation.

In the next example, some artificial wind direction data are generated by adding

a positive bias of 30 degrees with some normally distributed scatter. Also, the wind

speed data are given a positive bias. The results are shown in Figure 12.7. The

Figure clearly shows the mean positive bias in wind direction i.e. the direction is

displaced from north (no bias). The colour scale also shows the extent to which

wind speeds are biased i.e. there is a higher proportion of positively biased wind

speeds shown by the red colour compared with the negatively biased shown in blue.

Also shown in Figure 12.7 is the mean wind speed and direction bias as numerical

values.

Note that the type option can be used in Figure 12.7 e.g. type = "month" to

split the analysis in useful ways. This is useful if one wanted to see whether a site

or the output from a model was biased for different periods. For example, type =

"daylight" would show whether there are biases between nighttime and daytime

conditions.

An example of using user-supplied breaks is shown in Figure 12.8. In this case

six intervals are chosen including one that spans −0.5 to +0.5 that is useful to show

wind speeds that do not change.
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## $example of comparing 2 met sites

## first we will make some new ws/wd data with a postive bias

mydata <- transform(mydata,

ws2 = ws + 2 * rnorm(nrow(mydata)) + 1,

wd2 = wd + 30 * rnorm(nrow(mydata)) + 30)

## need to correct negative wd

id <- which(mydata$wd2 < 0)

mydata$wd2[id] <- mydata$wd2[id] + 360

## results show postive bias in wd and ws

pollutionRose(mydata, ws = "ws", wd = "wd", ws2 = "ws2", wd2 = "wd2", grid.line = 5)

Frequency of counts by wind direction (%)
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−11 to 0
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F . Pollution rose showing the difference between two meteorolgical data sets.

The colours are used to show whether data tend to be postively or negatively biased with

respect to the reference data set.
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## add some wd bias to some nighttime hours

id <- which(as.numeric(format(mydata$date, "%H")) %in% c(23, 1, 2, 3, 4, 5))

mydata$wd2[id] <- mydata$wd[id] + 30 * rnorm(length(id)) + 120

id <- which(mydata$wd2 < 0)

mydata$wd2[id] <- mydata$wd2[id] + 360

pollutionRose(mydata, ws = "ws", wd = "wd", ws2 = "ws2", wd2 = "wd2",

breaks = c(-10, -2, -1, -0.5, 0.5, 1, 2, 10),

cols = c("dodgerblue4", "white", "firebrick"),

grid.line = 5, type = "daylight")
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F . Pollution rose showing the difference between two meteorolgical data sets.

The colours are used to show whether data tend to be postively or negatively biased with

respect to the reference data set. In this case the example shows how to use user-defined

breaks and split the data by day/night for a latitude assumed to be London.
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13 The percentileRose function

13.1 Purpose
see also

windRose,
polarPlot
pollution-

Rose
polarAnnu-

lus

percentileRose calculates percentile levels of a pollutant and plots them by wind

direction. One or more percentile levels can be calculated and these are displayed

as either filled areas or as lines.

The levels by wind direction are calculated using a cyclic smooth cubic spline.

The wind directions are rounded to the nearest 10 degrees, consistent with surface

data from the UKMet Office before a smooth is fitted.

The percentileRose function compliments other similar functions including

windRose, pollutionRose, polarFreq or polarPlot. It is most useful for showing

the distribution of concentrations by wind direction and often can reveal different

sources e.g. those that only affect high percentile concentrations such as a chimney

stack.

Similar to other functions, flexible conditioning is available through the type

option. It is easy for example to consider multiple percentile values for a pollutant

by season, year and so on. See examples below.

13.2 Options available

The percentileRose function has the following options:

mydata A data frame minimally containing wd and a numeric field to plot —

pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox". More than one

pollutant can be supplied e.g. pollutant = c("no2", "o3") provided

there is only one type.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

percentile The percentile value(s) to plot. Must be between 0–100. If percent-

ile = NA then only a mean line will be shown.
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13 The percentileRose function

method When method = "default" the supplied percentiles by wind direc-

tion are calculated. When method = "cpf" the conditional probab-

ility function (CPF) is plotted and a single (usually high) percentile

level is supplied. The CPF is defined as CPF = my/ny, where my is

the number of samples in the wind sector y with mixing ratios greater

than the overall percentile concentration, and ny is the total number

of samples in the same wind sector (see Ashbaugh et al., 1985).

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

mean Show the mean by wind direction as a line?

mean.lty Line type for mean line.

mean.lwd Line width for mean line.

mean.col Line colour for mean line.

fill Should the percentile intervals be filled (default) or should lines be

drawn (fill = FALSE).

intervals User-supplied intervals for the scale e.g. intervals = c(0, 10, 30,

50)

angle.scale The pollutant scale is by default shown at a 45 degree angle. Some-

times the placement of the scale may interfere with an interesting

feature. The user can therefore set angle.scale to another value

(between 0 and 360 degrees) to mitigate such problems. For example

angle.scale = 315 will draw the scale heading in a NW direction.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

key.header Adds additional text/labels to the scale key. For example, passing op-

tions key.header = "header", key.footer = "footer" adds ad-

dition text above and below the scale key. These arguments are passed

to drawOpenKey via quickText, applying the auto.text argument,

to handle formatting.

key.footer key.header.

key.position Location where the scale key is to plotted. Allowed arguments

currently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.
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13 The percentileRose function

percentileRose(mydata, pollutant = "o3")
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F . A percentileRose plot of O3 concentrations at Marylebone Road. The

percentile intervals are shaded and are shown by wind direction. It shows for example that

higher concentrations occur for northerly winds, as expected at this location. However, it

also shows, for example the actual value of the 95th percentile O3 concentration.

... Other graphical parameters are passed onto cutData and lattice:xyplot.

For example, percentileRose passes the option hemisphere = "south-

ern" on to cutData to provide southern (rather than default northern)

hemisphere handling of type = "season". Similarly, common graph-

ical arguments, such as xlim and ylim for plotting ranges and lwd

for line thickness when using fill = FALSE, are passed on xyplot,

although some local modifications may be applied by openair. For

example, axis and title labelling options (such as xlab, ylab and main)

are passed to xyplot via quickText to handle routine formatting.

13.3 Example of use

The first example is a basic plot of percentiles of O3 shown in Figure 13.1.

A slightly more interesting plot is shown in Figure 13.2 for SO2 concentrations.

We also take the opportunity of changing some of the default options. In this case

it can be clearly seen that the highest concentrations of SO2 are dominated by east

and south-easterly winds; likely reflecting the influence of stack emissions in those

directions.

Lots more insight can be gained by considering how percentile values vary by

other factors i.e. conditioning. For example, what do O3 concentrations look like

split by season and whether it is daylight or nighttime hours? We can set the type

to consider season and whether it is daylight or nighttime.12 This Figure reveals

12In choosing type = "daylight" the default is to consider a latitude of central London (or close

to). Users can set the latitude in the function call if working in other parts of the world.
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13 The percentileRose function

percentileRose(mydata, pollutant = "so2",

percentile = c(25, 50, 75, 90, 95, 99, 99.9),

col = "brewer1", key.position = "right")
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F . A percentileRose plot of SO2 concentrations at Marylebone Road. The

percentile intervals are shaded and are shown by wind direction. This plot sets some

user-defined percentile levels to consider the higher SO2 concentrations, moves the key to

the right and uses an alternative colour scheme.

some interesting features. First, O3 concentrations are higher in the spring and

summer and when the wind is from the north. O3 concentrations are higher on

average at this site in spring due to the peak of northern hemispheric O3 and to

some extent local production. This may also explain why O3 concentrations are

somewhat higher at nighttime in spring compared with summer. Second, peak O3

concentrations are higher during daylight hours in summertime when the wind is

from the south-east. This will be due to more local (UK/European) production that

is photochemically driven — and hence more important during daylight hours.

The percentileRose function can also plot conditional probability functions

(CPF) (Ashbaugh et al. 1985). The CPF is defined as CPF = 𝑚𝜃/𝑛𝜃, where 𝑚𝜃 is

the number of samples in the wind sector 𝜃 with mixing ratios greater than some

‘high’ concentration, and 𝑛𝜃 is the total number of samples in the same wind sector.

CPF analysis is very useful for showing which wind directions are dominated by

high concentrations and give the probability of doing so. In openair, a CPF plot can

be produced as shown in Figure 13.4. Note that in these plots only one percentile is

provided and the method must be supplied. In Figure 13.4 it is clear that the high

concentrations (greater than the 95th percentile of all observations) is dominated

by easterly wind directions. There are very low conditional probabilities of these

concentrations being experienced for other wind directions.

It is easy to plot several species on the same plot and this works well because they

all have the same probability scale (i.e. 0 to 1). In the example below (not shown) it

is easy to see for each pollutant the wind directions that dominate the contributions

to the highest (95th percentile) concentrations. For example, the highest CO and

NOx concentrations are totally dominated by south/south-westerly winds and the

probability of their being such high concentrations from other wind directions is

effectively zero.
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13 The percentileRose function

percentileRose(mydata, type = c("season", "daylight"), pollutant = "o3",

col = "Set1")

O3

W

S

N

E
0 

10 

20 

30 

40 

spring (MAM) 

da
yl

ig
ht

 

O3

W

S

N

E
0 

10 

20 

30 

40 

summer (JJA) 

da
yl

ig
ht

 

O3

W

S

N

E
0 

10 

20 

30 

40 

autumn (SON) 

da
yl

ig
ht

 

O3

W

S

N

E
0 

10 

20 

30 

40 

winter (DJF) 

da
yl

ig
ht

 

O3

W

S

N

E
0 

10 

20 

30 

40 

spring (MAM) 

ni
gh

tti
m

e 

O3

W

S

N

E
0 

10 

20 

30 

40 

summer (JJA) 

ni
gh

tti
m

e 

O3

W

S

N

E
0 

10 

20 

30 

40 

autumn (SON) 

ni
gh

tti
m

e 

O3

W

S

N

E
0 

10 

20 

30 

40 

winter (DJF) 

ni
gh

tti
m

e 

0−25 25−50 50−75 75−90 90−95
percentile 

F . A percentileRose plot of O3 concentrations at Marylebone Road. The

percentile intervals are shaded and are shown by wind direction.The plot show the variation

by season and whether it is nighttime or daylight hours.

percentileRose(mydata, poll="so2", percentile = 95, method = "cpf",

col = "darkorange")

CPF at the 95th percentile (=11.3)
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F . A CPF plot of SO2 concentrations at Marylebone Road.
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14 The polarFreq function

percentileRose(mydata, poll=c("nox", "so2", "o3", "co", "pm10", "pm25"),

percentile = 95, method = "cpf", col = "darkorange",

layout = c(2, 3))

14 The polarFreq function

14.1 Purpose
see also

windRose
percentileR-

ose
polarPlot

This is a custom-made plot to compactly show the distribution of wind speeds and

directions from meteorological measurements. It is similar to the traditional wind

rose, but includes a number of enhancements to also show how concentrations of

pollutants and other variables vary. It can summarise all available data, or show it

by different time periods e.g. by year, month, day of the week. It can also consider

a wide range of statistics.

14.2 Options available

The polarFreq function has the following options:

mydata A data frame minimally containing ws, wd and date.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox"

statistic The statistic that should be applied to each wind speed/direction

bin. Can be “frequency”, “mean”, “median”, “max” (maximum),

“stdev” (standard deviation) or “weighted.mean”. The option “fre-

quency” (the default) is the simplest and plots the frequency of wind

speed/direction in different bins. The scale therefore shows the counts

in each bin. The option “mean” will plot the mean concentration of

a pollutant (see next point) in wind speed/direction bins, and so on.

Finally, “weighted.mean” will plot the concentration of a pollutant

weighted by wind speed/direction. Each segment therefore provides

the percentage overall contribution to the total concentration. More

information is given in the examples. Note that for options other than

“frequency”, it is necessary to also provide the name of a pollutant.

See function cutData for further details.

ws.int Wind speed interval assumed. In some cases e.g. a low met mast, an

interval of 0.5 may be more appropriate.

grid.line Radial spacing of grid lines.

breaks The user can provide their own scale. breaks expects a sequence

of numbers that define the range of the scale. The sequence could

represent one with equal spacing e.g. breaks = seq(0, 100, 10)

- a scale from 0-10 in intervals of 10, or a more flexible sequence

e.g. breaks = c(0, 1, 5, 7, 10), which may be useful for some

situations.
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14 The polarFreq function

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

trans Should a transformation be applied? Sometimes when producing

plots of this kind they can be dominated by a few high points. The

default therefore is TRUE and a square-root transform is applied. This

results in a non-linear scale and (usually) a better representation of

the distribution. If set to FALSE a linear scale is used.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

min.bin The minimum number of points allowed in a wind speed/wind dir-

ection bin. The default is 1. A value of two requires at least 2 valid

records in each bin an so on; bins with less than 2 valid records are

set to NA. Care should be taken when using a value > 1 because of

the risk of removing real data points. It is recommended to consider

your data with care. Also, the polarPlot function can be of use in

such circumstances.

ws.upper A user-defined upper wind speed to use. This is useful for ensuring

a consistent scale between different plots. For example, to always

ensure that wind speeds are displayed between 1-10, set ws.int =

10.

offset offset controls the size of the ‘hole’ in the middle and is expressed as

a percentage of the maximum wind speed. Setting a higher offset

e.g. 50 is useful for statistic = "weighted.mean" when ws.int is

greater than the maximum wind speed. See example below.

border.col The colour of the boundary of each wind speed/direction bin. The

default is transparent. Another useful choice sometimes is ”white”.
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14 The polarFreq function

key.header,key.footer Adds additional text/labels to the scale key. For ex-

ample, passing options key.header = "header", key.footer = "footer"

adds addition text above and below the scale key. These arguments

are passed to drawOpenKey via quickText, applying the auto.text

argument, to handle formatting.

key.position Location where the scale key is to plotted. Allowed arguments

currently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto lattice:xyplot and cut-

Data. For example, polarFreq passes the option hemisphere = "south-

ern" on to cutData to provide southern (rather than default northern)

hemisphere handling of type = "season". Similarly, common axis

and title labelling options (such as xlab, ylab, main) are passed to

xyplot via quickText to handle routine formatting.

For type = "site", it is necessary to format the input data into columns date, ws,

wd, site (and maybe pollutant). This means that date, for example is repeated a

number of times equal to the number of sites.

14.3 Example of use

This section shows an example output and use, using our data frame mydata. The

function is very simply run as shown in Figure 14.1. This produces the plot shown

in Figure 14.1.

By setting type = "year", the frequencies are shown separately by year as shown

in Figure 14.2, which shows that most of the time the wind is from a south-westerly

direction with wind speeds most commonly between 2–6 m s−1. In 2000 there

seemed to be a lot of conditions where the wind was from the south-west (leading

to high pollutant concentrations at this location). The data for 2003 also stand out

due to the relatively large number of occasions where the wind was from the east.

Note the default colour scale, which has had a square-root transform applied, is

used to provide a better visual distribution of the data.

The polarFreq function can also usefully consider pollutant concentrations.

Figure 14.3 shows themean concentration of SO2 bywind speed andwind direction

and clearly highlights that SO2 concentrations tend to be highest for easterly winds

and for 1998 in particular.

By weighting the concentrations by the frequency of occasions the wind is from a

certain direction and has a certain speed, gives a better indication of the conditions

that dominate the overall mean concentrations. Figure 14.4 shows the weighted

mean concentration of SO2 and highlights that annual mean concentrations are

dominated by south-westerly winds i.e. contributions from the road itself — and

not by the fewer higher hours of concentrations when the wind is easterly. However,
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14 The polarFreq function

polarFreq(mydata)
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F . Use of polarFreq function to plot wind speed/directions. Each cell gives

the total number of hours the wind was from that wind speed/direction in a particular

year. The number of hours is coded as a colour scale shown to the right. The scale itself is

non-linear to help show the overall distribution. The dashed circular grey lines show the

wind speed scale. The date range covered by the data is shown in the strip.

2003 looks interesting because for that year, significant contributions to the overall

mean were due to easterly wind conditions.

These plots when applied to other locations can reveal some useful features about

different sources. For example, it may be that the highest concentrations measured

only occur infrequently, and the weighted mean plot can help show this.

The code required to make Figure 14.3 and 14.4 is shown below.

Users are encouraged to try out other plot options. However, one potentially

useful plot is to select a few specific years of user interest. For example, what if

you just wanted to compare two years e.g. 2000 and 2003? This is easy to do

by sending a subset of data to the function. Use here can be made of the openair
selectByDate function.

# wind rose for just 2000 and 2003

polarFreq(selectByDate(mydata, year = c(2000, 2003)), cols = "jet",

type = "year")

The polarFreq function can also be used to gain an idea about thewind directions

that contribute most to the overall mean concentrations. As already shown, use of

the option statistic = "weighted.mean" will show the percentage contribution

by wind direction and wind speed bin. However, often it is unnecessary to consider

different wind speed intervals. Tomake the plot more effective, a few options are set

as shown in Figure 14.5. First, the statistic = "weighted.mean" is chosen to

ensure that the plot shows concentrationsweighted by their frequency of occurrence

of wind direction. For this plot, we are mostly interested in just the contribution by

wind direction and not wind speed. Setting the ws.int to be above the maximum

wind speed in the data set ensures that all data are shown in one interval. Rather

than having a square-root transform applied to the colour scale, we choose to have

a linear scale by setting trans = FALSE. Finally, to show a ‘disk’, the offset is set

at 80. Increasing the value of the offset will narrow the disk.
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14 The polarFreq function

polarFreq(mydata, type = "year")
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F . Use of polarFreq function to plot wind speed/directions by year. Each cell

gives the total number of hours the wind was from that wind speed/direction in a particular

year. The number of hours is coded as a colour scale shown to the right. The scale itself is

non-linear to help show the overall distribution. The dashed circular grey lines show the

wind speed scale.

While Figure 14.5 is useful — e.g. it clearly shows that concentrations of NOx at

this site are totally dominated by south-westerly winds, the use of pollutionRose

for this type of plot is more effective, as shown in Section 12.
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14 The polarFreq function

polarFreq(mydata, pollutant = "so2", type = "year",

statistic = "mean", min.bin = 2)
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F . Use of polarFreq function to plot mean SO2 concentrations (ppb) by wind

speed/directions and year.
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14 The polarFreq function

# weighted mean SO2 concentrations

polarFreq(mydata, pollutant = "so2", type = "year",

statistic = "weighted.mean", min.bin = 2)
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F . Use of polarFreq function to plot weighted mean SO2 concentrations (ppb)

by wind speed/directions and year.
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14 The polarFreq function

polarFreq(mydata, pollutant = "nox", ws.int = 30, statistic = "weighted.mean",

offset = 80, trans = FALSE, col = "heat")
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F . The percentage contribution to overall mean concentrations of NOx atMaryle-

bone Road.
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15 The polarPlot and polarCluster functions

15 The polarPlot and polarCluster functions

15.1 Purpose
see also

polarFreq
polarAnnu-

lus
percentileR-

ose
pollution-

Rose

The polarPlot function plots a bivariate polar plot of concentrations. Concentra-

tions are shown to vary by wind speed and wind direction. In may respects they

are similar to the plots shown in (§14) but include some additional enhancements.

These enhancements include: plots are shown as a continuous surface and surfaces

are calculated through modelling using smoothing techniques. These plots are not

entirely new as others have considered the joint wind speed-direction dependence

of concentrations (see for example Yu et al. (2004)). However, plotting the data

in polar coordinates and for the purposes of source identification is new. Recent

publications that describe or use the technique are Carslaw et al. (2006) and West-

moreland et al. (2007). These plots have proved to be useful for quickly gaining a

graphical impression of potential sources influences at a location.

For many, maybe most situations, increasing wind speed generally results in

lower concentrations due to increased dilution through advection and increased

turbulence. There are, however, many processes that can lead to interesting

concentration-wind speed dependencies and we will provide a more theoretical

treatment of this in due course. However, below are a few reasons why concentra-

tions can change with increasing wind speeds.

• Buoyant plumes from tall stacks can be brought down to ground-level result-

ing in high concentrations under high wind speed conditions.

• Particle suspension increases with increasing wind speeds e.g. PM10 from

spoil heaps and the like.

• ‘Particle’ suspension can be important close to coastal areas where higher

wind speeds generate more sea spray.

• The wind speed dependence of concentrations in a street canyon can be very

complex: higher wind speeds do not always results in lower concentrations

due to re-circulation. Bivariate polar plots are very good at revealing these

complexities.

• As Carslaw et al. (2006) showed, aircraft emissions have an unusual wind

speed dependence and this can help distinguish them from other sources. If

several measurement sites are available, polar plots can be used to triangulate

different sources.

• Concentrations of NO2 can increase with increasing wind speed — or at

least not decline steeply due to increased mixing. This mixing can result in

O3-rich air converting NO to NO2.

The function has been developed to allow variables other than wind speed to be

plotted with wind direction in polar coordinates. The key issue is that the other

variable plotted against wind direction should be discriminating in some way. For

example, temperature can help reveal high-level sources brought down to ground

level in unstable atmospheric conditions, or show the effect a source emission

dependent on temperature e.g. biogenic isoprene. For research applications where
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many more variables could be available, discriminating sources by these other

variables could be very insightful.

Bivariate polar plots are constructed in the following way. First, wind speed, wind

direction and concentration data are partitioned into wind speed-direction bins and

the mean concentration calculated for each bin. Testing on a wide range of data

suggests that wind direction intervals at 10 degrees and 30 wind speed intervals

capture sufficient detail of the concentration distribution. The wind direction

data typically available are generally rounded to 10 degrees and for typical surface

measurements of wind speed in the range 0 to 20 to 30 m s−1, intervals greater

than 30 would be difficult to justify based on a consideration of the accuracy of the

instruments. Binning the data in this way is not strictly necessary but acts as an

effective data reduction technique without affecting the fidelity of the plot itself.

Furthermore, because of the inherent wind direction variability in the atmosphere,

data from several weeks, months or years typically used to construct a bivariate

polar plot tends to be diffuse and does not vary abruptly with either wind direction

or speed and more finely resolved bin sizes or working with the raw data directly

does not yield more information.

The wind components, 𝑢 and 𝑣 are calculated i.e.

𝑢 = 𝑢.𝑠𝑖𝑛 󰝔
2𝜋
𝜃 󰝕 , 𝑣 = 𝑢.𝑐𝑜𝑠 󰝔

2𝜋
𝜃 󰝕 (1)

with 𝑢 is the mean hourly wind speed and 𝜃 is the mean wind direction in degrees

with 90 degrees as being from the east.

The calculations above provides a 𝑢, 𝑣, concentration (𝐶) surface. While it would

be possible to work with this surface data directly a better approach is to apply

a model to the surface to describe the concentration as a function of the wind

components 𝑢 and 𝑣 to extract real source features rather than noise. A flexible

framework for fitting a surface is to use a Generalized Additive Model (GAM) e.g.

(Hastie andTibshirani 1990;Wood 2006). GAMs are a useful modelling framework

with respect to air pollution prediction because typically the relationships between

variables are non-linear and variable interactions are important, both of which

issues can be addressed in a GAM framework. GAMs can be expressed as shown

in Equation 2:

󰠋𝐶𝑖 = 𝛽0 +
𝑛

󰡗
𝑗=1

𝑠𝑗(𝑥𝑖𝑗) + 𝑒𝑖 (2)

where 𝐶𝑖 is the ith pollutant concentration, 𝛽0 is the overall mean of the response,

𝑠𝑗(𝑥𝑖𝑗) is the smooth function of ith value of covariate 𝑗, 𝑛 is the total number

of covariates, and 𝑒𝑖 is the 𝑖th residual. Note that 𝐶𝑖 is square-root transformed

as the transformation generally produces better model diagnostics e.g. normally

distributed residuals.

The model chosen for the estimate of the concentration surface is given by

Equation 3. In this model the square root-transformed concentration is a smooth

function of the bivariate wind components 𝑢 and 𝑣. Note that the smooth function

used is isotropic because 𝑢 and 𝑣 are on the same scales. The isotropic smooth

avoids the potential difficulty of smoothing two variables on different scales e.g.

wind speed and direction, which introduces further complexities.
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󰠋𝐶𝑖 = 𝑠(𝑢, 𝑣) + 𝑒𝑖 (3)

15.2 Options available

The polarPlot function has the following options:

mydata A data frame minimally containing wd, another variable to plot in

polar coordinates (the default is a column “ws” — wind speed) and

a pollutant. Should also contain date if plots by time period are

required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox". There can also

be more than one pollutant specified e.g. pollutant = c("nox",

"no2"). The main use of using two or more pollutants is for model

evaluation where two species would be expected to have similar con-

centrations. This saves the user stacking the data and it is possible to

work with columns of data directly. A typical use would be pollut-

ant = c("obs", "mod") to compare two columns “obs” (the obser-

vations) and “mod” (modelled values).

x Name of variable to plot against wind direction in polar coordinates,

the default is wind speed, “ws”.

wd Name of wind direction field.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

statistic The statistic that should be applied to each wind speed/direction bin.

Can be “mean” (default), “median”, “max” (maximum), “frequency”.

“stdev” (standard deviation), “weighted.mean” or “cpf” (Conditional

Probability Function). Because of the smoothing involved, the colour

scale for some of these statistics is only to provide an indication of

overall pattern and should not be interpreted in concentration units
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e.g. for statistic = "weighted.mean" where the bin mean is mul-

tiplied by the bin frequency and divided by the total frequency. In

many cases using polarFreq will be better. Setting statistic =

"weighted.mean" can be useful because it provides an indication of

the concentration * frequency of occurrence and will highlight the

wind speed/direction conditions that dominate the overall mean.

When statistic = "cpf" the conditional probability function (CPF)

is plotted and a single (usually high) percentile level is supplied. The

CPF is defined as CPF = my/ny, where my is the number of samples

in the y bin (by default a wind direction, wind speed interval) with

mixing ratios greater than the overall percentile concentration, and ny

is the total number of samples in the same wind sector (see Ashbaugh

et al., 1985). Note that percentile intervals can also be considered;

see percentile for details.

resolution Two plot resolutions can be set: “normal” (the default) and “fine”, for

a smoother plot. It should be noted that plots with a “fine” resolution

can take longer to render and the default option should be sufficient

or most circumstances.

limits The function does its best to choose sensible limits automatically.

However, there are circumstances when the user will wish to set

different ones. An example would be a series of plots showing each

year of data separately. The limits are set in the form c(lower, up-

per), so limits = c(0, 100) would force the plot limits to span

0-100.

exclude.missing Setting this option to TRUE (the default) removes points from

the plot that are too far from the original data. The smoothing routines

will produce predictions at points where no data exist i.e. they predict.

By removing the points too far from the original data produces a plot

where it is clear where the original data lie. If set to FALSE missing

data will be interpolated.

uncertainty Should the uncertainty in the calculated surface be shown? If TRUE

three plots are produced on the same scale showing the predicted

surface together with the estimated lower and upper uncertainties at

the 95 the uncertainties is useful to understand whether features are

real or not. For example, at high wind speeds where there are few

data there is greater uncertainty over the predicted values. The uncer-

tainties are calculated using the GAM and weighting is done by the

frequency of measurements in each wind speed-direction bin. Note

that if uncertainties are calculated then the type is set to ”default”.

percentile If statistic = "percentile" then percentile is used, expressed

from 0 to 100. Note that the percentile value is calculated in the

wind speed, wind direction ‘bins’. For this reason it can also be

useful to set min.bin to ensure there are a sufficient number of points

available to estimate a percentile. See quantile for more details of

how percentiles are calculated.
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percentile is also used for the Conditional Probability Function

(CPF) plots. percentile can be of length two, in which case the per-

centile interval is considered for usewithCPF. For example, percent-

ile = c(90, 100) will plot the CPF for concentrations between the

90 and 100th percentiles. Percentile intervals can be useful for identi-

fying specific sources. In addition, percentile can also be of length

3. The third value is the ‘trim’ value to be applied. When calculating

percentile intervals many can cover very low values where there is no

useful information. The trim value ensures that values greater than

or equal to the trim * mean value are considered before the percentile

intervals are calculated. The effect is to extract more detail frommany

source signatures. See the manual for examples. Finally, if the trim

value is less than zero the percentile range is interpreted as absolute

concentration values and subsetting is carried out directly.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

weights At the edges of the plot there may only be a few data points in each

wind speed-direction interval, which could in some situations distort

the plot if the concentrations are high. weights applies a weighting

to reduce their influence. For example and by default if only a single

data point exists then the weighting factor is 0.25 and for two points

0.5. To not apply any weighting and use the data as is, use weights

= c(1, 1, 1).

An alternative to down-weighting these points they can be removed

altogether using min.bin.

min.bin The minimum number of points allowed in a wind speed/wind dir-

ection bin. The default is 1. A value of two requires at least 2 valid

records in each bin an so on; bins with less than 2 valid records are

set to NA. Care should be taken when using a value > 1 because of

the risk of removing real data points. It is recommended to consider

your data with care. Also, the polarFreq function can be of use in

such circumstances.

mis.col When min.bin is > 1 it can be useful to show where data are removed

on the plots. This is done by shading the missing data in mis.col.

To not highlight missing data when min.bin > 1 choose mis.col =

"transparent".

upper This sets the upper limit wind speed to be used. Often there are only

a relatively few data points at very high wind speeds and plotting all

of them can reduce the useful information in the plot.
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angle.scale The wind speed scale is by default shown at a 315 degree angle.

Sometimes the placement of the scalemay interfere with an interesting

feature. The user can therefore set angle.scale to another value

(between 0 and 360 degrees) to mitigate such problems. For example

angle.scale = 45 will draw the scale heading in a NE direction.

units The units shown on the polar axis scale.

force.positive The default is TRUE. Sometimes if smoothing data with steep

gradients it is possible for predicted values to be negative. force.pos-

itive = TRUE ensures that predictions remain positive. This is useful

for several reasons. First, with lots of missing data more interpolation

is needed and this can result in artifacts because the predictions are too

far from the original data. Second, if it is known beforehand that the

data are all positive, then this option carries that assumption through to

the prediction. The only likely time where setting force.positive

= FALSE would be if background concentrations were first subtracted

resulting in data that is legitimately negative. For the vast majority of

situations it is expected that the user will not need to alter the default

option.

k This is the smoothing parameter used by the gam function in package

mgcv. Typically, value of around 100 (the default) seems to be suitable

and will resolve important features in the plot. The most appropriate

choice of k is problem-dependent; but extensive testing of polar plots

for many different problems suggests a value of k of about 100 is

suitable. Setting k to higher values will not tend to affect the surface

predictions by much but will add to the computation time. Lower

values of k will increase smoothing. Sometimes with few data to

plot polarPlot will fail. Under these circumstances it can be worth

lowering the value of k.

normalise If TRUE concentrations are normalised by dividing by their mean value.

This is done after fitting the smooth surface. This option is particularly

useful if one is interested in the patterns of concentrations for several

pollutants on different scales e.g. NOx and CO. Often useful if more

than one pollutant is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the

options key.header = "header", key.footer = "footer1" adds

addition text above and below the scale key. These arguments are

passed to drawOpenKey via quickText, applying the auto.text ar-

gument, to handle formatting.

key.footer see key.footer.

key.position Location where the scale key is to plotted. Allowed arguments

currently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.
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polarPlot(mydata, pollutant = "nox")
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F . Default use of the polarPlot function applied to Marylebone Road NOx

concentrations.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto lattice:levelplot and

cutData. For example, polarPlot passes the option hemisphere =

"southern" on to cutData to provide southern (rather than default

northern) hemisphere handling of type = "season". Similarly, com-

mon axis and title labelling options (such as xlab, ylab, main) are

passed to levelplot via quickText to handle routine formatting.

15.3 Example of use

We first use the function in its simplest form to make a polar plot of NOx. The code

is very simple as shown in Figure 15.1.

This produces Figure 15.1. The scale is automatically set using whatever units

the original data are in. This plot clearly shows highest NOx concentrations when

the wind is from the south-west. Given that the monitor is on the south side of the

street and the highest concentrations are recorded when the wind is blowing away

from the monitor is strong evidence of street canyon recirculation.

Figure 15.2 and Figure 15.3 shows polar plots using different defaults and for

other pollutants. In the first (Figure 15.2, a different colour scheme is used and some

adjustments are made to the key. In Figure 15.3, SO2 concentrations are shown.

What is interesting about this plot compared with either Figure 15.2 or Figure 15.1

is that the concentration pattern is very different i.e. high concentrations with high

wind speeds from the east. The most likely source of this SO2 are industrial sources

to the east of London. The plot does still however show evidence of a source to the

south-west, similar to the plot for NOx, which implies that road traffic sources of

SO2 can also be detected.

These plots often show interesting features at higher wind speeds. For these

conditions there can be very few measurements and therefore greater uncertainty
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in the calculation of the surface. There are several ways in which this issue can be

tackled. First, it is possible to avoid smoothing altogether and use polarFreq. The

problem with this approach is that it is difficult to know how best to bin wind speed

and direction: the choice of interval tends to be arbitrary. Second, the effect of

setting a minimum number of measurements in each wind speed-direction bin can

be examined through min.bin. It is possible that a single point at high wind speed

conditions can strongly affect the surface prediction. Therefore, setting min.bin

= 3, for example, will remove all wind speed-direction bins with fewer than 3

measurements before fitting the surface. This is a useful strategy for testing how

sensitive the plotted surface is to the number of measurements available. While

this is a useful strategy to get a feel for how the surface changes with different

min.bin settings, it is still difficult to know how many points should be used as a

minimum. Third, consider setting uncertainty = TRUE. This option will show

the predicted surface together with upper and lower 95% confidence intervals,

which take account of the frequency of measurements. The uncertainty approach

ought to be the most robust and removes any arbitrary setting of other options.

There is a close relationship between the amount of smoothing an the uncertainty:

more smoothing will tend to reveal less detail and lower uncertainties in the fitted

surface and vice-versa.

The default however is to down-weight the bins with few data points when fitting

a surface. Weights of 0.25, 0.5 and 0.75 are used for bins containing 1, 2 and 3

data points respectively. The advantage of this approach is that no data are actually

removed (which is what happens when using min.bin). This approach should

be robust in a very wide range of situations and is also similar to the approaches

used when trying to locate sources when using back trajectories as described in

Section 26. Users can ignore the automatic weighting by supplying the option

weights = c(1, 1, 1).
polarFreq

provides an
un-

smoothed
surface

A very useful approach for understanding air pollution is to consider ratios of

pollutants. One reason is that pollutant ratios can be largely independent of met-

eorological variation. In many circumstances it is possible to gain a lot of insight

into sources if pollutant ratios are considered. First, it is necessary to calculate a

ratio, which is easy in R. In this example we consider the ratio of SO2/NOx:

mydata <- transform(mydata, ratio = so2 / nox)

Working
with ratios

of pollutants

This makes a new variable called ratio. Sometimes it can be problematic if

there are values equal to zero on the denominator, as is the case here. The mean

and maximum value of the ratio is infinite, as shown by the Inf in the statistics

below. Luckily, R can deal with infinity and the openair functions will remove

these values before performing calculations. It is very simple therefore to calculate

ratios.

summary(mydata[, "ratio"])

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0 0 0 Inf 0 Inf 11782

A polar plot of the SO2/NOx ratio is shown in Figure 15.4. The plot highlights

some new features not seen before. First, to the north there seems to be evidence

that the air tends to have a higher SO2/NOx ratio. Also, the source to the east has
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## NOx plot

polarPlot(mydata, pollutant = "nox", col = "jet", key.position = "bottom",

key.header = "mean nox (ug/m3)", key.footer = NULL)
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F . Example plots using the polarPlot function with different options for the

mean concentration of NOx.

polarPlot(mydata, pollutant = "so2")
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F . Example plots using the polarPlot function for the mean concentration of

SO2.
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polarPlot(mydata, pollutant = "ratio", main = "so2/nox ratio")
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F . Bivariate polar plot of the ratio of SO2/NOx.

a higher SO2/NOx ratio compared with that when the wind is from the south-west

i.e. dominated by road sources. It seems therefore that the easterly source(s), which

are believed to be industrial sources have a different SO2/NOx ratio compared with

road sources. This is a very simple analysis, but ratios can be used effectively in

many functions and are particularly useful in the presence of high source complexity.

Sometimes when considering ratios it might be necessary to limit the values in

some way; perhaps due to some unusually low value denominator data resulting in

a few very high values for the ratio. This is easy to do with the subset command.

The code below selects ratios less than 0.1.

polarPlot(subset(mydata, ratio < 0.1), pollutant = "ratio")

The uncertainties in the surface can be calculated by setting the option uncer-

tainty = TRUE. The details are described above and here we show the example of

SO2 concentrations (Figure 15.5). In general the uncertainties are higher at high

wind speeds i.e. at the ‘fringes’ of a plot where there are fewer data. However, the

magnitude depends on both the frequency and magnitude of the concentration

close to the points of interest. The pattern of uncertainty is not always obvious and

it can differ markedly for different pollutants.

The polarPlot function can also produce plots dependent on another variable

(see the type option). For example, the variation of SO2 concentrations at Maryle-

bone Road by hour of the day in the code below. The function was called as shown

in in this case the minimum number of points in each wind speed/direction was set

to 2.

polarPlot(mydata, pollutant = "so2", type = "hour", min.bin = 2)

This plot shows that concentrations of SO2 tend to be highest from the east (as

also shown in Figure 15.3) and for hours in the morning. Together these plots

can help better understand different source types. For example, does a source

only seem to be present during weekdays, or winter months etc. In the case of
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polarPlot(mydata, pollutant = "so2", uncertainty = TRUE)
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F . Bivariate polar plot of SO2 concentrations at Marylebone Road. Three sur-

faces are shown: the central prediction (middle) and the lower and upper 95% estimated

uncertainties. These plots help to show that in this particular case, some of the concen-

trations for strong easterly and south-easterly winds are rather uncertain. However, the

central feature to the east remains, suggesting this feature is ‘real’ and not an artifact of

there being too few data.

type = "hour", the more obvious presence during the morning hours could be

due to meteorological factors and this possibility should be investigated also. In

other settings where there are many sources that vary in their source emission and

temporal characteristics, the polarPlot function should prove to be very useful.

One issue to be aware of is the amount of data required to generate some of these

plots; particularly the hourly plots. If only a relatively short time series is available

there may not be sufficient information to produce useful plots. Whether this is

important or not will depend on the specific circumstances e.g. the prevalence of

wind speeds and directions from the direction of interest. When used to produce

many plots (e.g. type = ”hour”), the run time can be quite long.

15.3.1 Conditional Probability Function (CPF) plot

The conditional probability functions (CPF) was described on page 115 in the

context of the percentileRose function. The CPF was originally used to show

the wind directions that dominate a (specified) high concentration of a pollutant;

showing the probability of such concentrations occurring by wind direction (Ash-

baugh et al. 1985). However, these ideas can very usefully be applied to bivariate

polar plots. In this case the CPF is defined as CPF = 𝑚𝜃,𝑗/𝑛𝜃,𝑗, where 𝑚𝜃,𝑗 is the

number of samples in the wind sector 𝜃 and wind speed interval 𝑗 with mixing ratios

greater than some ‘high’ concentration, and 𝑛𝜃,𝑗 is the total number of samples in

the same wind direction-speed interval. Note that 𝑗 does not have to be wind speed
but could be any numeric variable e.g. ambient temperature. CPF analysis is very

useful for showing which wind direction, wind speed intervals are dominated by

high concentrations and give the probability of doing so.

An example of a CPF polar plot is shown in Figure 15.6 for the 90th percentile

concentration of SO2. This plot shows that for most wind speed-directions the

probability of SO2 concentrations being greater than the 90th percentile is zero.
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polarPlot(mydata, pollutant = "so2", statistic = "cpf", percentile = 90)
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F . polarPlot of SO2 concentrations at Marylebone Road based on the CPF

function.

The clearest areas where the probability is higher is to the east. Indeed, the plot

now clearly reveals two potential sources of SO2, which are not as apparent in

the ‘standard’ plot shown in Figure 15.3. Note that Figure 15.6 also gives the

calculated percentile at the bottom of the plot (9.2 ppb in this case). Figure 15.6

can also be compared with the CPF plot based only on wind direction shown in

Figure 13.4. While Figure 13.4 very clearly shows that easterly wind dominate

high concentrations of SO2, Figure 15.6 provides additional valuable information

by also considering wind speed, which in this case is able to discriminate between

two sources (or groups of sources) to the east.

The polar CPF plot is therefore potentially very useful for source identification

and characterisation. It is, for example, worth also considering other percentile

levels and other pollutants. For example, considering the 95th percentile for SO2

‘removes’ one of the sources (the one at highest wind speed). This helps to show

some maybe important differences between the sources that could easily have

been missed. Similarly, considering other pollutants can help build up a good

understanding of these sources. A CPF plot for NO2 at the 90th percentile shows

the single dominance of the road source. However, a CPF plot at the 75th percentile

level indicates source contributions from the east (likely tall stacks), which again are

not as clear in the standard bivariate polar plot. Considering a range of percentile

values can therefore help to build up a more complete understanding of source

contributions.

However, even more useful information can be gained by considering intervals

of percentiles e.g. 50–60, 60–70 etc. By considering intervals of percentiles it

becomes clear that some sources only affect a limited percentile range. polarPlot

can accept a percentile argument of length two e.g. percentile = c(80, 90).

In this case concentrations in the range from the lower to upper percentiles will be

considered. In Figure 15.7 for example, it is apparent that the road source to the

south west is only important between the 60 to 90th percentiles. As mentioned

previously, the chimney stacks to the east are important for the higher percentiles

(90 to 100). What is interesting though is the emergence of what appears to be other
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15 The polarPlot and polarCluster functions

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(0, 10))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(10, 20))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(20, 30))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(30, 40))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(40, 50))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(50, 60))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(60, 70))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(70, 80))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(80, 90))

polarPlot(mydata, poll= "so2", stati="cpf", percentile = c(90, 100))
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F . polarPlot of SO2 concentrations at Marylebone Road based on the CPF

function for a range of percentile intervals from 0–10, 10–20, …, 90-100.

sources at the lower percentile intervals. These potential sources are not apparent

in Figure 15.3. The other interesting aspect is that it does seem that specific sources

tend to be prominent for specific percentile ranges. If this characteristic is shown to

be the case more generally, then CPF intervals could be a powerful way in which

to identify many sources. Whether these particular sources are important or not is

questionable and depends on the aims of the analysis. However, there is no reason

to believe that the potential sources shown in the percentile ranges 0 to 50 are

artifacts. They could for example be signals from more distant point sources whose

plumes have diluted more over longer distances. Such sources would be ‘washed

out’ in an ordinary polar plot.

Note that it is easy to work out what the concentration intervals are for the

percentiles shown in Figure 15.7:

quantile(mydata$so2, probs = seq(0, 1, by = 0.1), na.rm = TRUE)

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

## 0.000 1.012 1.883 2.500 3.250 4.000 4.938 5.910 7.237 9.250 63.205
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15 The polarPlot and polarCluster functions

To plot the Figures on one page it is necessary to make the plot objects first and

then decide how to plot them. To plot the Figures in a particular layout see page 77.
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15.3.2 The polarCluster function for feature identification and extraction

The polarPlot function will often identify interesting features that would be

useful to analyse further. It is possible to select areas of interest based only on a

consideration of a plot. Such a selection could be based on wind direction and

wind speed intervals for example e.g.

subdata <- subset(mydata, ws >3 & wd >= 180 & wd <=270)

which would select wind speeds >3 m s−1 and wind directions from 180 to 270

degrees from mydata. That subset of data, subdata, could then be analysed using

other functions. While this approach may be useful in many circumstances it is

rather arbitrary. In fact, the choice of ‘interesting feature’ in the first place can even

depend on the colour scale used, which is not very robust. Furthermore, many

interesting patterns can be difficult to select and won’t always fall into convenient

intervals of other variables such as wind speed and direction.

A better approach is to use amethod that can select group similar features together.

One such approach is to use cluster analysis. openair uses k-means clustering as

a way in which bivariate polar plot features can be identified and grouped. The

main purpose of grouping data in this way is to identify records in the original

time series data by cluster to enable post-processing to better understand potential

source characteristics. The process of grouping data in k-means clustering proceeds

as follows. First, 𝑘 points are randomly chosen form the space represented by the

objects that are being clustered into 𝑘 groups. These points represent initial group

centroids. Each object is assigned to the group that has the closest centroid. When

all objects have been assigned, the positions of the 𝑘 centroids is re-calculated. The

previous two steps are repeated until the centroids no longer move. This produces

a separation of the objects into groups from which the metric to be minimised can

be calculated.

Central to the idea of clustering data is the concept of distance i.e. some measure

of similarity or dissimilarity between points. Clusters should be comprised of

points separated by small distances relative to the distance between the clusters.

Careful consideration is required to define the distance measure used because the

effectiveness of clustering itself fundamentally depends on its choice. The similarity

of concentrations shown in Figure 15.1 for example is determined by three variables:

the 𝑢 and 𝑣 wind components and the concentration. All three variables are equally

important in characterising the concentration-location information, but they exist

on different scales i.e. a wind speed-direction measure and a concentration. Let

𝑋 = {𝑥𝑖}, 𝑖 = 1, … , 𝑛 be a set of 𝑛 points to be clustered into 𝐾 clusters, 𝐶 =
{𝑐𝑘, 𝑘 = 1, … , 𝐾}. The basic k-means algorithm for 𝐾 clusters is obtained by

minimising:

𝐾
󰡗
𝑘=1

󰡗
𝑥𝑖∈𝑐𝑘

||𝑥𝑖 − 𝜇𝑘||2 (4)

where ||𝑥𝑖 − 𝜇𝑘||2 is a chosen distance measure, 𝜇𝑘 is the mean of cluster 𝑐𝑘.

The distance measure is defined as the Euclidean distance:
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𝑑𝑥,𝑦 = ⎛⎜
⎝

𝐽

󰡗
𝑗=1

(𝑥𝑗 − 𝑦𝑗)2⎞⎟
⎠

1/2

(5)

Where x and y are two J-dimensional vectors, which have been standardized by

subtracting the mean and dividing by the standard deviation. In the current case 𝐽
is of length three i.e. the wind components 𝑢 and 𝑣 and the concentration 𝐶, each
of which is standardized e.g.:

𝑥𝑗 = 󰝔
𝑥𝑗 − 𝑥

𝜎𝑥
󰝕 (6)

Standardization is necessary because the wind components 𝑢 and 𝑣 are on differ-

ent scales to the concentration. In principle, more weight could be given to the

concentration rather than the 𝑢 and 𝑣 components, although this would tend to

identify clusters with similar concentrations but different source origins.

polarCluster can be thought of as the ‘local’ version of clustering of back tra-

jectories. Rather than using air mass origins, wind speed, wind direction and

concentration are used to group similar conditions together. Section 26.3 provides

the details of clustering back trajectories in openair. A fuller description of the

clustering approach is described in Carslaw and Beevers (2013).

The polarCluster function has the following options.

mydata A data frame minimally containing wd, another variable to plot in

polar coordinates (the default is a column “ws” — wind speed) and

a pollutant. Should also contain date if plots by time period are

required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox". Only one pollut-

ant can be chosen.

x Name of variable to plot against wind direction in polar coordinates,

the default is wind speed, “ws”.

wd Name of wind direction field.

n.clusters Number of clusters to use. If n.clusters is more than length 1, then

a lattice panel plot will be output showing the clusters identified

for each one of n.clusters.

cols Colours to be used for plotting. Useful options for categorical data

are avilable from RColorBrewer colours — see the openair openCol-

ours function for more details. Useful schemes include “Accent”,

“Dark2”, “Paired”, “Pastel1”, “Pastel2”, “Set1”, “Set2”, “Set3” —

but see ?brewer.pal for the maximum useful colours in each. For

user defined the user can supply a list of colour names recognised by

R (type colours() to see the full list). An example would be cols =

c("yellow", "green", "blue").
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angle.scale The wind speed scale is by default shown at a 315 degree angle.

Sometimes the placement of the scalemay interfere with an interesting

feature. The user can therefore set angle.scale to another value

(between 0 and 360 degrees) to mitigate such problems. For example

angle.scale = 45 will draw the scale heading in a NE direction.

units The units shown on the polar axis scale.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto polarPlot, lattice:levelplot

and cutData. Common axis and title labelling options (such as xlab,

ylab, main) are passed via quickText to handle routine formatting.

The use of the polarCluster is very similar to the use of all openair functions.
While there are many techniques available to try and find the optimum number of

clusters, it is difficult for these approaches to work in a consistent way for identifying

features in bivariate polar plots. For this reason it is best to consider a range of

solutions that covers a number of clusters.

Cluster analysis is computationally intensive and the polarCluster function can

take a comparatively long time to run. The basic idea is to calculate the solution to

several cluster levels and then choose one that offers the most appropriate solution

for post-processing.

The example given below is for concentrations of SO2, shown in Figure 15.3 and

the aim is to identify features in that plot. A range of numbers of clusters will be

calculated — in this case from two to ten.

The real benefit of polarCluster is being able to identify clusters in the ori-

ginal data frame. To do this, the results from the analysis must be read into a new

variable, as in Figure 15.9, where the results are read into a data frame results.

Now it is possible to use this new information. In the 8-cluster solution to Fig-

ure 15.9, cluster 6 seems to capture the elevated SO2 concentrations to the east

well (see Figure 15.3 for comparison), while cluster 5 will strongly represent the

road contribution.

The results are here:

head(results[["data"]])

## date ws wd nox no2 o3 pm10 so2 co pm25 ws2 wd2

## 1 1998-01-01 00:00:00 0.60 280 285 39 1 29 4.723 3.373 NA 2.135 294.7

## 2 1998-01-01 02:00:00 2.76 190 NA NA 3 34 6.830 9.602 NA 5.398 340.1

## 3 1998-01-01 03:00:00 2.16 170 493 52 3 35 7.662 10.217 NA 2.470 305.3

## 4 1998-01-01 04:00:00 2.40 180 468 78 2 34 8.070 8.912 NA 1.910 332.4

## 5 1998-01-01 05:00:00 3.00 190 264 42 0 16 5.505 3.053 NA 8.107 369.9

## 6 1998-01-01 06:00:00 3.00 140 171 38 0 11 4.230 2.265 NA 4.366 225.1

## ratio cluster

## 1 0.01657 4

## 2 NA 4

## 3 0.01554 5

## 4 0.01724 5

## 5 0.02085 4

## 6 0.02474 5
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polarCluster(mydata, pollutant="so2", n.clusters=2:10, cols= "Set3")
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F . Use of the polarCluster function applied to SO2 concentrations at Maryle-

bone Road. In this case 2 to 10 clusters have been chosen.

Note that there is an additional column cluster that gives the cluster a particular

row belongs to and that this is a character variable. It might be easier to read these

results into a new data frame:

results <- results[["data"]]

It is easy to find out how many points are in each cluster:

table(results[, "cluster"])

##

## 1 2 3 4 5 6 7 8

## 206 412 160 24133 16049 2590 7839 2918

Now other openair analysis functions can be used to analyse the results. For

example, to consider the temporal variations by cluster:
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results <- polarCluster(mydata, pollutant="so2", n.clusters=8, cols= "Set3")
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F . Use of the polarCluster function applied to SO2 concentrations at Maryle-

bone Road. In this case 8 clusters have been chosen.

timeVariation(results, pollutant="so2", group = "cluster",

col = "Set3", ci = FALSE, lwd = 3)

Or if we just want to plot a couple of clusters (5 and 6) using the same colours as

in Figure 15.9:

timeVariation(subset(results, cluster %in% c("C5", "C6")), pollutant="so2",

group = "cluster", col = openColours("Set3", 8)[5:6], lwd = 3)

polarCluster will work on any surface that can be plotted by polarPlot e.g.

the radial variable does not have to be wind speed but could be another variable

such as temperature. While it is not always possible for polarCluster to identify

all features in a surface it certainly makes it easier to post-process polarPlots using

other openair functions or indeed other analyses altogether.

Another useful way of understanding the clusters is to use the timeProp function,

which can display a time series as a bar chart split by a categorical variable (in this

case the cluster). In this case it is useful to plot the time series of SO2 and show

how much of the concentration is contributed to by each cluster. Such a plot is

shown in Figure 15.10. It is now easy to see for example that many of the peaks

in SO2 are associated with cluster 6 (power station sources from the east), seen

in Figure 15.9. Cluster 6 is particularly prominent during springtime, but those

sources also make important contributions through the whole year.
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16 The polarAnnulus function

timeProp(selectByDate(results, year = 2003), pollutant = "so2", avg.time = "day",

proportion= "cluster", col = "Set3", key.position = "top",

key.columns = 8, date.breaks = 10, ylab = "so2 (ug/m3)")

contribution weighted by mean
date

S
O

2 
(µ

g 
m

−3
) 

5

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

cluster
1 2 3 4 5 6 7 8

F . Temporal variation in daily SO2 concentration at the Marylebone Road site

show by contribution of each cluster for 2003.

16 The polarAnnulus function

16.1 Purpose
see also

polarFreq
polarPlot

percentileR-
ose

pollution-
Rose

The polarAnnulus function provides a way in which to consider the temporal

aspects of a pollutant concentration by wind direction. This is another means

of visualising diurnal, day of week, seasonal and trend variations. Plotting as an

annulus, rather than a circle avoids to some extent the difficulty in interpreting

values close to the origin. These plots have the capacity to display potentially

important information regarding sources; particularly if more than one pollutant is

available.

16.2 Options available

The polarAnnulus function has the following options:

mydata A data frame minimally containing date, wd and a pollutant.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox". There can also

be more than one pollutant specified e.g. pollutant = c("nox",

"no2"). The main use of using two or more pollutants is for model

evaluation where two species would be expected to have similar con-

centrations. This saves the user stacking the data and it is possible to

work with columns of data directly. A typical use would be pollut-

ant = c("obs", "mod") to compare two columns “obs” (the obser-

vations) and “mod” (modelled values).

resolution Two plot resolutions can be set: “normal” and “fine” (the default).

local.time Should the results be calculated in local time? The default is FALSE.

Emissions activity tends to occur at local time e.g. rush hour is at 8
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am every day. When the clocks go forward in spring, the emissions

are effectively released into the atmosphere at BST— 1 hour during

the summer. When plotting diurnal profiles, this has the effect of

“smearing-out” the concentrations. A better approach is to express

time as local time, which here is defined as BST (British Summer

Time). This correction tends to produce better-defined diurnal pro-

files of concentration (or other variables) and allows a better compar-

ison to be made with emissions/activity data. If set to FALSE then

GMT is used.

period This determines the temporal period to consider. Options are “hour”

(the default, to plot diurnal variations), “season” to plot variation

throughout the year, “weekday” to plot day of the week variation and

“trend” to plot the trend by wind direction.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "site") will

produce a 2x2 plot split by season and site. The use of two types is

mostly meant for situations where there are several sites. Note, when

two types are provided the first forms the columns and the second the

rows.

Also note that for the polarAnnulus function some type/period com-

binations are forbidden or make little sense. For example, type =

"season" and period = "trend" (which would result in a plot with

too many gaps in it for sensible smoothing), or type = "weekday"

and period = "weekday".

statistic The statistic that should be applied to each wind speed/direction bin.

Can be “mean” (default), “median”, “max” (maximum), “frequency”.

“stdev” (standard deviation), “weighted.mean” or “cpf” (Conditional

Probability Function). Because of the smoothing involved, the colour

scale for some of these statistics is only to provide an indication of

overall pattern and should not be interpreted in concentration units

e.g. for statistic = "weighted.mean" where the bin mean is mul-

tiplied by the bin frequency and divided by the total frequency. In

many cases using polarFreq will be better. Setting statistic =

"weighted.mean" can be useful because it provides an indication of

the concentration * frequency of occurrence and will highlight the

wind speed/direction conditions that dominate the overall mean.
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percentile If statistic = "percentile" or statistic = "cpf" then percent-

ile is used, expressed from 0 to 100. Note that the percentile value

is calculated in the wind speed, wind direction ‘bins’. For this reason

it can also be useful to set min.bin to ensure there are a sufficient

number of points available to estimate a percentile. See quantile for

more details of how percentiles are calculated.

limits Limits for colour scale.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and user defined. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

width The width of the annulus; can be “normal” (the default), “thin” or

“fat”.

min.bin The minimum number of points allowed in a wind speed/wind dir-

ection bin. The default is 1. A value of two requires at least 2 valid

records in each bin an so on; bins with less than 2 valid records are

set to NA. Care should be taken when using a value > 1 because of

the risk of removing real data points. It is recommended to consider

your data with care. Also, the polarFreq function can be of use in

such circumstances.

exclude.missing Setting this option to TRUE (the default) removes points from

the plot that are too far from the original data. The smoothing routines

will produce predictions at points where no data exist i.e. they predict.

By removing the points too far from the original data produces a plot

where it is clear where the original data lie. If set to FALSE missing

data will be interpolated.

date.pad For type = "trend" (default), date.pad = TRUE will pad-out miss-

ing data to the beginning of the first year and the end of the last year.

The purpose is to ensure that the trend plot begins and ends at the

beginning or end of year.

force.positive The default is TRUE. Sometimes if smoothing data with steep

gradients it is possible for predicted values to be negative. force.pos-

itive = TRUE ensures that predictions remain postive. This is useful

for several reasons. First, with lots of missing data more interpolation

is needed and this can result in artifacts because the predictions are too

far from the original data. Second, if it is known beforehand that the

data are all postive, then this option carries that assumption through to

the prediction. The only likely time where setting force.positive

= FALSE would be if background concentrations were first subtracted

resulting in data that is legitimately negative. For the vast majority of

situations it is expected that the user will not need to alter the default

option.
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k The smoothing value supplied to gam for the temporal and wind dir-

ection components, respectively. In some cases e.g. a trend plot with

less than 1-year of data the smoothing with the default values may

become too noisy and affected more by outliers. Choosing a lower

value of k (say 10) may help produce a better plot.

normalise If TRUE concentrations are normalised by dividing by their mean value.

This is done after fitting the smooth surface. This option is particularly

useful if one is interested in the patterns of concentrations for several

pollutants on different scales e.g. NOx and CO. Often useful if more

than one pollutant is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the

options key.header = "header", key.footer = "footer1" adds

addition text above and below the scale key. These arguments are

passed to drawOpenKey via quickText, applying the auto.text ar-

gument, to handle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments

currently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto lattice:levelplot and

cutData. For example, polarAnnulus passes the option hemisphere

= "southern" on to cutData to provide southern (rather than default

northern) hemisphere handling of type = "season". Similarly, com-

mon axis and title labelling options (such as xlab, ylab, main) are

passed to levelplot via quickText to handle routine formatting.

16.3 Example of use

We apply the four variations of the polarAnnulus plot to PM10 concentrations at

Marylebone Road. Figure 16.1 shows the different temporal components. Similar

to other analyses for PM10, the trend plot show that concentrations are dominated

by southerly winds and there is little overall change in concentrations from 1998 to

2005, as shown by the red colouring over the period. The seasonal plot shows that

February/March is important for easterly winds, while the summer/late summer

period is more important for southerly and south-westerly winds. The day of the

week plot clearly shows concentrations to be elevated for during weekdays but not

weekends — for all wind directions. Finally, the diurnal plot highlights that higher

concentrations are observed from 6 am to 6 pm.

Interestingly, the plot for NOx and CO (not shown, but easily produced) did not

show such a strong contribution for south-easterly winds. This raises the question
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16 The polarAnnulus function

data(mydata)

polarAnnulus(mydata, poll = "pm10", period = "trend", main = "Trend")

polarAnnulus(mydata, poll = "pm10", period = "season", main = "Season")

polarAnnulus(mydata, poll = "pm10", period = "weekday", main = "Weekday")

polarAnnulus(mydata, poll = "pm10",period = "hour", main = "Hour")
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F . Examples of the polarAnnulus function applied to Marylebone Road

as to whether the higher particle concentrations seen for these wind directions are

dominated by different sources (i.e. not the road itself). One explanation is that

during easterly flow, concentrations are strongly affected by long-range transport.

However, as shown in the diurnal plot in Figure 16.1, the contribution from the

south-east also has a sharply defined profile — showing very low concentrations at

night, similar to the likely contribution from the road. This type of profile might

not be expected from a long-range source where emissions are well-mixed and

secondary particle formation has had time to occur. The same is also true for the

day of the week plot, where there is little evidence of ‘smeared-out’ long-range

transport sources. These findings may suggest a different, local source of PM10 that

is not the road itself. Clearly, a more detailed analysis would be required to confirm

the patterns shown; but it does highlight the benefit of being able to analyse data in

different ways.

Where there is interest in considering the wind direction dependence of concen-
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17 The timePlot and timeProp functions

trations, it can be worth filtering for wind speeds. At low wind speed with wind

direction becomes highly variable (and is often associated with high pollutant con-

centrations). Therefore, for some situations it might be worth considering removing

the very low wind speeds. The code below provides two ways of doing this using

the subset function. The first selects data where the wind speed is > 2 m s−1. The

second part shows how to select wind speeds greater than the 10th percentile, using

the quantile function. The latter way of selecting is quite useful, because it is

known how much data are selected i.e. in this case 90 %. It is worth experimenting

with different values because it is also important not to lose information by ignoring

wind speeds that provide useful information.

## wind speed >2

polarAnnulus(subset(mydata, ws > 2), poll="pm10", type = "hour")

## wind speed > 10th percentile

polarAnnulus(subset(mydata, ws > quantile(ws, probs = 0.1, na.rm = TRUE)),

poll="pm10", type = "hour")

17 The timePlot and timeProp functions

17.1 Purpose
see also

smoothTrend
TheilSen
timeVari-

ation
scatterPlot

The timePlot function is designed to quickly plot time series of data, perhaps for

several pollutants or variables. This is, or should be, a very common task in the

analysis of air pollution. In doing so, it is helpful to be able to plot several pollutants

at the same time (and maybe other variables) and quickly choose the time periods

of interest. It will plot time series of type Date and hourly and high time resolution

data.

The function offers fine control over many of the plot settings such as line type,

colour and width. If more than one pollutant is selected, then the time series are

shown in a compact way in different panels with different scales. Sometimes it is

useful to get and idea of whether different variables ‘go up and down’ together. Such

comparisons in timePlot are made easy by setting group = TRUE, and maybe also

normalise = "mean". The latter setting divides each variable by its mean value,

thus enabling several variables to be plotted together using the same scale. The

normalise option will also take a date as a string (in British format dd/mm/YYYY),

in which case all data are normalise to equal 100 at that time. Normalising data

like this makes it easy to compare time series on different scales e.g. emissions and

ambient measurements.

timePlot works very well in conjunction with selectByDate, which makes it

easy to select specific time series intervals. See (§31.1) for examples of how to

select parts of a data frame based on the date.

Another useful feature of timePlot is the ability to average the data in several

ways. This makes it easy, for example, to plot daily or monthly means from hourly

data, or hourly means from 15-minute data. See the option avg.time for more

details and (§31.4) where a full description of time averaging of data frames is given.
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17 The timePlot and timeProp functions

17.2 Options available

mydata A data frame of time series. Must include a date field and at least one

variable to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted,

in which case a form like pollutant = c("nox", "co") should be

used.

group If more than one pollutant is chosen, should they all be plotted on the

same graph together? The default is FALSE, which means they are

plotted in separate panels with their own scaled. If TRUE then they

are plotted on the same plot with the same scale.

stack If TRUE the time series will be stacked by year. This option can be

useful if there are several years worth of data making it difficult to see

much detail when plotted on a single plot.

normalise Should variables be normalised? The default is is not to normalise

the data. normalise can take two values, either “mean” or a string

representing a date in UK format e.g. ”1/1/1998” (in the format

dd/mm/YYYY). If normalise = "mean" then each time series is

divided by its mean value. If a date is chosen, then values at that date

are set to 100 and the rest of the data scaled accordingly. Choosing a

date (say at the beginning of a time series) is very useful for showing

how trends diverge over time. Setting group = TRUE is often useful

too to show all time series together in one panel.

avg.time This defines the time period to average to. Can be “sec”, “min”,

“hour”, “day”, “DSTday”, “week”, “month”, “quarter” or “year”.

For much increased flexibility a number can precede these options

followed by a space. For example, a timeAverage of 2monthswould be

period = "2 month". See function timeAverage for further details

on this.

data.thresh The data capture threshold to use (%) when aggregating the data

using avg.time. A value of zero means that all available data will

be used in a particular period regardless if of the number of values

available. Conversely, a value of 100 will mean that all data will need

to be present for the average to be calculated, else it is recorded as NA.

Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean.

Can be one of “mean”, “max”, “min”, “median”, “frequency”, “sd”,

“percentile”. Note that “sd” is the standard deviation and “frequency”

is the number (frequency) of valid records in the period. “percentile”

is the percentile level (%) between 0-100, which can be set using the

“percentile” option - see below. Not used if avg.time = "default".

percentile The percentile level in % used when statistic = "percentile"

and when aggregating the data with avg.time. More than one per-
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17 The timePlot and timeProp functions

centile level is allowed for type = "default" e.g. percentile =

c(50, 95). Not used if avg.time = "default".

date.pad Should missing data be padded-out? This is useful where a data frame

consists of two or more ”chunks” of data with time gaps between them.

By setting date.pad = TRUE the time gaps between the chunks are

shown properly, rather than with a line connecting each chunk. For

irregular data, set to FALSE. Note, this should not be set for type other

than default.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Only one type is currently allowed in timePlot.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

plot.type The lattice plot type, which is a line (plot.type = "l") by de-

fault. Another useful option is plot.type = "h", which draws ver-

tical lines.

key Should a key be drawn? The default is TRUE.

log Should the y-axis appear on a log scale? The default is FALSE. If TRUE

a well-formatted log10 scale is used. This can be useful for plotting

data for several different pollutants that exist on very different scales.

It is therefore useful to use log = TRUE together with group = TRUE.

smooth Should a smooth line be applied to the data? The default is FALSE.

ci If a smooth fit line is applied, then ci determines whether the 95%

confidence intervals aer shown.

y.relation This determines how the y-axis scale is plotted. ”same” ensures all

panels use the same scale and ”free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

ref.x Add a vertical dashed reference line at this value.
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17 The timePlot and timeProp functions

ref.y Add a horizontal dashed reference line at this value.

key.columns Number of columns to be used in the key. With many pollutants a

single column can make to key too wide. The user can thus choose to

use several columns by setting columns to be less than the number of

pollutants.

name.pol This option can be used to give alternative names for the variables

plotted. Instead of taking the column headings as names, the user can

supply replacements. For example, if a column had the name “nox”

and the user wanted a different description, then setting name.pol

= "nox before change" can be used. If more than one pollutant is

plotted then use c e.g. name.pol = c("nox here", "o3 there").

date.breaks Number of major x-axis intervals to use. The function will try and

choose a sensible number of dates/times as well as formatting the

date/time appropriately to the range being considered. This does

not always work as desired automatically. The user can therefore

increase or decrease the number of intervals by adjusting the value of

date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot

generally sets the date format sensibly there can be some situations

where the user wishes to havemore control. For format types see strp-

time. For example, to format the date like “Jan-2012” set date.format

= "%b-%Y".

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters are passed onto cutData and lattice:xyplot.

For example, timePlot passes the option hemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-

sphere handling of type = "season". Similarly, most common plot-

ting parameters, such as layout for panel arrangement and pch and

cex for plot symbol type and size and lty and lwd for line type and

width, as passed to xyplot, although some maybe locally managed by

openair on route, e.g. axis and title labelling options (such as xlab,

ylab, main) are passed via quickText to handle routine formatting.

See examples below.

17.3 Example of use

A full set of examples is shown in the help pages — see ?timePlot for details. At the

basic level, concentrations are shown using a simple call e.g. to plot time series of

NOx and O3 in separate panels with their own scales.

timePlot(mydata, pollutant = c("nox", "o3"))
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17 The timePlot and timeProp functions

data(mydata)

timePlot(selectByDate(mydata, year = 2003, month = "aug"),

pollutant = c("nox", "o3", "pm25", "pm10", "ws"))
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F . Time series for several variables using the timePlot and the selectByDate

functions. The data shown are for August 2003.

Often it is necessary to only consider part of a time series and using the openair
function selectByDate makes it easy to do this. Some examples are shown below.

To plot data only for 2003:

timePlot(selectByDate(mydata, year = 2003), pollutant = c("nox", "o3"))

Plots for several pollutants for August 2003, are shown in Figure 17.1.

Some other examples (not plotted) are:
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17 The timePlot and timeProp functions

timePlot(mydata, pollutant = c("nox", "no2", "co", "so2", "pm10"),

avg.time = "year", normalise = "1/1/1998", lwd = 4, lty = 1,

group = TRUE, ylim = c(0, 120))
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F . An example of normalising time series data to fix values to equal 100 at the

beginning of 1998.

## plot monthly means of ozone and no2

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month")

## plor 95th percentile monthly concentrations

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month",

statistic = "percentile", percentile = 95)

## plot the number of valid records in each 2-week period

timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "2 week",

statistic = "frequency")

An example of normalising data is shown in Figure 17.2. In this plot we have:

• Averaged the data to annual means;

• Chosen to normalise to the beginning of 2008;

• Set the line width to 4 and the line type to 1 (continuous line);

• Chosen to group the data in one panel.

Figure 17.2 shows that concentrations of NO2 and O3 have increased over the

period 1998–2005; SO2 and CO have shown the greatest reductions (by about

60%), whereas NOx concentrations have decreased by about 20%.

Another example is grouping pollutants from several sites on one plot. It is easy

to import data from several sites and to plot the data in separate panels e.g.

## import data from 3 sites

thedata <- importAURN(site = c("kc1", "my1", "nott"), year = 2005:2010)

## plot it

timePlot(test, pollutant = "nox", type = "site", avg.time = "month")
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Using the code above it is also possible to include several species. But what if

we wanted to plot NOx concentrations across all sites in one panel? To do this we

need to re-organise the data, as described in Section 5.4. An example of how to do

this is shown below. Note, in order to make referring to the columns easier, we will

drop the full (long) site name and use the site code instead.

## first drop site name

thedata <- subset(thedata, select = -site)

## now reshape the data using the reshape package

thedata <- melt(thedata, id.vars = c("date", "code"))

thedata <- dcast(thedata, ... ~ code + variable)

The final stepwill make columns of each site/pollutant combination e.g. ‘KC1_nox’,

‘KC1_pm10’ and so on. It is then easy to use any of these names to make the plot:

timePlot(thedata, pollutant = c("KC1_nox", "MY1_nox", "NOTT_nox"),

avg.time = "month", group = TRUE)

An alternative way of selecting all columns containing the character ‘nox’ is to

use the grep command (see page 39). For example:

timePlot(thedata, pollutant = names(thedata)[grep(pattern = "nox", names(thedata))],

avg.time = "month", group = TRUE)

17.3.1 The timeProp function

The timeProp (‘time proportion’) function shows time series plots as stacked bar

charts. For a particular time, proportions of a chosen variable are shown as a stacked

bar chart. The different categories in the bar chart are made up from a character

or factor variable in a data frame. The function is primarily developed to support

the plotting of cluster analysis output from polarCluster (see Section 15) and

trajCluster (see Section 26.3) that consider local and regional (back trajectory)

cluster analysis respectively. However, the function has more general use for under-

standing time series data. In order to plot time series in this way, some sort of time

aggregation is needed, which is controlled by the option avg.time.

The plot shows the value of pollutant on the y-axis (averaged according to

avg.time). The time intervals are made up of bars split according to proportion.

The bars therefore show how the total value of pollutant is made up for any time

interval.

The timeProp function has the following options:

mydata A data frame containing the field obs and mod representing observed

and modelled values.

pollutant Name of the pollutant to plot contained in mydata.

proportion The splitting variable that makes up the bars in the bar chart e.g.

proportion = "cluster" if the output from polarCluster is being

analysed. If proportion is a numeric variable it is split into 4 quantiles

(by default) by cutData. If proportion is a factor or character vari-

able then the categories are used directly.
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17 The timePlot and timeProp functions

avg.time This defines the time period to average to. Can be “sec”, “min”,

“hour”, “day”, “DSTday”, “week”, “month”, “quarter” or “year”.

For much increased flexibility a number can precede these options

followed by a space. For example, a timeAverage of 2 months would

be period = "2 month". In addition, avg.time can equal “season”,

in which case 3-month seasonal values are calculated with spring

defined as March, April, May and so on.

Note that avg.time when used in timeProp should be greater than

the time gap in the original data. For example, avg.time = "day"

for hourly data is OK, but avg.time = "hour" for daily data is not.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. ”season”, ”year”, ”weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

type must be of length one.

statistic Determines how the bars are calculated. The default (“mean”) will

provide the contribution to the overall mean for a time interval. stat-

istic = "frequency" will give the proportion in terms of counts.

normalise If normalise = TRUE then each time interval is scaled to 100. This

is helpful to show the relative (percentage) contribution of the pro-

portions.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

date.breaks Number of major x-axis intervals to use. The function will try and

choose a sensible number of dates/times as well as formatting the

date/time appropriately to the range being considered. This does

not always work as desired automatically. The user can therefore

increase or decrease the number of intervals by adjusting the value of

date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot

generally sets the date format sensibly there can be some situations
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timeProp(selectByDate(mydata, year = 2003), pollutant = "so2", avg.time = "3 day",

proportion = "wd", date.breaks = 10, key.position = "top",

key.columns = 8, ylab = "so2 (ug/m3)")
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F . timeProp plot for SO2 concentrations in 2003. The data are categorised into

8 wind sectors for 3-day averages.

where the user wishes to havemore control. For format types see strp-

time. For example, to format the date like “Jan-2012” set date.format

= "%b-%Y".

box.width The width of the boxes for panel.boxplot. A value of 1 means that

there is no gap between the boxes.

key.columns Number of columns to be used in the key. With many pollutants a

single column can make to key too wide. The user can thus choose to

use several columns by setting columns to be less than the number of

pollutants.

key.position Location where the scale key is to plotted. Allowed arguments

currently include “top”, “right”, “bottom” and “left”.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will

automatically try and format pollutant names and units properly e.g.

by subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto timeProp and cutData. For

example, timeProp passes the option hemisphere = "southern" on

to cutData to provide southern (rather than default northern) hemi-

sphere handling of type = "season". Similarly, common axis and

title labelling options (such as xlab, ylab, main) are passed to xyplot

via quickText to handle routine formatting.

An example of the timeProp function is shown in Figure 17.3. In this example

SO2 concentrations are considered for 2003 (using the selectByDate function).

The averaging period is set to 3 days and the mean concentration is plotted and

the proportion contribution by wind sector is given. Other options are chosen to

place the key at the top and choose the number of columns used in the key. It is

apparent from Figure 17.3 that the highest SO2 concentrations are dominated by

winds from an easterly sector, but actually occur throughout the year.
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18 The calendarPlot function

Note that proportion can be an existing categorical (i.e. factor or character)

variable in a data frame. If a numeric variable is supplied, then it is typically cut

into four quantile levels. So, for example, the plot below would show four intervals

of wind speed, which would help show the wind speed conditions that control high

SO2 concentration — and importantly, when they occur.

One of the key uses of timeProp is to post-process cluster analysis data. Users

should consider the uses of timeProp for cluster analysis shown in Section 15 and

Section 26.3. In both these cases the cluster analysis yields a categorical output

directly i.e. cluster, which lends itself to analysis using timeProp.

timeProp(selectByDate(mydata, year = 2003), pollutant = "so2",

avg.time = "3 day", proportion = "ws", date.breaks = 10,

key.position = "top", key.columns = 4)

18 The calendarPlot function

18.1 Purpose

Sometimes it is useful to visualise data in a familiar way. Calendars are the ob-

vious way to represent data for data on the time scale of days or months. The

calendarPlot function provides an effective way to visualise data in this way by

showing daily concentrations laid out in a calendar format. The concentration

of a species is shown by its colour. The data can be shown in different ways. By

default calendarPlot overlays the day of the month. However, if wind speed and

wind direction are available then an arrow can be shown for each day giving the

vector-averaged wind direction. In addition, the arrow can be scaled according

to the wind speed to highlight both the direction and strength of the wind on a

particular day, which can help show the influence of meteorology on pollutant

concentrations.

calendarPlot can also show the daily mean concentration as a number on each

day and can be extended to highlight those conditions where daily mean (or max-

imum etc.) concentrations are above a particular threshold. This approach is useful

for highlighting daily air quality limits e.g. when the daily mean concentration is

greater than 50 µg m−3.

The calendarPlot function can also be used to plot categorical scales. This is

useful for plotting concentrations expressed as an air quality index i.e. intervals of

concentrations that are expressed in ways like ‘very good’, ‘good’, ‘poor’ and so on.

18.2 Options available

mydata A data frame minimally containing date and at least one other nu-

meric variable. The date should be in either Date format or class

POSIXct.

pollutant Mandatory. A pollutant name corresponding to a variable in a data

frame should be supplied e.g. pollutant = "nox".

year Year to plot e.g. year = 2003.
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month If only certain month are required. By default the function will plot

an entire year even if months are missing. To only plot certain months

use the month option where month is a numeric 1:12 e.g. month =

c(1, 12) to only plot January and December.

type Not yet implemented.

annotate This option controls what appears on each day of the calendar. Can be:

“date” — shows day of the month; “wd” — shows vector-averaged

wind direction, or “ws” — shows vector-averaged wind direction

scaled by wind speed. Finally it can be “value” which shows the daily

mean value.

statistic Statistic passed to timeAverage.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

limits Use this option to manually set the colour scale limits. This is useful

in the case when there is a need for two or more plots and a consistent

scale is needed on each. Set the limits to cover the maximimum range

of the data for all plots of interest. For example, if one plot had data

covering 0–60 and another 0–100, then set limits = c(0, 100).

Note that data will be ignored if outside the limits range.

lim A threshold value to help differentiate values above and below lim. It

is used when annotate = "value". See next few options for control

over the labels used.

col.lim For the annotation of concentration labels on each day. The first sets

the colour of the text below lim and the second sets the colour of the

text above lim.

font.lim For the annotation of concentration labels on each day. The first sets

the font of the text below lim and the second sets the font of the text

above lim. Note that font = 1 is normal text and font = 2 is bold text.

cex.lim For the annotation of concentration labels on each day. The first sets

the size of the text below lim and the second sets the size of the text

above lim.

digits The number of digits used to display concentration values when

annotate = "value".

data.thresh Data capture threshold passed to timeAverage. For example, data.thresh

= 75means that at least 75% of the data must be available in a day

for the value to be calculate, else the data is removed.
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18 The calendarPlot function

labels If a categorical scale is required then these labels will be used. Note

there is one less label than break. For example, labels = c("good",

"bad", "very bad"). breaks must also be supplied if labels are

given.

breaks If a categorical scale is required then these breaks will be used. For

example, breaks = c(0, 50, 100, 1000). In this case “good” cor-

responds to values berween 0 and 50 and so on. Users should set

the maximum value of breaks to exceed the maximum data value

to ensure it is within the maximum final range e.g. 100–1000 in this

case.

main The plot title; default is pollutant and year.

key.header Adds additional text/labels to the scale key. For example, passing cal-

endarPlot(mydata, key.header = "header", key.footer = "footer")

adds addition text above and below the scale key. These arguments

are passed to drawOpenKey via quickText, applying the auto.text

argument, to handle formatting.

key.footer see key.header.

key.position Location where the scale key is to plotted. Allowed arguments

currently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for

further details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters are passed onto the lattice function

lattice:levelplot, with common axis and title labelling options

(such as xlab, ylab, main) being passed to via quickText to handle

routine formatting.

18.3 Example of use

The function is called in the usual way. As a minimum, a data frame, pollutant and

year is required. So to show O3 concentrations for each day in 2003 (Figure 18.1).

It is sometimes useful to annotate the plots with other information. It is possible

to show the daily mean wind angle, which can also be scaled to wind speed. The

idea here being to provide some information on meteorological conditions on each

day. Another useful option is to set annotate = "value" in which case the daily

concentration will be shown on each day. Furthermore, it is sometimes useful to

highlight particular values more clearly. For example, to highlight daily mean PM10

concentrations above 50 µg m−3. This is where setting lim (a concentration limit)

is useful. In setting lim the user can then differentiate the values below and above

lim by colour of text, size of text and type of text e.g. plain and bold.
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18 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year =2003)

O3 in 2003 

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

January 

S S M T W T F

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

February 

S S M T W T F

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

March 

S S M T W T F

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

April 

S S M T W T F

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

May 

S S M T W T F

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

June 

S S M T W T F

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

July 

S S M T W T F

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

August 

S S M T W T F

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

September 

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

October 

S S M T W T F

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21
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F . calendarPlot for O3 concentrations in 2003.

Figure 18.2 highlights those days where PM10 concentrations exceed 50 µg m−3

by making the annotation for those days bigger, bold and orange. Plotting the data

in this way clearly shows the days where PM10 >50 µg m−3.

Other openair functions can be used to plot other statistics. For example, rolling-

Mean could be used to calculate rolling 8-hour mean O3 concentrations. Then,

calendarPlot could be used with statistic = "max" to show days where the

maximum daily rolling 8-hour mean O3 concentration is greater than a certain

threshold e.g. 100 or 120 µg m−3.

To show wind angle, scaled to wind speed (Figure 18.3).

Note again that selectByDate can be useful. For example, to plot select months:

calendarPlot(selectByDate(mydata, year = 2003, month = c("jun", "jul", "aug")),

pollutant = "o3", year = 2003)

Figure 18.4 shows an example of plotting data with a categorical scale. In this case

the options labels and breaks have been used to define concentration intervals

and their descriptions. Note that breaks needs to be one longer than labels. In
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18 The calendarPlot function

data(mydata) ## make sure openair 'mydata' loaded fresh

calendarPlot(mydata, pollutant = "pm10", annotate = "value", lim =50,

cols = "Purples", col.lim = c("black", "orange"),

layout = c(4, 3))
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F . calendarPlot for PM10 concentrations in 2003 with annotations highlighting

those days where the concentration of PM10 >50 µg m−3. The numbers show the PM10

concentration in µg m−3.

the example in Figure 18.4 the first interval (‘Very low’) is defined as concentrations

from 0 to 50 (ppb), ‘Low’ is 50 to 100 and so on. Note that the upper value of

breaks should be a number greater than the maximum value contained in the data

to ensure that it is encompassed. In the example given in Figure 18.4 the maximum

daily concentration is plotted. These types of plots are very useful for considering

national or international air quality indexes.

The user can explicitly set each colour interval:

calendarPlot(mydata, pollutant = "no2", breaks = c(0, 50, 100, 150, 1000),

labels = c("Very low", "Low", "High", "Very High"),

cols = c("lightblue", "forestgreen", "yellow", "red"),

statistic = "max")
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18 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year = 2003, annotate = "ws")
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F . calendarPlot for O3 concentrations in 2003 with annotations showing wind

angle scaled to wind speed i.e. the longer the arrow, the higher the wind speed. It shows for

example high O3 concentrations on the 17 and 18th of April were associated with strong

north-easterly winds.
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18 The calendarPlot function

calendarPlot(mydata, pollutant = "no2", breaks = c(0, 50, 100, 150, 1000),

labels = c("Very low", "Low", "High", "Very High"),

cols = "increment", statistic = "max")
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F . calendarPlot for NO2 concentrations in 2003 with a user-defined categorical

scale.
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18 The calendarPlot function

Note that in the case of categorical scales it is possible to define the breaks and

labels first and then make the plot. For example:

breaks <- c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

labels <- c("Low.1", "Low.2", "Low.3", "Moderate.4", "Moderate.5", "Moderate.6",

"High.7", "High.8", "High.9", "Very High.10")

calendarPlot(mydata, pollutant = "no2", breaks = breaks, labels = labels,

cols = "jet", statistic = "max")

It is also possible to first use rollingMean to calculate statistics. For example, if

onewas interested in plotting themaximumdaily rolling 8-hourmean concentration,

the data could be prepared and plotted as follows.

## makes a new field 'rolling8o3'

dat <- rollingMean(dat, pollutant = "o3", hours = 8)

breaks <- c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

labels <- c("Low.1", "Low.2", "Low.3", "Moderate.4", "Moderate.5", "Moderate.6",

"High.7", "High.8", "High.9", "Very High.10")

calendarPlot(mydata, pollutant = "rolling8o3", breaks = breaks, labels = labels,

cols = "jet", statistic = "max")

TheUK has an air quality index for O3, NO2, PM10 and PM2.5 described in detail

at http://uk-air.defra.gov.uk/air-pollution/daqi and COMEAP (2011).

The air quality index is shown in Table 18.1. The index is most relevant to air

quality forecasting, but is used widely for public information. Most other countries

have similar indexes. Note that the indexes are calculated for different averaging

times dependent on the pollutant: rolling 8-hour mean for O3, hourly means for

NO2 and a fixed 24-hour mean for PM10 and PM2.5.

T . The UK daily air quality index (values in µg m−3).

Band Description NO2 O3 PM10 PM2.5

1 Low 0–66 0–33 0–16 0–11

2 Low 67–133 34–65 17–33 12–23

3 Low 134–199 66–99 34–49 24–34

4 Moderate 200–267 100–120 50–58 35–41

5 Moderate 268–334 121–140 59–66 42–46

6 Moderate 335–399 141–159 67–74 47–52

7 High 400–467 160–187 75–83 53–58

8 High 468–534 188–213 84–91 59–64

9 High 535–599 214–239 92–99 65–69

10 Very High 600 or more 240 or more 100 or more 70 or more

In the code below the labels and breaks are defined for each pollutant in Table 18.1

to make it easier to use the index in the calendarPlot function.
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19 The TheilSen function

## the labels - same for all species

labels <- c("1 - Low", "2 - Low", "3 - Low", "4 - Moderate", "5 - Moderate",

"6 - Moderate", "7 - High", "8 - High", "9 - High", "10 - Very High")

o3.breaks <-c(0, 34, 66, 100, 121, 141, 160, 188, 214, 240, 500)

no2.breaks <- c(0, 67, 134, 200, 268, 335, 400, 468, 535, 600, 1000)

pm10.breaks <- c(0, 17, 34, 50, 59, 67, 75, 84, 92, 100, 1000)

pm25.breaks <- c(0, 12, 24, 35, 42, 47, 53, 59, 65, 70, 1000)

Remember it is necessary to use the correct averaging time. Assuming data are

imported using importAURN or importKCL then the units will be in µg m−3— if not

the user should ensure this is the case. Note that rather than showing the day of the

month (the default), annotate = "value" can be used to show the actual numeric

value on each day. In this way, the colours represent the categorical interval the

concentration on a day corresponds to and the actual value itself is shown.

## import test data

dat <- importAURN(site = "kc1", year = 2010)

## no2 index example

calendarPlot(dat, year = 2010, pollutant = "no2", labels = labels,

breaks = no2.breaks, statistic = "max", cols = "jet")

## for PM10 or PM2.5 we need the daily mean concentration

calendarPlot(dat, year = 2010, pollutant = "pm10", labels = labels,

breaks = pm10.breaks, statistic = "mean", cols = "jet")

## for ozone, need the rolling 8-hour mean

dat <- rollingMean(dat, pollutant = "o3", hours = 8)

calendarPlot(dat, year = 2010, pollutant = "rolling8o3", labels = labels,

breaks = o3.breaks, statistic = "max", cols = "jet")

19 The TheilSen function

19.1 Purpose
see also

smoothTrend
timePlot

Calculating trends for air pollutants is one of the most important and common tasks

that can be undertaken. Trends are calculated for all sorts of reasons. Sometimes

it is useful to have a general idea about how concentrations might have changed.

On other occasions a more definitive analysis is required; for example, to establish

statistically whether a trend is significant or not. Thewhole area of trend calculation

is a complex one and frequently trends are calculated with little consideration as to

their validity. Perhaps the most common approach is to apply linear regression and

not think twice about it. However, there can be many pitfalls when using ordinary

linear regression, such as the assumption of normality, autocorrelation etc.

One commonly used approach for trend calculation in studies of air pollution is

the non-parametricMann-Kendall approach (Hirsch et al. 1982). Wilcox (2010)

provides an excellent case for using ‘modern methods’ for regression including the

benefits of non-parametric approaches and bootstrap simulations. Note also that

the all the regression parameters are estimated through bootstrap resampling.

The Theil-Sen method dates back to 1950, but the basic idea pre-dates 1950

(Theil 1950; Sen 1968). It is one of those methods that required the invention of
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19 The TheilSen function

fast computers to be practical. The basic idea is as follows. Given a set of 𝑛 𝑥, 𝑦 pairs,
the slopes between all pairs of points are calculated. Note, the number of slopes can

increase by ≈ 𝑛2 so that the number of slopes can increase rapidly as the length of

the data set increases. The Theil-Sen estimate of the slope is the median of all these

slopes. The advantage of the using the Theil-Sen estimator is that it tends to yield

accurate confidence intervals even with non-normal data and heteroscedasticity

(non-constant error variance). It is also resistant to outliers — both characteristics

can be important in air pollution. As previously mentioned, the estimates of these

parameters can be made more robust through bootstrap-resampling, which further

adds to the computational burden, but is not an issue for most time series which are

expressed either as monthly or annual means. Bootstrap resampling also provides

the estimate of 𝑝.
An issue that can be very important for time series is dependence or autocorrel-

ation in the data. Normal (in the statistical sense) statistics assume that data are

independent, but in time series this is rarely the case. The issue is that neighbouring

data points are similar to one another (correlated) and therefore not independent.

Ignoring this dependence would tend to give an overly optimistic impression of

uncertainties. However, taking account of it is far from simple. A discussion of

these issues is beyond the aims of this report and readers are referred to standard

statistical texts on the issue. In openair we follow the suggestion of Kunsch (1989)

of setting the block length to 𝑛1/3 where n is the length of the time series.

There is a temptation when considering trends to use all the available data. Why?

Often it is useful to consider specific periods. For example, is there any evidence

that concentrations of NOx have decreased since 2000? Clearly, the time period

used depends on both the data and the questions, but it is good to be aware that

considering subsets of data can be very insightful.

Another aspect is that almost all trends are shown as mean concentration versus

time; typically by year. Such analyses are very useful for understanding how

concentrations have changed through time and for comparison with air quality

limits and regulations. However, if one is interested in understanding why trends

are as they are, it can be helpful to consider how concentrations vary in other ways.

The trend functions in openair do just this. Trends can be plotted by day of the

week, month, hour of the day, by wind direction sector and by different wind speed

ranges. All these capabilities are easy to use and their effectiveness will depend

on the situation in question. One of the reasons that trends are not considered in

these many different ways is that there can be a considerable overhead in carrying

out the analysis, which is avoided by using these functions. Few, for example,

would consider a detailed trend analysis by hour of the day, ensuring that robust

statistical methods were used and uncertainties calculated. However, it can be

useful to consider how concentrations vary in this way. It may be, for example,

that the hours around midday are dominated by heavy vehicle emissions rather

than by cars — so is the trend for a pollutant different for those hours compared

with say, hours dominated by other vehicle types? Similarly, a much more focussed

trend analysis can be done by considering different wind direction, as this can help

isolate different source influences.

The TheilSen function is typically used to determine trends in pollutant concen-

trations over several years. However, it can be used to calculate the trend in any

numeric variable. It calculates monthly mean values from daily, hourly or higher
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time resolution data, as well as working directly with monthly means. Whether it

is meaningful to calculate trends over shorter periods of time (e.g. 2 years) depends

very much on the data. It may well be that statistically significant trends can be

detected over relatively short periods but it is another matter whether it matters.

Because seasonal effects can be important for monthly data, there is the option

to deseasonalise the data first. The timeVariation function are both useful to

determine whether there is a seasonal cycle that should be removed.

Note also that the symbols shown next to each trend estimate relate to how

statistically significant the trend estimate is: 𝑝 < 0.001 = ∗ ∗ ∗, 𝑝 < 0.01 = ∗∗, 𝑝 <
0.05 = ∗ and 𝑝 < 0.1 = +.

19.2 Options available

The TheilSen function has the following options:

mydata Adata frame containing the field date and at least one other parameter

for which a trend test is required; typically (but not necessarily) a

pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

deseason Should the data be de-deasonalized first? If TRUE the function stl is

used (seasonal trend decomposition using loess). Note that if TRUE

missing data are first linearly interpolated because stl cannot handle

missing data.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

avg.time Can be “month” (the default), “season” or “year”. Determines the

time over which data should be averaged. Note that for “year”, six

or more years are required. For “season” the data are split up into

spring: March, April, May etc. Note that December is considered as

belonging to winter of the following year.

statistic Statistic used for calculating monthly values. Default is “mean”, but

can also be “percentile”. See timeAverage for more details.
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19 The TheilSen function

percentile Single percentile value to use if statistic = "percentile" is chosen.

data.thresh The data capture threshold to use ( when aggregating the data using

avg.time. A value of zero means that all available data will be used

in a particular period regardless if of the number of values available.

Conversely, a value of 100 will mean that all data will need to be

present for the average to be calculated, else it is recorded as NA.

alpha For the confidence interval calculations of the slope. The default is

0.05. To show 99% confidence intervals for the value of the trend,

choose alpha = 0.01 etc.

dec.place The number of decimal places to display the trend estimate at. The

default is 2.

xlab x-axis label, by default "year".

lab.frac Fraction along the y-axis that the trend information should be printed

at, default 0.99.

lab.cex Size of text for trend information.

x.relation This determines how the x-axis scale is plotted. “same” ensures all

panels use the same scale and “free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

y.relation This determines how the y-axis scale is plotted. “same” ensures all

panels use the same scale and “free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

data.col Colour name for the data

line.col Colour name for the slope and uncertainty estimates

text.col Colour name for the slope/uncertainty numeric estimates

cols Predefined colour scheme, currently only enabled for "greyscale".

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

autocor Should autocorrelation be considered in the trend uncertainty estim-

ates? The default is FALSE. Generally, accounting for autocorrelation

increases the uncertainty of the trend estimate — sometimes by a

large amount.

slope.percent Should the slope and the slope uncertainties be expressed as a

percentage change per year? The default is FALSE and the slope

is expressed as an average units/year change e.g. ppb. Percentage

changes can often be confusing and should be clearly defined. Here

the percentage change is expressed as 100 * (C.end/C.start - 1) /

169



19 The TheilSen function

(end.year - start.year). Where C.start is the concentration at the start

date and C.end is the concentration at the end date.

For avg.time = "year" (end.year - start.year) will be the total num-

ber of years - 1. For example, given a concentration in year 1 of 100

units and a percentage reduction of 5 but the actual time span will

be 6 years i.e. year 1 is used as a reference year. Things are slightly

different for monthly values e.g. avg.time = "month", which will

use the total number of months as a basis of the time span and is there-

fore able to deal with partial years. There can be slight differences

in the estimate therefore, depending on whether monthly or annual

values are considered.

date.breaks Number of major x-axis intervals to use. The function will try and

choose a sensible number of dates/times as well as formatting the

date/time appropriately to the range being considered. This does

not always work as desired automatically. The user can therefore

increase or decrease the number of intervals by adjusting the value of

date.breaks up or down.

... Other graphical parameters passed onto cutData and lattice:xyplot.

For example, TheilSen passes the option hemisphere = "southern"

on to cutData to provide southern (rather than default northern) hemi-

sphere handling of type = "season". Similarly, common axis and

title labelling options (such as xlab, ylab, main) are passed to xyplot

via quickText to handle routine formatting.

19.3 Example of use

We first show the use of the TheilSen function by applying it to concentrations of

O3. The function is called as shown in Figure 19.1.

Because the function runs simulations to estimate the uncertainty in the slope, it

can take a little time for all the calculations to finish. These printed results show

that in this case the trend in O3 was +0.38 units (i.e. ppb) per year as an average

over the entire period. It also shows the 95 % confidence intervals in the trend

ranged between 0.21 to 0.51 ppb/year. Finally, the significance level in this case is

very high; providing very strong evidence that concentrations of O3 increased over

the period. The plot together with the summary results is shown in Figure 19.1.

Note that if one wanted to display the confidence intervals in the slope at the 99 %

confidence intervals, the code would be Figure 19.2.

TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", alpha = 0.01)

Sometimes it is useful to consider a subset of data, perhaps by excluding some

years. This is easy with the subset function. The following code calculates trends

for years greater than 1999 i.e. from 2000 onwards.

TheilSen(subset(mydata, format(date, "%Y") > 1999), pollutant = "o3",

ylab = "ozone (ppb)")
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TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", deseason = TRUE)

## [1] "Taking bootstrap samples. Please wait."
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0.38 [0.21, 0.51] units/year ***

F . Trends in ozone at Marylebone Road. The plot shows the deseasonalised

monthly mean concentrations of O3. The solid red line shows the trend estimate and the

dashed red lines show the 95 % confidence intervals for the trend based on resampling

methods. The overall trend is shown at the top-left as 0.38 (ppb) per year and the 95 %

confidence intervals in the slope from 0.21–0.51 ppb/year. The ∗ ∗ ∗ show that the trend

is significant to the 0.001 level.

It is also possible to calculate trends in many other ways e.g. by wind direction.

Considering how trends vary by wind direction can be extremely useful because

the influence of different sources invariably depends on the direction of the wind.

The TheilSen function splits the wind direction into 8 sectors i.e. N, NE, E etc.

The Theil-Sen slopes are then calculated for each direction in turn. This function

takes rather longer to run because the simulations need to be run eight times in

total. Considering concentrations of O3 again, the output is shown in Figure 19.2.

Note that this plot is specifically laid out to assist interpretation, with each panel

located at the correct point on the compass. This makes it easy to see immediately

that there is essentially no trend in O3 for southerly winds i.e. where the road itself

has the strongest influence. On the other hand the strongest evidence of increasing

O3 are for northerly winds, where the influence of the road is much less. The

reason that there is no trend in O3 for southerly winds is that there is always a great

excess of NO, which reacts with O3 to form NO2. At this particular location it will

probably take many more years before O3 concentrations start to increase when

the wind direction is southerly. Nevertheless, there will always be some hours that

do not have such high concentrations of NO.

The option slope.percent can be set to express slope estimates as a percentage

change per year. This is useful for comparing slopes for sites with very different

concentration levels and for comparison with emission inventories. The percentage

change uses the concentration at the beginning and end months to express the

mean slope.

The trend, 𝑇 is defined as:

𝑇[%.𝑦𝑟−1] = 100. 󰝔
𝐶𝐸𝑛𝑑

𝐶𝑆𝑡𝑎𝑟𝑡
− 1󰝕 󰟅𝑁𝑦𝑒𝑎𝑟𝑠 (7)
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19 The TheilSen function

TheilSen(mydata, pollutant = "o3", type = "wd", deseason = TRUE,

ylab = "ozone (ppb)")

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."
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F . Trends in ozone at Marylebone Road split by eight wind sectors. The

TheilSen function will automatically organise the separate panels by the different compass

directions.
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19 The TheilSen function

where 𝐶𝐸𝑛𝑑 and 𝐶𝑆𝑡𝑎𝑟𝑡 are the mean concentrations for the end and start date,

respectfully. 𝑁𝑦𝑒𝑎𝑟𝑠 is the number of years (or fractions of) the time series spans.

TheilSen(mydata, pollutant = "o3", deseason = TRUE,

slope.percent = TRUE)

The TheilSen function was written to work with hourly data, which is then

averaged into monthly or annual data. However, it is realised that users may

already have data that is monthly or annual. The function can therefore accept as

input monthly or annual data directly. However, it is necessary to ensure the date field

is in the correct format. Assuming data in an Excel file in the format dd/mm/YYYY

(e.g. 23/11/2008), it is necessary to convert this to a date format understood by R,

as shown below. Similarly, if annual data were available, get the dates in formats

like ‘2005-01-01’, ‘2006-01-01’… and make sure the date is again formatted using

as.Date. Note that if dates are pre-formatted as YYYY-mm-dd, then it is sufficient

to use as.Date without providing any format information because it is already in

the correct format.

mydata$date = as.Date(mydata$date, format = "%d/%m/%Y")

Finally, the TheilSen function can consider trends at different sites, provided

the input data are correctly formatted. For input, a data frame with three columns

is required: date, pollutant and site. The call would then be, for example:

TheilSen(mydata, pollutant = "no2", type = "site")

19.4 Output

The TheilSen function provides lots of output data for further analysis or adding

to a report. To obtain it, it is necessary to read it into a variable:

MKresults <- TheilSen(mydata, pollutant = "o3", deseason = TRUE, type = "wd")

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

## [1] "Taking bootstrap samples. Please wait."

This returns a list of two data frames containing all the monthly mean values and

trend statistics and an aggregated summary. The first 6 lines are shown next:
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19 The TheilSen function

head(MKresults$data[[1]])

## wd date conc a b upper.a upper.b lower.a lower.b

## 1 E 1998-01-01 5.563 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## 2 E 1998-02-01 3.016 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## 3 E 1998-03-01 3.934 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## 4 E 1998-04-01 4.107 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## 5 E 1998-05-01 2.215 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## 6 E 1998-06-01 -1.541 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145

## p p.stars slope intercept intercept.lower intercept.upper lower

## 1 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## 2 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## 3 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## 4 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## 5 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## 6 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178

## upper slope.percent lower.percent upper.percent

## 1 0.4728 5.637 0.7549 12.44

## 2 0.4728 5.637 0.7549 12.44

## 3 0.4728 5.637 0.7549 12.44

## 4 0.4728 5.637 0.7549 12.44

## 5 0.4728 5.637 0.7549 12.44

## 6 0.4728 5.637 0.7549 12.44

Often only the trend statistics are required and not all the monthly values. These

can be obtained by:

MKresults$data[[2]]

## wd p.stars conc a b upper.a upper.b lower.a lower.b

## 1 E * 5.993 -2.655 7.078e-04 -9.447 0.0012953 4.364 1.145e-04

## 2 N *** 9.795 -19.025 2.471e-03 -28.872 0.0032918 -9.275 1.612e-03

## 3 NE ** 9.696 -10.455 1.682e-03 -24.645 0.0029364 4.392 3.866e-04

## 4 NW *** 9.765 -13.331 1.971e-03 -22.912 0.0027893 -5.582 1.279e-03

## 5 S 5.048 4.335 3.771e-05 1.307 0.0003018 7.267 -2.161e-04

## 6 SE 5.793 5.215 4.156e-05 1.107 0.0004075 9.640 -3.337e-04

## 7 SW 4.756 1.576 2.654e-04 -1.925 0.0005758 5.344 -6.211e-05

## 8 W ** 5.621 -1.155 5.715e-04 -6.030 0.0009899 2.988 2.038e-04

## p slope intercept intercept.lower intercept.upper lower upper

## 1 0.016694 0.25833 -2.655 4.364 -9.447 0.04178 0.4728

## 2 0.000000 0.90194 -19.025 -9.275 -28.872 0.58837 1.2015

## 3 0.006678 0.61389 -10.455 4.392 -24.645 0.14111 1.0718

## 4 0.000000 0.71927 -13.331 -5.582 -22.912 0.46695 1.0181

## 5 0.811352 0.01376 4.335 7.267 1.307 -0.07886 0.1102

## 6 0.868114 0.01517 5.215 9.640 1.107 -0.12181 0.1487

## 7 0.113523 0.09686 1.576 5.344 -1.925 -0.02267 0.2102

## 8 0.003339 0.20860 -1.155 2.988 -6.030 0.07437 0.3613

## slope.percent lower.percent upper.percent

## 1 5.6368 0.7549 12.443

## 2 14.4382 8.1602 25.065

## 3 9.0999 1.6908 19.899

## 4 10.5433 6.2243 18.132

## 5 0.2915 -1.5595 2.508

## 6 0.2690 -1.9564 2.820

## 7 2.2576 -0.4814 5.302

## 8 4.4478 1.4664 8.826
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20 The smoothTrend function

In the results above the ‘lower’ and ‘upper’ fields provide the 95% (or chosen

confidence interval using the alpha option) of the trend and ‘slope’ is the trend

estimate expressed in units/year.

20 The smoothTrend function

20.1 Purpose
see also
TheilSen
timePlot

The smoothTrend function calculates smooth trends in the monthly mean concen-

trations of pollutants. In its basic use it will generate a plot ofmonthly concentrations

and fit a smooth line to the data and show the 95 % confidence intervals of the fit.

The smooth line is essentially determined using Generalized Additive Modelling

using the mgcv package. This package provides a comprehensive and powerful set

of methods for modelling data. In this case, however, the model is a relationship

between time and pollutant concentration i.e. a trend. One of the principal advant-

ages of this approach is that the amount of smoothness in the trend is optimised in

the sense that it is neither too smooth (therefore missing important features) nor

too variable (perhaps fitting ‘noise’ rather than real effects). Some background

information on the use of this approach in an air quality setting can be found in

Carslaw et al. (2007).

Appendix C considers smooth trends in more detail and considers how different

models can be developed that can be quite sophisticated. Readers should consider

this section if they are considering trend analysis in more depth.

The user can select to deseasonalise the data first to provide a clearer indication

of the overall trend on a monthly basis. The data are deseasonalised using the The

stl function. The user may also select to use bootstrap simulations to provide an

alternative method of estimating the uncertainties in the trend. In addition, the

simulated estimates of uncertainty can account for autocorrelation in the residuals

using a block bootstrap approach.

20.2 Options available

The smoothTrend function has the following options:

mydata Adata frame containing the field date and at least one other parameter

for which a trend test is required; typically (but not necessarily) a

pollutant.

pollutant The parameter for which a trend test is required. Mandatory.

deseason Should the data be de-deasonalized first? If TRUE the function stl is

used (seasonal trend decomposition using loess). Note that if TRUE

missing data are first linearly interpolated because stl cannot handle

missing data.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData
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20 The smoothTrend function

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

statistic Statistic used for calculating monthly values. Default is “mean”, but

can also be “percentile”. See timeAverage for more details.

avg.time Can be “month” (the default), “season” or “year”. Determines the

time over which data should be averaged. Note that for “year”, six

or more years are required. For “season” the data are plit up into

spring: March, April, May etc. Note that December is considered as

belonging to winter of the following year.

percentile Percentile value(s) to use if statistic = "percentile" is chosen.

Can be a vector of numbers e.g. percentile = c(5, 50, 95) will

plot the 5th, 50th and 95th percentile values together on the same

plot.

data.thresh The data capture threshold to use ( when aggregating the data using

avg.time. A value of zero means that all available data will be used

in a particular period regardless if of the number of values available.

Conversely, a value of 100 will mean that all data will need to be

present for the average to be calculated, else it is recorded as NA. Not

used if avg.time = "default".

simulate Should simulations be carried out to determine the Mann-Kendall

tau and p-value. The default is FALSE. If TRUE, bootstrap simulations

are undertaken, which also account for autocorrelation.

n Number of bootstrap simulations if simulate = TRUE.

autocor Should autocorrelation be considered in the trend uncertainty estim-

ates? The default is FALSE. Generally, accounting for autocorrelation

increases the uncertainty of the trend estimate sometimes by a large

amount.

cols Colours to use. Can be a vector of colours e.g. cols = c("black",

"green") or pre-defined openair colours— see openColours formore

details.

xlab x-axis label, by default “year”.
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20 The smoothTrend function

y.relation This determines how the y-axis scale is plotted. ”same” ensures all

panels use the same scale and ”free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

key.columns Number of columns used if a key is drawn when using the option

statistic = "percentile".

ci Should confidence intervals be plotted? The default is FALSE.

alpha The alpha transparency of shaded confidence intervals - if plotted. A

value of 0 is fully transparent and 1 is fully opaque.

date.breaks Number of major x-axis intervals to use. The function will try and

choose a sensible number of dates/times as well as formatting the

date/time appropriately to the range being considered. This does

not always work as desired automatically. The user can therefore

increase or decrease the number of intervals by adjusting the value of

date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

k This is the smoothing parameter used by the gam function in pack-

age mgcv. By default it is not used and the amount of smoothing is

optimised automatically. However, sometimes it is useful to set the

smoothing amount manually using k.

... Other graphical parameters are passed onto cutData and lattice:xyplot.

For example, smoothTrend passes the option hemisphere = "south-

ern" on to cutData to provide southern (rather than default northern)

hemisphere handling of type = "season". Similarly, common graph-

ical arguments, such as xlim and ylim for plotting ranges and pch and

cex for plot symbol type and size, are passed on xyplot, although

some local modifications may be applied by openair. For example, axis

and title labelling options (such as xlab, ylab and main) are passed to

xyplot via quickText to handle routine formatting. One special case

here is that many graphical parameters can be vectors when used with

statistic = "percentile" and a vector of percentile values, see

examples below.

20.3 Example of use

We apply the function to concentrations of O3 and NO2 using the code below. The

first plot shows the smooth trend in raw O3 concentrations, which shows a very

clear seasonal cycle. By removing the seasonal cycle of O3, a better indication

of the trend is given, shown in the second plot. Removing the seasonal cycle is

more effective for pollutants (or locations) where the seasonal cycle is stronger e.g.

for ozone and background sites. Figure 20.1 shows the results of the simulations

for NO2 without the seasonal cycle removed. It is clear from this plot that there

177



20 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", ylab = "concentration (ppb)",

main = "monthly mean o3")

smoothTrend(mydata, pollutant = "o3", deseason = TRUE, ylab = "concentration (ppb)",

main = "monthly mean deseasonalised o3")

smoothTrend(mydata, pollutant = "no2", simulate = TRUE, ylab = "concentration (ppb)",

main = "monthly mean no2 (bootstrap uncertainties)")

## [1] "Taking bootstrap samples. Please wait..."

smoothTrend(mydata, pollutant = "no2", deseason = TRUE, simulate =TRUE,

ylab = "concentration (ppb)",

main = "monthly mean deseasonalised no2 (bootstrap uncertainties)")

## [1] "Taking bootstrap samples. Please wait..."

monthly mean O3

year 

co
nc

en
tr

at
io

n 
(p

pb
) 

5

10

15

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

monthly mean deseasonalised O3

year 

co
nc

en
tr

at
io

n 
(p

pb
) 

4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●
●●

●
●

●●

●

●
●

●●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

monthly mean NO2 (bootstrap uncertainties) 

year 

co
nc

en
tr

at
io

n 
(p

pb
) 

40

50

60

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

monthly mean deseasonalised NO2 (bootstrap uncertainties) 

year 

co
nc

en
tr

at
io

n 
(p

pb
) 

40

50

60

70

1998 1999 2000 2001 2002 2003 2004 2005

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

F . Examples of the smoothTrend function applied to Marylebone Road

is little evidence of a seasonal cycle. The principal advantage of the smoothing

approach compared with the Theil-Sen method is also clearly shown in this plot.

Concentrations of NO2 first decrease, then increase strongly. The trend is therefore

not monotonic, violating the Theil-Sen assumptions. Finally, the last plot shows

the effects of first deaseasonalising the data: in this case with little effect.

The smoothTrend function share many of the functionalities of the TheilSen

function. Figure 20.2 shows the result of applying this function toO3 concentrations.

The code that produced Figure 20.2 was:
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20 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", deseason = TRUE,

type = "wd")
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F . Trends in O3 using the smoothTrend function applied to Marylebone Road.

The shading shows the estimated 95 % confidence intervals. This plot can usefully be

compared with Figure 19.2.

The smoothTrend function can easily be used to gain a large amount of informa-

tion on trends easily. For example, how do trends in NO2, O3 and PM10 vary by

season and wind sector. There are 8 wind sectors and four seasons i.e. 32 plots.

In Figure 20.3 all three pollutants are chosen and two types (season and wind

direction). We also reduce the number of axis labels and the line to improve clarity.

There are numerous combinations of analyses that could be produced here and it is

very easy to explore the data in a wide number of ways.
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21 The timeVariation function

smoothTrend(mydata, pollutant = c("no2", "pm10", "o3"), type = c("wd", "season"),

date.breaks = 3, lty = 0)
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F . The smoothTrend function applied to three pollutants, split by wind sector

and season.

21 The timeVariation function

21.1 Purpose
see also line-
arRelation

In air pollution, the variation of a pollutant by time of day and day of week can

reveal useful information concerning the likely sources. For example, road vehicle

emissions tend to follow very regular patterns both on a daily and weekly basis. By

contrast some industrial emissions or pollutants from natural sources (e.g. sea salt

aerosol) may well have very different patterns.

The timeVariation function produces four plots: day of the week variation,

mean hour of day variation and a combined hour of day – day of week plot and

a monthly plot. Also shown on the plots is the 95 % confidence interval in the

mean. These uncertainty limits can be helpful when trying to determine whether

one candidate source is different from another. The uncertainty intervals are

calculated through bootstrap re-sampling, which will provide better estimates than

the application of assumptions based on normality, particularly when there are few

data available. The function can consider one or two input variables. In addition,
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21 The timeVariation function

there is the option of ‘normalising’ concentrations (or other quantities). Normalising

is very useful for comparing the patterns of two different pollutants, which often

cover very different ranges in concentration. Normalising is achieved by dividing

the concentration of a pollutant by its mean value. Note also that any other variables

besides pollutant concentrations can be considered e.g. meteorological or traffic

data.

There is also an option difference which is very useful for considering the

difference in two time series and how they vary over different temporal resolutions.

Again, bootstrap re-sampling methods are used to estimate the uncertainty of the

difference in two means.

Averaging wind direction

Care has been taken to ensure that wind direction (wd) is vector-averaged.
Less obvious though is the uncertainty in wind direction. A pragmatic ap-
proach has been adopted here that considers how wind direction changes.
For example, consider the following wind directions: 10, 10, 10, 180, 180,
180°. The standard deviation of these numbers is 93°. However, what ac-
tually occurs is the wind direction is constant at 10° then switches to 180°.
In terms of changes there is a sequence of numbers: 0, 0, 170, 0, 0 with a
standard deviation of 76°. We use the latter method as a basis of calculating
the 95% confidence intervals in the mean.

There are also problems with simple averaging—for example, what is the
average of 20 and 200°. It can’t be known. In some situations where the
wind direction is bi-modal with differences around 180°, the mean can be
‘unstable’. For example, wind that is funnelled along a valley forcing it to
be either easterly or westerly. Consider for example the mean of 0° and
179° (89.5°), but a small change in wind direction to 181° gives a mean
of 270.5°. Some care should be exercised therefore when averaging wind
direction. It is always a good idea to use the windRose function with type
set to ‘month’ or ‘hour’.

The timeVariation function is probably one of the most useful functions that

can be used for the analysis of air pollution. Here are a few uses/advantages:

• Variations in time are one of the most useful ways of characterising air pollu-

tion for a very wide range of pollutants including local urban pollutants and

tropospheric background concentrations of ozone and the like.

• The function works well in conjunction with other functions such as po-

larPlot, where the latter may identify conditions of interest (say a wind

speed/direction range). By sub-setting for those conditions in timeVari-

ation the temporal characteristics of a particular source could be character-

ised and perhaps contrasted with another subset of conditions.

• The function can be used to compare a wide range of variables, if available.

Suggestions include meteorological e.g. boundary layer height and traffic

flows.
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21 The timeVariation function

• The function can be used for comparing pollutants over different sites. See

§(31.7) for examples of how to do this.

• The function can be used to compare one part of a time series with an-

other. This is often a very powerful thing to do, particularly if concentrations

are normalised. For example, there is often interest in knowing how di-

urnal/weekday/seasonal patterns vary with time. If a pollutant showed signs

of an increase in recent years, then splitting the data set and comparing each

part together can provide information on what is driving the change. Is there,

for example, evidence that morning rush hour concentrations have become

more important, or Sundays have become relatively more important? An

example is given below using the splitByDate function.

• timeVariation can be used to consider the differences between two time

series, which will have multiple benefits. For example, for model evaluation

it can be very revealing to consider the difference between observations and

modelled values over different time scales. Considering such differences can

help reveal the character and some of the reasons for why a model departs

from reality.

21.2 Options available

The timeVariation function has the following options:

mydata A data frame of hourly (or higher temporal resolution data). Must

include a date field and at least one variable to plot.

pollutant Name of variable to plot. Two or more pollutants can be plotted,

in which case a form like pollutant = c("nox", "co") should be

used.

local.time Should the results be calculated in local time? The default is FALSE.

Emissions activity tends to occur at local time e.g. rush hour is at 8

am every day. When the clocks go forward in spring, the emissions

are effectively released into the atmosphere at BST— 1 hour during

the summer. When plotting diurnal profiles, this has the effect of

“smearing-out” the concentrations. Sometimes, a better approach is

to express time as local time, which here is defined as BST (British

Summer Time). This correction tends to produce better-defined

diurnal profiles of concentration (or other variables) and allows a

better comparison to be made with emissions/activity data. If set to

FALSE then GMT is used.

normalise Should variables be normalised? The default is FALSE. If TRUE then

the variable(s) are divided by theirmean values. This helps to compare

the shape of the diurnal trends for variables on very different scales.

xlab x-axis label; one for each sub-plot.

name.pol Names to be given to the pollutant(s). This is useful if you want to give

a fuller description of the variables, maybe also including subscripts

etc.
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21 The timeVariation function

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Only one type is allowed intimeVariation.

group This sets the grouping variable to be used. For example, if a data

frame had a column site setting group = "site" will plot all sites

together in each panel. See examples below.

difference If two pollutants are chosen then setting difference = TRUE will

also plot the difference in means between the two variables as pol-

lutant[2] - pollutant[1]. Bootstrap 95% confidence intervals of

the difference in means are also calculated. A horizontal dashed line

is shown at y = 0.

B Number of bootstrap replicates to use. Can be useful to reduce this

value when there are a large number of observations available to

increase the speed of the calculations without affecting the 95% con-

fidence interval calculations by much.

ci Should confidence intervals be shown? The default is TRUE. Setting

this to FALSE can be useful if multiple pollutants are chosen where

over-lapping confidence intervals can over complicate plots.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

key By default timeVariation produces four plots on one page. While it

is useful to see these plots together, it is sometimes necessary just to

use one for a report. If key is TRUE, a key is added to all plots allowing

the extraction of a single plot with key. See below for an example.

key.columns Number of columns to be used in the key. With many pollutants a

single column can make to key too wide. The user can thus choose to

use several columns by setting columns to be less than the number of

pollutants.
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start.day What day of the week should the plots start on? The user can change

the start day by supplying an integer between 0 and 6. Sunday = 0,

Monday = 1, …For example to start the weekday plots on a Saturday,

choose start.day = 6.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

alpha The alpha transparency used for plotting confidence intervals. 0 is

fully transparent and 1 is opaque. The default is 0.4

... Other graphical parameters passed onto lattice:xyplot and cut-

Data. For example, in the case of cutData the option hemisphere =

"southern".

21.3 Example of use

We apply the timeVariation function to PM10 concentrations and take the op-

portunity to filter the data to maximise the signal from the road. The polarPlot

function described in (§15) is very useful in this respect in highlighting the condi-

tions under which different sources have their greatest impact. A subset of data is

used filtering for wind speeds > 3 m s−1 and wind directions from 100–270 degrees.

The code used is:

The results are shown in Figure 21.1. The plot shown at the top-left shows the

diurnal variation of concentrations for all days. It shows for example that PM10

concentrations tend to peak around 9 am. The shading shows the 95 % confidence

intervals of the mean. The plot at the top-right shows how PM10 concentrations

vary by day of the week. Here there is strong evidence that PM10 is much lower at

the weekends and that there is a significant difference compared with weekdays. It

also shows that concentrations tend to increase during the weekdays. Finally, the

plot at the bottom shows both sets of information together to provide an overview

of how concentrations vary.
timeVari-

ation is also
very useful
for other
variables
such as

traffic and
meteorolo-

gical
data

Note that the plot need not just consider pollutant concentrations. Other useful

variables (if available) are meteorological and traffic flow or speed data. Often, the

combination of several sets of data can be very revealing.

The subset function is extremely useful in this respect. For example, if it were

believed that a source had an effect under specific conditions; they can be isolated

with the subset function. It is also useful if it is suspected that two or more sources

are important that they can be isolated to some degree and compared. This is where

the uncertainty intervals help — they provide an indication whether the behaviour

of one source differs significantly from another.

Figure 21.2 shows the function applied to concentrations of NOx, CO, NO2 and

O3 concentrations. In this case the concentrations have been normalised. The plot

clearly shows the markedly different temporal trends in concentration. For CO,

there is a very pronounced increase in concentrations during the peak pm rush

hour. The other important difference is on Sundays when CO concentrations are

relatively much higher than NOx. This is because flows of cars (mostly petrol) do

not change that much by day of the week, but flows of vans and HGVs (diesel
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timeVariation(subset(mydata, ws > 3 & wd > 100 & wd < 270),

pollutant = "pm10", ylab = "pm10 (ug/m3)")
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F . Example plot using the timeVariation function to plot PM10 concentrations

at Marylebone Road.

vehicles) are much less on Sundays. Note, however, that the monthly trend is very

similar in each case — which indicates very similar source origins. Taken together,

the plots highlight that traffic emissions dominate this site for CO and NOx, but

there are important difference in how these emissions vary by hour of day and day

of week.

Also shown in the very different behaviour of O3. Because O3 reacts with NO,

concentrations of NOx and O3 tend to be anti-correlated. Note also the clear peak

in O3 in April/May, which is due to higher northern hemispheric background

concentrations in the spring. Even at a busy roadside site in central London this

influence is clear to see.

Another example is splitting the data set by time. We use the splitByDate

function to divide up the data into dates before January 2003 and after January 2003.

This time the option difference is used to highlight howNO2 concentrations have

changed over these two periods. The results are shown in Figure 21.3. There is

some indication in this plot that data after 2003 seem to showmore of a double peak

in the diurnal plots; particularly in the morning rush hour. Also, the difference line

does more clearly highlight a more substantial change over weekdays and weekends.

Given that cars are approximately constant at this site each day, the change may

indicate a change in vehicle emissions from other vehicle types. Given that it is

known that primary NO2 emissions are known to have increased sharply from the

beginning of 2003 onwards, this perhaps provides clues as to the principal cause.

In the next example it is shown how to compare one subset of data of interest with

another. Again, there can be many reasons for wanting to do this and perhaps the

data set at Marylebone Road is not the most interesting to consider. Nevertheless,

the code below shows how to approach such a problem. The scenario would be that
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21 The timeVariation function

timeVariation(mydata, pollutant = c("nox", "co", "no2", "o3"), normalise = TRUE)
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F . Example plot using the timeVariation function to plot NOx, CO, NO2 and

O3 concentrations at Marylebone Road. In this plot, the concentrations are normalised.

## split data into two periods (see Utlities section for more details)

mydata <- splitByDate(mydata, dates= "1/1/2003",

labels = c("before Jan. 2003", "After Jan. 2003"))

timeVariation(mydata, pollutant = "no2", group = "split.by", difference = TRUE)
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F . Example plot using the timeVariation function to plot NO2 concentrations

at Marylebone Road. In this plot, the concentrations are shown before and after January

2003.
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one is interested in a specific set of conditions and it would be useful to compare

that set, with another set. A good example would be from an analysis using the

polarPlot function where a ‘feature’ of interest has been identified—maybe an

indication of a different source. But does this potentially different source behave in

a different way in terms of temporal variation? If it does, then maybe that provides

evidence to support that it is a different source. In a wider context, this approach

could be used in many different ways depending on available data. A good example

is the analysis of model output where many diagnostic meteorological data are

available. This is an area that will be developed.

The approach here is to first make a new variable called ‘feature’ and fill it with

the value ‘other’. A subset of data is defined and the associated locations in the

data frame identified. The subset of data is then used to update the ‘feature’ field

with a new description. This approach could be extended to some quite complex

situations.

There are a couple of things to note in Figure 21.2. There seems to be evidence

that for easterly winds > 4 m s−1 that concentrations of SO2 are lower at night. Also,

there is some evidence that concentrations for these conditions are also lower at

weekends. This might reflect that SO2 concentrations for these conditions tend to

be dominated by tall stack emissions that have different activities to road transport

sources. This technique will be returned to with different data sets in future.

21.4 Output

The timeVariation function produces several outputs that can be used for further

analysis or plotting. It is necessary to read the output into a variable for further

processing. The code below shows the different objects that are returned and the

code shows how to access them.

myOutput <- timeVariation(mydata, pollutant = "so2")

## show the first part of the day/hour variation

## note that value = mean, and Upper/Lower the 95% confid. intervals

head(myOutput$data$day.hour)

## variable wkday hour default Mean Lower Upper

## 1 so2 Monday 0 01 January 1998 to 23 June 2005 2.926 2.619 3.235

## 2 so2 Tuesday 0 01 January 1998 to 23 June 2005 3.213 2.920 3.524

## 3 so2 Wednesday 0 01 January 1998 to 23 June 2005 3.350 3.129 3.567

## 4 so2 Thursday 0 01 January 1998 to 23 June 2005 3.222 2.994 3.485

## 5 so2 Friday 0 01 January 1998 to 23 June 2005 3.642 3.325 3.873

## 6 so2 Saturday 0 01 January 1998 to 23 June 2005 4.253 3.972 4.569
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## make a field called "site" and fill: make all values = "other"

mydata$feature <- "other"

## now find which indexes correspond to easterly conditions > 4m/s ws

id <- which(with(mydata, ws > 4 & wd > 0 & wd <= 180 ))

## use the ids to update the site column

## there are now two values in site: "other" and "easterly"

mydata$feature[id] <- "easterly"

timeVariation(mydata, pollutant ="so2", group = "feature", ylab = "so2 (ppb)",

difference = TRUE)
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F . Example plot using the timeVariation function to plot SO2 concentrations

at Marylebone Road. In this plot, the concentrations are shown for a subset of easterly

conditions and everything else. Note that the uncertainty in the mean values for easterly

winds is greater than ‘other’. This is mostly because the sample size is much lower for

‘easterly’ compared with ‘other’.

## can make a new data frame of this data e.g.

day.hour <- myOutput$data$day.hour

head(day.hour)

## variable wkday hour default Mean Lower Upper

## 1 so2 Monday 0 01 January 1998 to 23 June 2005 2.926 2.619 3.235

## 2 so2 Tuesday 0 01 January 1998 to 23 June 2005 3.213 2.920 3.524

## 3 so2 Wednesday 0 01 January 1998 to 23 June 2005 3.350 3.129 3.567

## 4 so2 Thursday 0 01 January 1998 to 23 June 2005 3.222 2.994 3.485

## 5 so2 Friday 0 01 January 1998 to 23 June 2005 3.642 3.325 3.873

## 6 so2 Saturday 0 01 January 1998 to 23 June 2005 4.253 3.972 4.569

All the numerical results are given by:

myOutput$data$day.hour ## are the weekday and hour results

myOutput$data$hour ## are the diurnal results

myOutput$data$day ## are the weekday results

myOutput$data$month ## are the monthly results
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It is also possible to plot the individual plots that make up the (four) plots produced

by timeVariation:

## just the diurnal variation

plot(myOutput, subset = "hour")

## day and hour

plot(myOutput, subset = "day.hour")

## weekday variation

plot(myOutput, subset = "day")

## monthly variation

plot(myOutput, subset = "month")

22 The scatterPlot function

22.1 Purpose

Scatter plots are extremely useful and a very commonly used analysis technique

for considering how variables relate to one another. R does of course have many

capabilities for plotting data in this way. However, it can be tricky to add linear

relationships, or split scatter plots by levels of other variables etc. The purpose of

the scatterPlot function is to make it straightforward to consider how variables

are related to one another in a way consistent with other openair functions. We

have added several capabilities that can be used just by setting different options,

some of which are shown below.

• A smooth fit is automatically added to help reveal the underlying relationship

between two variables together with the estimated 95% confidence intervals

of the fit. This is in general an extremely useful thing to do because it helps

to show the (possibly) non-linear relationship between variables in a very

robust way — or indeed whether the relationship is linear.

• It is easy to add a linear regression line. The resulting equation is shown on

the plot together with the R2 value.

• For large data sets there is the possibility to ‘bin’ the data using hexagonal

binning or kernel density estimates. This approach is very useful when there

is considerable over-plotting.

• It is easy to show how two variables are related to one another dependent

on levels of a third variable. This capability is very useful for exploring how

different variables depend on one another and can help reveal the underlying

important relationships.

• A plot of two variables can be colour-coded by a continuous colour scale of

a third variable.

• It can handle date/time x-axis formats to provide an alternative way of show-

ing time series, which again can be colour-coded by a third variable.

The scatterPlot function isn’t really specific to atmospheric sciences, in the

same way as other plots. It is more a function for convenience, written in a style that
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is consistent with other openair functions. Nevertheless, along with the timePlot

function they do form an important part of openair because of the usefulness of
understanding show variables relate to one another. Furthermore, there are many

options to make it easy to explore data in an interactive way without worrying

about processing data or formatting plots.

22.2 Options available

mydata A data frame containing at least two numeric variables to plot.

x Name of the x-variable to plot. Note that x can be a date field or a

factor. For example, x can be one of the openair built in types such

as "year" or "season".

y Name of the numeric y-variable to plot.

z Name of the numeric z-variable to plot for method = "scatter"

or method = "level". Note that for method = "scatter" points

will be coloured according to a continuous colour scale, whereas for

method = "level" the surface is coloured.

method Methods include “scatter” (conventional scatter plot), “hexbin” (hexagonal

binning using the hexbin package). “level” for a binned or smooth

surface plot and “density” (2D kernel density estimates).

group The grouping variable to use, if any. Setting this to a variable in

the data frame has the effect of plotting several series in the same

panel using different symbols/colours etc. If set to a variable that is

a character or factor, those categories or factor levels will be used

directly. If set to a numeric variable, it will split that variable in to

quantiles.

avg.time This defines the time period to average to. Can be “sec”, “min”,

“hour”, “day”, “DSTday”, “week”, “month”, “quarter” or “year”.

For much increased flexibility a number can precede these options

followed by a space. For example, a timeAverage of 2monthswould be

period = "2 month". See function timeAverage for further details

on this. This option se useful as one method by which the number of

points plotted is reduced i.e. by choosing a longer averaging time.

data.thresh The data capture threshold to use ( when aggregating the data using

avg.time. A value of zero means that all available data will be used

in a particular period regardless if of the number of values available.

Conversely, a value of 100 will mean that all data will need to be

present for the average to be calculated, else it is recorded as NA. Not

used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is the mean.

Can be one of ”mean”, ”max”, ”min”, ”median”, ”frequency”, ”sd”,

”percentile”. Note that ”sd” is the standard deviation and ”frequency”

is the number (frequency) of valid records in the period. ”percentile”
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is the percentile level ( which can be set using the ”percentile” option

- see below. Not used if avg.time = "default".

percentile The percentile level in % used when statistic = "percentile"

and when aggregating the data with avg.time. The default is 95.

Not used if avg.time = "default".

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

smooth A smooth line is fitted to the data if TRUE; optionally with 95% confid-

ence intervals shown. For method = "level" a smooth surface will

be fitted to binned data.

spline A smooth spline is fitted to the data if TRUE. This is particularly useful

when there are fewer data points or when a connection line between

a sequence of points is required.

linear A linear model is fitted to the data if TRUE; optionally with 95%

confidence intervals shown. The equation of the line and R2 value is

also shown.

ci Should the confidence intervals for the smooth/linear fit be shown?

mod.line If TRUE three lines are added to the scatter plot to help inform model

evaluation. The 1:1 line is solid and the 1:0.5 and 1:2 lines are dashed.

Together these lines help show how close a group of points are to a

1:1 relationship and also show the points that are within a factor of

two (FAC2). mod.line is appropriately transformed when x or y axes

are on a log scale.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")
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22 The scatterPlot function

plot.type lattice plot type. Can be “p” (points — default), “l” (lines) or “b”

(lines and points).

key Should a key be drawn? The default is TRUE.

key.title The title of the key (if used).

key.columns Number of columns to be used in the key. With many pollutants a

single column can make to key too wide. The user can thus choose to

use several columns by setting columns to be less than the number of

pollutants.

key.position Location where the scale key is to plotted. Allowed arguments

currently include “top”, “right”, “bottom” and “left”.

strip Should a strip be drawn? The default is TRUE.

log.x Should the x-axis appear on a log scale? The default is FALSE. If TRUE

a well-formatted log10 scale is used. This can be useful for checking

linearity once logged.

log.y Should the y-axis appear on a log scale? The default is FALSE. If TRUE

a well-formatted log10 scale is used. This can be useful for checking

linearity once logged.

x.inc The x-interval to be used for binning data when method = "level".

y.inc The y-interval to be used for binning data when method = "level".

limits For method = "level" the function does its best to choose sensible

limits automatically. However, there are circumstances when the user

will wish to set different ones. The limits are set in the form c(lower,

upper), so limits = c(0, 100) would force the plot limits to span

0-100.

y.relation This determines how the y-axis scale is plotted. “same” ensures all

panels use the same scale and “free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

x.relation This determines how the x-axis scale is plotted. “same” ensures all

panels use the same scale and “free” will use panel-specfic scales. The

latter is a useful setting when plotting data with very different values.

ref.x Add a vertical dashed reference line at this value.

ref.y Add a horizontal dashed reference line at this value.

k Smoothing parameter supplied to gam for fitting a smooth surface

when method = "level".

map Should a base map be drawn? This option is under development.
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22 The scatterPlot function

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters are passed onto cutData and an appro-

priate lattice plot function (xyplot, levelplot or hexbinplot

depending on method). For example, scatterPlot passes the op-

tion hemisphere = "southern" on to cutData to provide southern

(rather than default northern) hemisphere handling of type = "sea-

son". Similarly, for the default case method = "scatter" common

axis and title labelling options (such as xlab, ylab, main) are passed to

xyplot via quickText to handle routine formatting. Other common

graphical parameters, e.g. layout for panel arrangement, pch for plot

symbol and lwd and lty for line width and type, as also available (see

examples below).

For method = "hexbin" it can be useful to transform the scale if it is

dominated by a few very high values. This is possible by supplying two

functions: one that that applies the transformation and the other that

inverses it. For log scaling (the default) for example, trans = func-

tion(x) log(x) and inv = function(x) exp(x). For a square root

transform use trans = sqrt and inv = function(x) x^2. To not

carry out any transformation the options trans = NULL and inv =

NULL should be used.

22.3 Example of use

We provide a few examples of use and as usual, users are directed towards the help

pages (type ?scatterPlot) for more extensive examples.

First we select a subset of data (2003) using the openair selectByDate function
and plot NOx vs. NO2 (Figure 22.1).

Often with several years of data, points are over-plotted and it can be very difficult

to see what the underlying relationship looks like. One very effective method to

use in these situations is to ‘bin’ the data and to colour the intervals by the number

of counts of occurrences in each bin. There are various ways of doing this, but

‘hexagonal binning’ is particularly effective because of the way hexagons can be

placed next to one another.13 To use hexagonal binning it will be necessary to

install the hexbin package:

install.packages("hexbin")

Now it should be possible to make the plot by setting the method option to

method = "hexbin", as shown in Figure 22.2. The benefit of hexagonal binning is

that it works equally well with enormous data sets e.g. several million records. In

this case Figure 22.2 provides a clearer indication of the relationship between NOx

and NO2 than Figure 22.1 because it reveals where most of the points lie, which is

not apparent from Figure 22.1. Note that For method = "hexbin" it can be useful

13In fact it is not possible to have a shape with more than 6 sides that can be used to forma a lattice

without gaps.

193



22 The scatterPlot function

data2003 <- selectByDate(mydata, year = 2003)

scatterPlot(data2003, x = "nox", y = "no2")
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F . Scatter plot of hourly NOx vs. NO2 at Marylebone Road for 2003.

scatterPlot(data2003, x = "nox", y = "no2", method = "hexbin", col= "jet")
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F . Scatter plot of hourly NOx vs. NO2 at Marylebone Road using hexagonal

binning. The number of occurrences in each bin is colour-coded (not on a linear scale). It

is now possible to see where most of the data lie and a better indication of the relationship

between NOx and NO2 is revealed.

to transform the scale if it is dominated by a few very high values. This is possible

by supplying two functions: one that that applies the transformation and the other

that inverses it. For log scaling for example (the default), trans = function(x)

log(x) and inv = function(x) exp(x). For a square root transform use trans

= sqrt and inv = function(x) x2.̂ To not apply any transformation trans =

NULL and inv = NULL should be used.

Note that when method = "hexbin" there are various options that are useful e.g.

a border around each bin and the number of bins. For example, to place a grey

border around each bin and set the bin size try:
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22 The scatterPlot function

scatterPlot(data2003, x = "nox", y = "no2", type = "o3", smooth = FALSE,

linear = TRUE, layout = c(2, 2))
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O3 11 to 70 

F . Scatter plot of hourly NOx vs. NO2 at Marylebone Road by different levels

of O3.

scatterPlot(mydata, x = "nox", y = "no2", method = "hexbin", col = "jet",

border = "grey", xbin = 15)

Sometimes it is useful to consider how the relationship between two variables

varies by levels of a third. In openair this approach is possible by setting the

option type. When type is another numeric variables, four plots are produced for

different quantiles of that variable. We illustrate this point by considering how the

relationship between NOx and NO2 varies with different levels of O3. We also take

the opportunity to not plot the smooth line, but plot a linear fit instead and force

the layout to be a 2 by 2 grid.

Finally, we show how to plot a continuous colour scale for a third numeric variable

setting the value of z to the third variable. Figure 22.4 shows again the relationship

between NOx and NO2 but this time colour-coded by the concentration of O3. We

also take the opportunity to split the data into seasons and weekday/weekend by

setting type = c("season", "weekend"). There is an enormous amount of in-

formation that can be gained from plots such as this. Differences between weekdays

and the weekend can highlight changes in emission sources, splitting by seasons

can show seasonal influences in meteorology and background O3 and colouring

the data by the concentration of O3 helps to show how O3 concentrations affect

NO2 concentrations. For example, consider the summertime-weekday panel where

it clearly shows that the higher NO2 concentrations are associated with high O3

concentrations. Indeed there are some hours where NO2 is >100 ppb at quite low

concentrations of NOx (≈200 ppb). It would also be interesting instead of using

195



22 The scatterPlot function

scatterPlot(data2003, x = "nox", y = "no2", z = "o3", type = c("season", "weekend"),

limits = c(0, 30))
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F . Scatter plot of hourly NOx vs. NO2 at Marylebone Road by different levels

of O3 split by season and weekday-weekend.

scatterPlot(selectByDate(data2003, month = 8), x = "date", y = "so2",

z = "wd")

date vs. SO2 by levels of wind dir. 
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F . Scatter plot of date vs. SO2 at Marylebone Road by different levels of wind

direction for August 2003.

O3 concentrations from Marylebone Road to use O3 from a background site.

Figure 22.4 was very easily produced but contains a huge amount of useful

information showing the relationship between NOx and NO2 dependent upon the

concentration of O3, the season and the day of the week. There are of course

numerous other plots that are equally easily produced.

Figure 22.5 shows that scatterPlot can also handles dates on the x-axis; in this

case shown for SO2 concentrations coloured by wind direction for August 2003.
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23 The linearRelation function

23 The linearRelation function
see also
timeVari-

ation
calcFno2

This function considers linear relationships between two pollutants. The relation-

ships are calculated on different times bases using a linear model. The slope and

95 % confidence interval in slope relationships by time unit are plotted in sev-

eral different ways. The function is particularly useful when considering whether

relationships are consistent with emissions inventories.

The relationships between pollutants can yield some very useful information

about source emissions and how they change. A scatter plot between two pollutants

is the usual way to investigate the relationship. A linear regression is useful to

test the strength of the relationship. However, considerably more information can

be gleaned by considering different time periods, such as how the relationship

between two pollutants vary over time, by day of the week, diurnally and so on.

The linearRelation function does just that — it fits a linear relationship between

two pollutants over a wide range of time periods determined by period.

Consider the relationship between NOx and NO2. It is best to think of the

relationship as:

𝑦 = 𝑚.𝑥 + 𝑐 (8)

i.e.

𝑁𝑂2 = 𝑚.𝑁𝑂𝑥 + 𝑐 (9)

In which case 𝑥 corresponds to NOx and 𝑦 corresponds to NO2. The plots show

the gradient, 𝑚 in what ever units the original data were in. For comparison with

emission inventories it makes sense to have all the units expressed as mass. By

contrast, oxidant slopes are best calculated in volume units e.g. ppb.

linearRelation function is particularly useful if background concentrations

are first removed from roadside concentrations, as the increment will relate more

directly with changes in emissions. In this respect, using linearRelation can

provide valuable information on how emissions may have changed over time, by

hour of the day etc. Using the function in this way will require users to do some

basic manipulation with their data first.

If a data frame is supplied that contains nox, no2 and o3, the y can be chosen as y

= "ox". In function will therefore consider total oxidant slope (sum of NO2 + O3),

which can provide valuable information on likely vehicle primary NO emissions.

Note, however, that most roadside sites do not have ozone measurements and

calcFno2 is the alternative.

23.1 Options available

mydata A data frame minimally containing date and two pollutants.

x First pollutant that when plotted would appear on the x-axis of a

relationship e.g. x = "nox".

y Second pollutant that when plotted would appear on the y-axis of a

relationship e.g. y = "pm10".
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23 The linearRelation function

period A range of different time periods can be analysed. “monthly” will

plot a monthly time series and “weekly” a weekly time series of the

relationship between x and y. ”hour” will show the diurnal relation-

ship between x and y and “weekday” the day of the week relationship

between x and y. “day.hour” will plot the relationship by weekday

and hour of the day.

condition For period = "hour", period = "day" and period = "day.hour",

setting condition = TRUE will plot the relationships split by year.

This is useful for seeing how the relationships may be changing over

time.

n The minimum number of points to be sent to the linear model. Be-

cause there may only be a few points e.g. hours where two pollutants

are available over one week, n can be set to ensure that at least n points

are sent to the linear model. If a period has hours < n that period will

be ignored.

rsq.thresh The minimum correlation coefficient (R2) allowed. If the relationship

between x and y is not very good for a particular period, setting

rsq.thresh can help to remove those periods where the relationship

is not strong. Any R2 values below rsq.thresh will not be plotted.

If set too high it may not be possible to fit a smooth line and warnings

will be issues - but the plot still produced.

ylim y-axis limits, specified by the user.

ylab y-axis title, specified by the user.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

cols Predefined colour scheme, currently only enabled for “greyscale”.

span span for loess fit. Controls the fit line: lower values produce a more

“wiggly” fit.

... Other graphical parameters. A useful one to remove the strip with the

date range on at the top of the plot is to set strip = FALSE.

23.2 Example of use

Some examples of the linearRelation function are given in this section. The first

example considers the ratio of SO2/NOx, which is plotted in Figure 23.1.

Figure 23.1 shows the relationship between NOx and SO2. Early in the series

(pre-1999) the ratio of SO2/NOx was relatively high (about 3.5 in volume units).

However, from 1999 onwards the relationship has been relatively constant. One

(probable) explanation for the higher ratio at the beginning of the series is due to a

higher fuel sulphur content of petrol and diesel. There are many other examples

shown in the package itself, type ?linearRelation to see them.
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24 The trendLevel function

linearRelation(mydata, x = "nox", y = "so2")
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F . Relationship between NOx and SO2 using the linearRelation function.

Note that the units of both pollutants are in ppb. The uncertainty in the slope of the

hourly relationship between SO2 and NOx on a monthly basis is shown at 95 % confidence

intervals. The smooth line and shaded area show the general trend using a loess smooth.

linearRelation(mydata, x = "nox", y = "ox", period = "day.hour")
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F . Oxidant slope by day of the week and hour of the day.

One of the useful applications of this function is to consider the ‘oxidant’ (sum of

NO2 and O3) slope where there are measurements of NOx, NO2 and O3 at a site.

At roadside sites the oxidant slope provides a good indication of the likely ratio

of NO2/NOx in vehicle exhausts. Because there are few sites that measure O3 at

the roadside, the calcFno2 function provides an alternative method of estimation.

Figure 23.2 shows how the oxidant slope (an estimate of f-NO2) varies by day of

the week and hour of the day.

24 The trendLevel function

24.1 Purpose

The trendLevel function provides a way of rapidly showing a large amount of data

in a condensed way. In one plot, the variation in the concentration of a pollutant

is shown by time of day, month of year and year. The plot therefore provides
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24 The trendLevel function

information on trends, seasonal effects and diurnal variations. This is one of several

similar functions that are being developed.

24.2 Options available

mydata The openair data frame to use to generate the trendLevel plot.

pollutant The name of the data series in mydata to sample to produce the trend-

Level plot.

x The name of the data series to use as the trendLevel x-axis. This

is used with the y and type options to bin the data before applying

statistic (see below). Allowed options currently include “hour”,

“month”, “year”, and “wd”. Other data series in mydata can also be

used. (Note: trendLevel does not allow duplication in x, y and type

options within a call.)

y,type The names of the data series to use as the trendLevel y-axis and for

additional conditioning, respectively. As x above.

rotate.axis The rotation to be applied to trendLevel x and y axes. The default,

c(90, 0), rotates the x axis by 90 degrees but does not rotate the y

axis. (Note: If only one value is supplied, this is applied to both axes;

if more than two values are supplied, only the first two are used.)

n.levels The number of levels to split x, y and type data into if numeric. The

default, c(10, 10, 4), cuts numeric x and y data into ten levels and

numeric type data into four levels. (Notes: This option is ignored for

date conditioning and factors. If less than three values are supplied,

three values are determined by recursion; if more than three values

are supplied, only the first three are used.)

limits The colour scale range to use when generating the trendLevel plot.

cols The colour set to use to colour the trendLevel surface. cols is passed

to openColours for evaluation. See ?openColours for more details.

auto.text Automatic routine text formatting. auto.text = TRUE passes com-

mon lattice labelling terms (e.g. xlab for the x-axis, ylab for the

y-axis and main for the title) to the plot via quickText to provide

common text formatting. The alternative auto.text = FALSE turns

this option off and passes any supplied labels to the plot without modi-

fication.

key.header,key.footer Adds additional text labels above and/or below the scale

key, respectively. For example, passing the options key.header = "",

key.footer = c("mean","nox") adds the addition text as a scale

footer. If enabled (auto.text = TRUE), these arguments are passed

to the scale key (drawOpenKey) via quickText to handle formatting.

The term "get.stat.name", used as the default key.header setting,

is reserved and automatically adds statistic function names or defaults

to "level" when unnamed functions are requested via statistic.
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24 The trendLevel function

key.position Locationwhere the scale key should be plotted. Allowed arguments

currently include “top”, “right”, “bottom” and “left”.

key Fine control of the scale key via drawOpenKey. See ?drawOpenKey

for further details.

statistic The statistic method to be use to summarise locally binned pollutant

measurements with. Three options are currently encdd: “mean”

(default), “max” and “frequency”. (Note: Functions can also be sent

directly via statistic. However, this option is still in development

and should be used with caution. See Details below.)

stat.args Additional options to be used with statistic if this is a function.

The extra options should be supplied as a list of named parameters.

(see Details below.)

stat.safe.mode An addition protection applied when using functions direclty

with statistic that most users can ignore. This option returns NA

instead of running statistic on binned subsamples that are empty.

Many common functions terminate with an error meassage when

applied to an empty dataset. So, this options provides a mechanism

to work with such functions. For a very few cases, e.g. for a function

that counted missing entries, it might need to be set to FALSE (see

Details below.)

drop.unused.types Hide unused/empty type conditioning cases. Some condi-

tioning options may generate empty cases for some data sets, e.g. a

hour of the day when no measurements were taken. Empty x and y

cases generate ’holes’ in individual plots. However, empty type cases

would produce blank panels if plotted. Therefore, the default, TRUE,

excludes these empty panels from the plot. The alternative FALSE

plots all type panels.

... Addition options are passed on to cutData for type handling and

levelplot in lattice for finer control of the plot itself.

24.3 Example of use

Previous versions of openair included two very similar functions, trend.level.hour

and trend.level.wd. trend.level.hour allowed you to plot the variation in one

pollutant against three other properties: month of year (as the x axis), hour of day

(as the y axis) and year (as the type condition). This provides a convenient means

of summarising a large amount of information on the basis of trends, seasonal effects

and diurnal variations. trend.level.wd worked in a similar fashion but used wind

direction for the y axis to provide addition spatial information.

As part of on-going work to standardise and develop functions within openair,
we recently decided to combine these two functions. The work resulted in the

development of trendLevel, a combined function with some extra capabilities.

However, in trendLevel the x and y axis and type properties can also be defined

as part of the plot command. For example, to generate a plot equivalent to the old

trend.level.wd, you can use the code in Figure 24.2.
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24 The trendLevel function

trendLevel(mydata, "nox")
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F . Standard trendLevel output.

Making the x, y and type options available like this prompted an obvious further

development. In the previous functions the available options were “year”, “month”,

“hour” (all extracted from the date field of the data frame) and “wd”, the wind

direction field. They are the options we found most useful to handle data in this

fashion. However, you might have better ideas. You might also have other data

series that we have not even considered. So, we extended x, y and type access to

all the fields in the supplied data frame. So, for example you can now add in and

use new parameters as shown in Figure 24.3.

This plot indicates that the highest NOx concentrations most strongly associate

with wind sectors about 200 degrees, appear to be decreasing over the years, but

do not appear to associate with an SO2 rich NOx source. Using type = "so2"

would have conditioned by absolute SO2 concentration. As both a moderate

contribution from an SO2 rich source and a high contribution from an SO2 poor

source could generate similar SO2 concentrations, such conditioning can sometimes

blur interpretations. The use of this type of ‘over pollutant’ ratio reduces this blurring

by focusing conditioning on cases when NOx concentrations (be they high or low)

associate with relatively high or low SO2 concentrations.

By default trendLevel subsamples the plotted pollutant data by the supplied x,

y and type parameters and in each case calculates the mean. The option statistic

has always let you apply other statistics. For example, trend.level.hour also

calculated the maximum via the option statistic = "max". However, as with

202



24 The trendLevel function

trendLevel(mydata, pollutant = "nox", y = "wd")
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F . trendLevel output with wind direction as y axis.

x, y and type before, these previously needed to be hard coded into the functions

themselves by us. This again restricts your options to explore your data quickly and

efficiently. So, we looked at ways of evolving the statistic option. We have kept

the previous predefine options for consistency, but we have now also developed

statistic so you can supply a function of your own instead.

As a simple example, consider the above plot which summarises by mean. This

tells us about average concentrations. It might also be useful to consider a particular

percentile of concentrations. This can be done by defining one’s own function as

shown in Figure 24.4.

This type of flexibility really opens up the potential of the function as a screening

tool for the early stages of data analysis. Increased control of x, y, type and stat-

istic allow you to very quick explore your data and develop an understanding

of how different parameters interact. Patterns in trendLevel plots can also help

to direct your openair analysis. For example, possible trends in data conditioned

by year would suggest that functions like smoothTrend or TheilSen could provide

further insight. Likewise, windRose or polarPlot could be useful next steps if wind

speed and direct conditioning produces interesting features. However, perhaps

most interestingly, novel conditioning or the incorporation of novel parameters

in this type of highly flexible function provides a means of developing new data

visualisation and analysis methods.

For further details of the new trendLevel function, see the associated help
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24 The trendLevel function

## new field: so2/nox ratio

mydata$new <- mydata$so2/mydata$nox

## condition by mydata$new

trendLevel(mydata, "nox", x = "year", y = "wd", type = "new")
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F . trendLevel output with SO2: NOx ratio type conditioning.

documentation, ?trendLevel.
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25 GoogleMapsPlot function

## function to estimate 95th percentile

percentile <- function(x) quantile(x, probs = 0.95, na.rm = TRUE)

## apply to present plot

trendLevel(mydata, "nox", x = "year", y = "wd", type = "new",

statistic = percentile)
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F . trendLevel using locally defined statistic.

25 GoogleMapsPlot function

25.1 Purpose

Air pollution is an inherently spatial problem. The spatial aspects can be considered

in many different ways and the GoogleMapsPlot function considers simple maps

based on the Google Static Maps API (http://code.google.com/apis/maps/

documentation/staticmaps/). The initial aim of this function is to make it easy

to plot spot location information e.g. a concentration, on a map. Compared with

a full-blown GIS the GoogleMapsPlot function is limited, but nevertheless very

useful. One of the most useful aspects is that the user only need supply latitude

and longitude information for anywhere in the world and the map is automatically

downloaded from the Google server.

Another benefit of the GoogleMapsPlot function is that it works in the same way

as other openair functions e.g. allows fro conditioning. Therefore, it is trivial to
plot panels of maps split by variables such as ‘season’.

25.2 Options available

mydata The openair data frame to use to generate the GoogleMapsPlot plot.

latitude,longitude The names of the data series in mydata giving the latitudes

and longitudes, respectively, of measurements. If only one latitude
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25 GoogleMapsPlot function

longitude pair are supplied, the function applies a default range to

the plot. To override this either set the required range using xlim

and ylim (see below) or the map zoom level. (Note: The default is

equivalent to zoom = 15.)

type The type of data conditioning to apply before plotting. The default is

will produce a single plot using the entire data. Other type options

include “hour” (for hour of the day), “weekday” (for day of the week)

and “month” (formonth of the year), “year”, “season” (string, summer,

autumn or winter) and “daylight” (daylight or nighttime hour). But it

is also possible to set type to the name of another variable in mydata,

in which case the plotted data will be divided into quantiles based

on that data series. See cutData for further details.(NOTE: type

conditioning currently allows up to two levels of conditioning, e.g.,

type = c("weekday", "daylight").)

xlim,ylim The x-axis and y-axis size ranges. By default these sized on the basis

of latitude and longitude, but can be forced as part of the plot call.

(NOTE: This are in-development and should be used with care. The

RgoogleMaps argument size = c(640, 640) can be use to force

map dimensions to square.)

pollutant If supplied, the name of a pollutant or variable in mydata that is to

be evaluated at the each measurement point. Depending on settings,

nominally cols and cex, the evaluation can be by colour, size or both.

labels If supplied, either the name of mydata column/field containing the

labels to be used or a list, containing that field name (as labels), and

any other label properties, e.g. cex, col, etc, required for fine-tuning

label appearance.

cols The colour set to use to colour scaled data. Typically, cols is passed

to openColours for evaluation, but can be forced to one colour using

e.g. col = "red". The special case cols = "greyscale" forces

all plot components (the map, the data layer and the plot strip of

type conditioning) to greyscale for black and white printing. See

?openColours for more details.

limits By default, the data colour scale is fitted to the total data range. How-

ever, there are circumstances when the user may wish to set different

ones. In such cases limits can be set in the form c(lower, upper)

to modify the colour range.

cex The size of data points plotted on maps. By default this NULL or

pollutant if supplied. If NULL all points are plotted an equal size. If

pollutant or the name of another variable in mydata this is used by

scaled using cex.range. If necessary, cex can also be forced, e.g. cex

= 1 to make all points the same size.

pch The plot symbol to be used when plotting data. By default this is a

solid circle (pch = 20), but can be any predefined symbol, e.g. pch
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= 1 is the open circle symbol used in most standard R plots. pch may

also be the name of a variable in mydata for local control.

cex.range The range to rescale cex values to if cex is supplied as a mydata

variable name. This is intended to provide sensible data point points

regardless of the variable value range but may be require fine-tuning.

xlab,ylab,main The x-axis, y-axis and main title labels to be added to the plot.

All labels are passed via quickText to handle formatting if enabled

(auto.text = TRUE). By default GoogleMapsPlot uses latitude and

longitude names as xlab and ylab, respectively.

axes An alternative (short hand) option to add/remove (TRUE/FALSE) all x

and y axis annotation and labelling.

map If supplied, an RgoogleMaps output, to be used as a background map.

If NULL (as in default), a map is produced using the RgoogleMaps-

package function MapBackground, the supplied latitude and lon-

gitude ranges, and any additional RgoogleMaps-package arguments

supplied as part of the plot call. (Note: the map object currently used

in panel... functions is a modified form of this output, details to be

confirmed.)

map.raster Should the map be plotted as a raster object? The default TRUE uses

panel.GoogleMapsRaster to produce the map layer, while the altern-

ative (FALSE) uses panel.GoogleMaps. (NOTE: The raster version

is typically much faster but may not be available for all computer

systems.)

map.cols Like cols a colour scale, but, if supplied, used to recolour the map

layer before plotting. (NOTE: If set, this will override cols = "grey-

scale".)

aspect The aspect ratio of the plot. If NULL (default), this is calculated by the

function based on the data and xlim and ylim ranges.

as.table as.table is a lattice option that controls the order inwhichmultiple

panels are displayed. The default (TRUE) produces layouts similar to

other openair plot.

plot.type The method to use to produce the data layer for the plot. By default

(plot.type = "xy"), this is an x-y style scatter plot, but can also be

other pre-defined options (e.g. ”level” for a levelplot) or a user-defined

panel of a similar structire to panel... functions in lattice.

plot.transparent Data layer transparency control. When enabled, this forces

colours used in the data layer to transparent, and can be a numeric set-

ting the colour density, from invisible (0) to solid (1), or a logical (TRUE

applying default 0.5). Note: User-defined colours (and some panel

defaults when supplying specialist functions using e.g. plot.type =

panel...) may sometimes supersede this option.
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key Fine control for the color scale key. By default (key = NULL) the

key is generated is a colour range exists, but can be forced (key =

TRUE/FALSE) or controlled at a higher level (via drawOpenKey).

key.position Locationwhere the scale key should be plotted. Allowed arguments

currently include "top", "right", "bottom" and "left".

key.header,key.footer Header and footer labels to add to colour key, if drawn.

If enabled (auto.text = TRUE), these arguments are passed to the

scale key (drawOpenKey) via quickText to handle formatting.

auto.text Automatic routine text formatting. auto.text = TRUE allows labels

(xlab, ylab, main, etc.) to be passed to the plot via quickText.

auto.text = FALSE turns this option off and passes labels to the plot

without modification.

... Addition options are passed on to cutData for type handling, Map-

Background in RgoogleMaps for map layer production, and xyplot

in lattice for data layer production.

25.3 Example of usage

To make things a bit more interesting we are going to consider O3 concentrations

across the UK. Hourly O3 data from 16 sites for 2006 has been placed on a server

together with a separate file consisting of the site names and locations. The first

thing to do is import the data:

load(url("http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/o3Measurements.RData"))

head(o3Measurements)

## date o3 site

## 1 2006-01-01 00:00:00 NA Aston.Hill

## 2 2006-01-01 01:00:00 74 Aston.Hill

## 3 2006-01-01 02:00:00 72 Aston.Hill

## 4 2006-01-01 03:00:00 72 Aston.Hill

## 5 2006-01-01 04:00:00 70 Aston.Hill

## 6 2006-01-01 05:00:00 66 Aston.Hill

load(url("http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/siteDetails.RData"))

head(siteDetails)

## site latitude longitude

## 1 Aston.Hill 52.50 -3.0342

## 2 Bottesford 52.93 -0.8147

## 3 Bush.Estate 55.86 -3.2058

## 4 Eskdalemuir 55.32 -3.2061

## 5 Glazebury 53.46 -2.4721

## 6 Harwell 51.57 -1.3253

In this example, we want to show what mean O3 concentrations look like across

the UK (and Ireland because Mace Head was included) and then consider the

concentrations by season, and then take a look at peak hour concentrations. First

it is necessary to calculate the means and maximums by season:
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## cut data into seasons

## load plyr package

library(plyr)

o3Measurements <- cutData(o3Measurements, "season")

## calculate means/maxes and merge...

annual <- ddply(o3Measurements, .(site), numcolwise(mean), na.rm = TRUE)

## by site AND season

means <- ddply(o3Measurements, .(site, season), numcolwise(mean), na.rm = TRUE)

peaks <- ddply(o3Measurements, .(site, season), numcolwise(max), na.rm = TRUE)

annual <- merge(annual, siteDetails, by = "site")

means <- merge(means, siteDetails, by = "site")

peaks <- merge(peaks, siteDetails, by = "site")

## now make first plot

GoogleMapsPlot(annual, lat = "latitude", long = "longitude", pollutant = "o3",

maptype = "roadmap", col = "jet")

## Loading required package: RgoogleMaps

## Loading required package: png

## Loading required package: RJSONIO

## [1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=5&size=640x403&maptype=roadmap&format=png32&sensor=true"
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F . Mean concentrations of O3 around the UK and Ireland (µg m−3).

Figure 25.1 shows the annual mean concentration of O3 at UK and Ireland sites.

It is clear that the highest concentrations of O3 are at Mace Head (Ireland) and

Strath Vaich (Scotland) — sites that are well exposed to ‘clean’ North Atlantic air

and where deposition processes are not so important; at least at Mace Head.

For mean concentrations Figure 25.2 shows that springtime concentrations are

highest, which will in part be due to the northern hemispheric peak in O3 concen-

trations (Monks 2000). Concentrations are particularly high at the remote sites

of Mace Head (Ireland) and Strath Vaich (Scotland). By contrast, Figure 25.3

shows the peak hourly concentration of O3. In this case there is a very different

distribution of O3 concentrations. The highest concentrations are now observed

in the south-east of England in summer, which will be due to regional scale pol-
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25 GoogleMapsPlot function

GoogleMapsPlot(means, lat = "latitude", long = "longitude", pollutant = "o3",

type = "season", maptype = "roadmap", col = "jet")

## [1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=5&size=640x403&maptype=roadmap&format=png32&sensor=true"

longitude 

la
tit

ud
e 

50

52

54

56

58

spring (MAM)

−15 −10 −5 0 5

●●

●

summer (JJA)

−15 −10 −5 0 5

●

●
●

●

●

●

●

●

●
●●

autumn (SON)

50

52

54

56

58

●

●

●

●

●
●

●

●
●

●●

●

winter (DJF)

O3

40

50

60

70

80

F . Mean hourly concentrations of O3 around the UK and Ireland split by season

(µg m−3).

lution episodes. By contrast, the wintertime O3 concentrations are much lower

everywhere.
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26 openair back trajectory functions

GoogleMapsPlot(peaks, lat = "latitude", long = "longitude", pollutant = "o3",

type = "season", maptype = "roadmap", col = "jet")

## [1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=5&size=640x403&maptype=roadmap&format=png32&sensor=true"
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F . Maximum hourly concentrations of O3 around the UK and Ireland split by

season (µg m−3).

26 openair back trajectory functions

Back trajectories are extremely useful in air pollution and can provide important

information on air mass origins. Despite the clear usefulness of back trajectories,

their use tends to be restricted to the research community. Back trajectories are

used for many purposes from understanding the origins of air masses over a few

days to undertaking longer term analyses. They are often used to filter air mass

origins to allow for more refined analyses of air pollution — for example trends

in concentration by air mass origin. They are often also combined with more

sophisticated analyses such as cluster analysis to help group similar type of air mass

by origin.

Perhaps one of the reasons why back trajectory analysis is not carried out more

often is that it can be time consuming to do. This is particularly so if one wants

to consider several years at several sites. It can also be difficult to access back

trajectory data. In an attempt to overcome some of these issues and expand the

possibilities for data analysis, openairmakes several functions available to access

and analyse pre-calculated back trajectories.

Currently these functions allow for the import of pre-calculated back trajectories

are several pre-define locations and some trajectory plotting functions. In time

all of these functions will be developed to allow more sophisticated analyses to be

undertaken. Also it should be recognised that these functions are in their early
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26 openair back trajectory functions

stages of development and will may continue to change and be refined.

This importTraj function imports pre-calculated back trajectories using the

 trajectory model (Hybrid Single Particle Lagrangian Integrated Traject-

ory Model http://ready.arl.noaa.gov/HYSPLIT.php). Trajectories are run at

3-hour intervals and stored in yearly files (see below). The trajectories are started

at ground-level (10m) and propagated backwards in time. The data are stored

on web-servers at King’s College London in a similar way to importKCL, which

makes it very easy to import pre-processed trajectory data for a range of locations

and years. Note — the back trajectories have been pre-calculated for specific

locations and stored as .RData objects. Users should contact David Carslaw to

request the addition of other locations. So far only a few receptors are available

to users but in time the number will increase. It should be feasible for example to

run back trajectories for the past 20 years at all the  sites in Europe.14

Users may for various reasons wish to run  themselves e.g. for different

starting heights, longer periods or more locations. Code and instructions have been

provided in Appendix D for users wishing to do this.

These trajectories have been calculated using the Global - reana-

lysis data archives. The global data are on a latitude-longitude grid (2.5 degree).

Note that there are many different meteorological data sets that can be used to run

 e.g. including  data. However, in order to make it practicable to

run and store trajectories for many years and sites, the - reana-

lysis data is most useful. In addition, these archives are available for use widely,

which is not the case for many other data sets e.g. .  calculated

trajectories based on archive data may be distributed without permission (see

http://ready.arl.noaa.gov/HYSPLIT_agreement.php). For those wanting, for

example, to consider higher resolution meteorological data sets it may be better to

run the trajectories separately.

Users should see the help file for importTraj to get an up to date list of receptors

where back trajectories have been calculated.

As an example, we will import trajectories for London in 2010. Importing them

is easy:

traj <- importTraj(site = "london", year = 2010)

The file itself contains lots of information that is of use for plotting back trajector-

ies:

14It takes about 15 hours to run 20 years of 96-hour back trajectories at 3-hour intervals.
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26 openair back trajectory functions

head(traj)

## receptor year month day hour hour.inc lat lon height pressure

## 1 1 2010 1 1 9 0 51.50 -0.100 10.0 994.7

## 2 1 2010 1 1 8 -1 51.77 0.057 10.3 994.9

## 3 1 2010 1 1 7 -2 52.03 0.250 10.5 995.0

## 4 1 2010 1 1 6 -3 52.30 0.488 10.8 995.0

## 5 1 2010 1 1 5 -4 52.55 0.767 11.0 995.4

## 6 1 2010 1 1 4 -5 52.80 1.065 11.3 995.6

## date2 date

## 1 2010-01-01 09:00:00 2010-01-01 09:00:00

## 2 2010-01-01 08:00:00 2010-01-01 09:00:00

## 3 2010-01-01 07:00:00 2010-01-01 09:00:00

## 4 2010-01-01 06:00:00 2010-01-01 09:00:00

## 5 2010-01-01 05:00:00 2010-01-01 09:00:00

## 6 2010-01-01 04:00:00 2010-01-01 09:00:00

The traj data frame contains among other things the latitude and longitude

of the back trajectory, the height (m) and pressure (Pa) of the trajectory. The

date field is the arrival time of the air-mass and is useful for linking with ambient

measurement data.

Next, we consider how to plot back trajectories with a few simple examples.

The first example will consider a potentially interesting period when the Icelandic

volcano, Eyjafjallajökull erupted in April 2010. The eruption of Eyjafjallajökull

resulted in a flight-ban that lasted six days across many European airports. In

Figure 26.1 selectByDate is used to consider the 7 days of interest and we choose

to plot the back trajectories as lines rather than points (the default). Figure 26.1

does indeed show that many of the back trajectories originated from Iceland over

this period. Note also the plot automatically includes a world base map. The base

map itself is not at very high resolution by default but is useful for the sorts of spatial

scales that back trajectories exist over. The base map is also global, so provided that

there are pre-calculated back trajectories, these maps can be generated anywhere

in the world. By default the function uses the ‘world’ map from the maps package.

If map.res = "hires" then the (much) more detailed base map ‘worldHires’ from

the mapdata package is used.15

Note that trajPlot will only plot full length trajectories. This can be important

when plotting something like a single month e.g. by using selectByDate when on

partial sections of some trajectories may be selected.

There are a few other ways of representing the data shown in Figure 26.1. For

example, it might be useful to plot the trajectories for each day. To do this we need

to make a new column ‘day’ which can be used in the plotting. The first example

considers plotting the back trajectories in separate panels (Figure 26.2).

Another way of plotting the data is to group the trajectories by day and colour

them. This time we also set a few other options to get the layout we want — shown

in Figure 26.3.

So far the plots have provided information on where the back trajectories come

from, grouped or split by day. It is also possible, in commonwith most other openair
functions to split the trajectories by many other variables e.g. month, season and

so on. However, perhaps one of the most useful approaches is to link the back

15Note in may be necessary to install the mapdata package. If so type

install.packages("mapdata").
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26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end ="21/4/2010"))

F . 96-hour  back trajectories centred on London for 7 days in April

2010.

## make a day column

traj$day <- as.Date(traj$date)

## plot it choosing a specfic layout

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

type = "day", layout = c(7, 1))

F . 96-hour  back trajectories centred on London for 7 days in April

2010, shown separately for each day.
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26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

group = "day", col = "jet", lwd = 2, key.pos = "right", key.col = 1)

F . 96-hour  back trajectories centred on London for 7 days in April

2010, shown grouped for each day and coloured accordingly.

trajectories with the concentrations of a pollutant. As mentioned previously, the

back trajectory data has a column ‘date’ representing the arrival time of the air

mass that can be used to link with concentration measurements. A couple of steps

are required to do this using the merge function.

## import data for North Kensington

kc1 <- importAURN("kc1", year =2010)

# now merge with trajectory data by 'date'

traj <- merge(traj, kc1, by = "date")

## look at first few lines

head(traj)

## date receptor year month day hour hour.inc lat lon

## 1 2010-01-01 09:00:00 1 2010 1 2010-01-01 9 0 51.50 -0.100

## 2 2010-01-01 09:00:00 1 2010 1 2010-01-01 8 -1 51.77 0.057

## 3 2010-01-01 09:00:00 1 2010 1 2010-01-01 7 -2 52.03 0.250

## 4 2010-01-01 09:00:00 1 2010 1 2010-01-01 6 -3 52.30 0.488

## 5 2010-01-01 09:00:00 1 2010 1 2010-01-01 5 -4 52.55 0.767

## 6 2010-01-01 09:00:00 1 2010 1 2010-01-01 4 -5 52.80 1.065

## height pressure date2 o3 no2 co so2 pm10 nox no pm2.5 nv2.5

## 1 10.0 994.7 2010-01-01 09:00:00 46 29 0.3 0 8 38 6 NA NA

## 2 10.3 994.9 2010-01-01 08:00:00 46 29 0.3 0 8 38 6 NA NA

## 3 10.5 995.0 2010-01-01 07:00:00 46 29 0.3 0 8 38 6 NA NA

## 4 10.8 995.0 2010-01-01 06:00:00 46 29 0.3 0 8 38 6 NA NA

## 5 11.0 995.4 2010-01-01 05:00:00 46 29 0.3 0 8 38 6 NA NA

## 6 11.3 995.6 2010-01-01 04:00:00 46 29 0.3 0 8 38 6 NA NA

## v2.5 nv10 v10 ws wd site code

## 1 NA 8 0 NA NA London N. Kensington KC1

## 2 NA 8 0 NA NA London N. Kensington KC1

## 3 NA 8 0 NA NA London N. Kensington KC1

## 4 NA 8 0 NA NA London N. Kensington KC1

## 5 NA 8 0 NA NA London N. Kensington KC1

## 6 NA 8 0 NA NA London N. Kensington KC1
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26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

pollutant = "pm10", col = "jet", lwd =2)

F . 96-hour  back trajectories centred on London for 7 days in April

2010, coloured by the concentration of PM10 (µg m−3).

This time we can use the option pollutant in the function trajPlot, which will

plot the back trajectories coloured by the concentration of a pollutant. Figure 26.4

does seem to show elevated PM10 concentrations originating from Iceland over

the period of interest. In fact, these elevated concentrations occur on two days as

shown in Figure 26.2. However, care is neededwhen interpreting such data because

other analysis would need to rule out other reasons why PM10 could be elevated;

in particular due to local sources of PM10. There are lots of openair functions that
can help here e.g. timeVariation or timePlot to see if NOx concentrations were

also elevated (which they seem to be). It would also be worth considering other

sites for back trajectories that could be less influenced by local emissions.

However, it is possible to account for the PM that is local to some extent by

considering the relationship between NOx and PM10 (or PM2.5). For example,

using scatterPlot (not shown):

scatterPlot(kc1, x = "nox", y = "pm2.5", avg = "day", linear = TRUE)

which suggests a gradient of 0.084. Therefore we can remove the PM10 that is

associated NOx in kc1 data, making a new column pm.new:

kc1 <- transform(kc1, pm.new = pm10 - 0.084 * nox)
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26 openair back trajectory functions

trajLevel(traj, statistic = "frequency", col = "increment")

F . Gridded back trajectory frequencies.

We have already merged kc1 with traj, so to keep things simple we import traj

again and merge it with kc1. Note that if we had thought of this initially, pm.new

would have been calculated first before merging with traj.

traj <- importTraj(site = "london", year = 2010)

traj <- merge(traj, kc1, by = "date")

Now it is possible to plot the trajectories:

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"),

pollutant = "pm.new", col = "jet", lwd = 2)

Which, interestingly still clearly shows elevated PM10 concentrations for those

two days that cross Iceland. The same is also true for PM2.5. However, as mentioned

previously, checking other sites in more rural areas would be a good idea.

26.1 Trajectory gridded frequencies

The  model itself contains various analysis options for gridding trajectory

data. Similar capabilities are also available in openair where the analyses can be
extended using other openair capabilities. It is useful to gain an idea of where

trajectories come from. Over the course of a year representing trajectories as lines

or points results in a lot of over-plotting. Therefore it is useful to grid the trajectory

data and calculate various statistics by considering latitude-longitude intervals.

The first analysis considers the number of unique trajectories in a particular grid

square. This is achieved by using the trajLevel function and setting the statistic

option to “frequency”. Figure 26.5 shows the frequency of back trajectory crossings

for the North Kensington data. In this case it highlights that most trajectory origins

are from the west and north for 2010 at this site. Note that in this case, pollutant

can just be the trajectory height (or another numeric field) rather than an actual

pollutant because only the frequencies are considered.

It is also possible to use hexagonal binning to gain an idea about trajectory

frequencies. In this case each 3-hour point along each trajectory is used in the
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26 openair back trajectory functions

trajLevel(subset(traj, lat > 30 & lat <70 & lon > -30 & lon <20),

method = "hexbin", col = "jet",

xlim = c(-30, 20), ylim = c(30, 70), xbin = 15,

border = "grey80", aspect = 1)

F . Gridded back trajectory frequencies with hexagonal binning.

counting. The code below focuses more on Europe and uses the hexagonal binning

method. Note that the effect of the very few high number of points at the origin

has been diminished by plotting the data on a log scale — see page 193 for details.

26.2 Trajectory source contribution functions

Back trajectories offer the possibility to undertake receptor modelling to identify

the location of major emission sources. When many back trajectories (over months

to years) are analysed in specific ways they begin to show the geographic origin

most associated with elevated concentrations. With enough (dissimilar) trajectories

those locations leading to the highest concentrations begin to be revealed. When a

whole year of back trajectory data is plotted the individual back trajectories can

extend 1000s of km. There are many approaches using back trajectories in this

way and Fleming et al. (2012) provide a good overview of the methods available.

openair has implemented a few of these techniques and over time these will be

refined and extended.

26.2.1 Identifying the contribution of high concentration back trajectories

A useful analysis to undertake is to consider the pattern of frequencies for two

different conditions. In particular, there is often interest in the origin of high

concentrations for different pollutants. For example, compared with data over a

whole year, how do the frequencies of occurrence differ? Figure 26.7 shows an
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26 openair back trajectory functions

trajLevel(traj, pollutant = "pm10", statistic = "difference",

col = c("skyblue", "white", "tomato"), min.bin = 3)

F . Gridded back trajectory frequencies showing the percentage difference in

occurrence for high PM10 concentrations (90th percentile) compared with conditions over

the full year.

example of such an analysis for PM10 concentrations. By default the function will

compare concentrations >90th percentile with the full year. The percentile level is

controlled by the option percentile. Note also there is an option min.bin that

will exclude grid cells where there are fewer than min.bin data points.

Figure 26.7 shows that compared with the whole year, high PM10 concentrations

(>90th percentile) are more prevalent when the trajectories originate from the

east, which is seen by the positive values in the plot. Similarly there are relatively

fewer occurrences of these high concentration back trajectories when they originate

from the west. This analysis is in keeping with the highest PM10 concentrations

being largely controlled by secondary aerosol formation from air-masses originating

during anticyclonic conditions from mainland Europe.

Note that it is also possible to use conditioning with these plots. For example to

split the frequency results by season:

trajLevel(traj, pollutant = "pm10", statistic = "frequency", col = "heat",

type = "season")

26.2.2 Allocating trajectories to different wind sectors

One of the key aspects of trajectory analysis is knowing something about where air

masses have come from. Cluster analysis can be used to group trajectories based on

their origins and this is discussed in Section 26.3. A simple approach is to consider

different wind sectors e.g. N, NE, E and calculate the proportion of time a particular

back trajectory resides in a specific sector. It is then possible to allocate a particular

trajectory to a sector based on some assumption about the proportion of time it

is in that sector — for example, assume a trajectory is from the west sector if it

spends at least 50% of its time in that sector or otherwise record the allocation as
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‘unallocated’. The code below can be used as the basis of such an approach.

First we import the trajectories, which in this case are for London in 2010:

traj <- importTraj(site = "london", year = 2010)

## need start/end lat and lon to work out angles

id <- which(traj$hour.inc == 0)

Lat <- traj$lat[id[1]]

Lon <- traj$lon[id[1]]

## calculate angle and then assign sector

traj <- transform(traj, angle = atan2(lon + Lon, lat - Lat) * 360 / 2 / pi)

ids <- which(traj$angle < 0)

traj$angle[ids] <- traj$angle[ids] + 360

traj$sector <- cut(traj$angle, breaks = seq(22.5, 382.5, 45),

labels = c("NE", "E", "SE", "S", "SW", "W",

"NW", "N"))

traj[ , "sector"][is.na(traj[ , "sector"])] <- "N" # for wd < 22.5

## count frequencies of sectors for each trajectory and the maximum

alloc <- tapply(traj$sector, traj$date, table)

alloc <- as.data.frame(do.call(rbind, alloc))

alloc$max <- apply(alloc, 1, max)

## identify the most frequent sector

alloc$sec <- sapply(1:nrow(alloc),

function(x) colnames(alloc)[which.max(alloc[x, ])])

## assign to most frequent sector, or label unallocated

## below assumes at least 50 out of 96 hours for assignment

alloc$sec <- ifelse(alloc$max > 50, alloc$sec, "unallocated")

alloc$date <- as.POSIXct(rownames(alloc), "GMT")

alloc <- alloc[, c("date", "sec")]

## merge with orginal data

traj <- merge(traj, alloc, by = "date", all = TRUE)

Now it is possible to post-process the data. traj now has the angle, sector and

allocation (sec).
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head(traj)

## date receptor year month day hour hour.inc lat lon height

## 1 2010-01-01 09:00:00 1 2010 1 1 9 0 51.50 -0.100 10.0

## 2 2010-01-01 09:00:00 1 2010 1 1 8 -1 51.77 0.057 10.3

## 3 2010-01-01 09:00:00 1 2010 1 1 7 -2 52.03 0.250 10.5

## 4 2010-01-01 09:00:00 1 2010 1 1 6 -3 52.30 0.488 10.8

## 5 2010-01-01 09:00:00 1 2010 1 1 5 -4 52.55 0.767 11.0

## 6 2010-01-01 09:00:00 1 2010 1 1 4 -5 52.80 1.065 11.3

## pressure date2 angle sector sec

## 1 994.7 2010-01-01 09:00:00 270.00 W unallocated

## 2 994.9 2010-01-01 08:00:00 350.82 N unallocated

## 3 995.0 2010-01-01 07:00:00 15.80 N unallocated

## 4 995.0 2010-01-01 06:00:00 26.01 NE unallocated

## 5 995.4 2010-01-01 05:00:00 32.33 NE unallocated

## 6 995.6 2010-01-01 04:00:00 36.65 NE unallocated

First, merge the air quality data from North Kensington:

traj <- merge(traj, kc1, by = "date")

We can work out the mean concentration by allocation, which shows the clear

importance for the east and south-east sectors.

tapply(traj$pm2.5, traj$sector, mean, na.rm = TRUE)

## NE E SE S SW W NW N

## 14.04 20.90 23.37 15.28 11.92 12.23 13.90 13.47

26.2.3 Potential Source Contribution Function (PSCF)

If statistic = "pscf" then the Potential Source Contribution Function (PSCF)

is plotted. The PSCF calculates the probability that a source is located at latitude 𝑖
and longitude 𝑗 (Fleming et al. 2012; Pekney et al. 2006). The PSCF is somewhat

analogous to the CPF function described on page 115 that considers local wind

direction probabilities. In fact, the two approaches have been shown to work well

together (Pekney et al. 2006). The PSCF approach has been widely used in the

analysis of air mass back trajectories. Ara Begum et al. (2005) for example assessed

the method against the known locations of wildfires and found it performed well for

PM2.5, EC (elemental carbon) and OC (organic carbon) and that other (non-fire

related) species such as sulphate had different source origins. The basis of PSCF is

that if a source is located at (𝑖, 𝑗), an air parcel back trajectory passing through that
location indicates that material from the source can be collected and transported

along the trajectory to the receptor site. PSCF solves

𝑃𝑆𝐶𝐹 =
𝑚𝑖𝑗

𝑛𝑖𝑗
(10)

where 𝑛𝑖𝑗 is the number of times that the trajectories passed through the cell

(𝑖, 𝑗) and 𝑚𝑖𝑗 is the number of times that a source concentration was high when

the trajectories passed through the cell (𝑖, 𝑗). The criterion for determining 𝑚𝑖𝑗 is

controlled by percentile, which by default is 90. Note also that cells with few

data have a weighting factor applied to reduce their effect.
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trajLevel(subset(traj, lon > -20 & lon < 20 & lat > 45 & lat < 60),

pollutant = "pm2.5", statistic = "pscf", col = "increment")

F . PSCF probabilities for PM2.5 concentrations (90th percentile).

An example of a PSCF plot is shown in Figure 26.8 for PM2.5 for concentrations

>90th percentile. This Figure gives a very clear indication that the principal (high)

sources are dominated by source origins in mainland Europe — particularly around

the Benelux countries.

26.2.4 Concentration Weighted Trajectory (CWT)

A limitation of the PSCF method is that grid cells can have the same PSCF value

when sample concentrations are either only slightly higher or much higher than the

criterion (Hsu et al. 2003). As a result, it can be difficult to distinguish moderate

sources from strong ones. Seibert et al. (1994) computed concentration fields to

identify source areas of pollutants. This approach is sometimes referred to as the

CWT or CF (concentration field). A grid domain was used as in the PSCFmethod.

For each grid cell, the mean (CWT) or logarithmic mean (used in the Residence

Time Weighted Concentration (RTWC) method) concentration of a pollutant

species was calculated as follows:

𝑙𝑛(𝐶𝑖𝑗) =
1

∑𝑁
𝑘=1 𝜏𝑖𝑗𝑘

𝑁
󰡗
𝑘=1

𝑙𝑛(𝑐𝑘)𝜏𝑖𝑗𝑘 (11)

where 𝑖 and 𝑗 are the indices of grid, 𝑘 the index of trajectory, 𝑁 the total number

of trajectories used in analysis, 𝑐𝑘 the pollutant concentration measured upon arrival

of trajectory 𝑘, and 𝜏𝑖𝑗𝑘 the residence time of trajectory 𝑘 in grid cell (𝑖, 𝑗). A high

value of 𝐶𝑖𝑗 means that, air parcels passing over cell (𝑖, 𝑗) would, on average, cause
high concentrations at the receptor site.

Figure 26.9 shows the situation for PM2.5 concentrations. It was calculated by

recording the associated PM2.5 concentration for each point on the back trajectory

based on the arrival time concentration using 2010 data. The plot shows the

geographic areas most strongly associated with high PM2.5 concentrations i.e. to
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trajLevel(subset(traj,lon > -20 & lon < 20 & lat > 45 & lat < 60),

pollutant = "pm2.5", statistic="cwt", col = "increment")

F . Gridded back trajectory concentrations showing mean PM2.5 concentrations

using the CWT approach.

the east in continental Europe. Both the CWT and PSCF methods have been

shown to give similar results and each have their advantages and disadvantages

(Lupu and Maenhaut 2002; Hsu et al. 2003). Figure 26.9 can be compared with

Figure 26.8 to compare the overall identification of source regions using the CWT

and PSCF techniques. Overall the agreement is good in that similar geographic

locations are identified as being important for PM2.5.

Figure 26.9 is useful, but it can be clearer if the trajectory surface is smoothed,

which has been done for PM2.5 concentrations shown in Figure 26.10.

In common with most other openair functions, the flexible ‘type’ option can be
used to split the data in different ways. For example, to plot the smoothed back

trajectories for PM2.5 concentrations by season.

trajLevel(subset(traj, lat > 40 & lat < 70 & lon >-20 & lon <20),

pollutant = "pm2.5", type = "season", statistic = "pscf",

layout = c(4, 1))

It should be noted that it makes sense to analyse back trajectories for pollutants

that have a large regional component — such as particles or O3. It makes little sense

to analyse pollutants that are known to have local impacts e.g. NOx. However, a

species such as NOx can be helpful to exclude ‘fresh’ emissions from the analysis.

26.3 Back trajectory cluster analysis with the trajCluster function

Often it is useful to use cluster analysis on back trajectories to group similar air

mass origins together. The principal purpose of clustering back trajectories is

to post-process data according to cluster origin. By grouping data with similar

geographic origins it is possible to gain information on pollutant species with similar

chemical histories. There are several ways in which clustering can be carried out

and several measures of the similarity of different clusters. A key issue is how the
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trajLevel(subset(traj, lat > 45 & lat < 60 & lon >-20 & lon <20),

pollutant ="pm2.5", statistic = "cwt", smooth = TRUE,

col = "increment")

F . Gridded and smoothed back trajectory concentrations showing mean PM2.5

concentrations using the CWT approach.

distance matrix is calculated, which determines the similarity (or dissimilarity)

of different back trajectories. The simplest measure is the Euclidean distance.

However, an angle-based measure is also often used. The two distance measures

are defined below. In openair the distance matrices are calculated using C++ code

because their calculation is computationally intensive. Note that these calculations

can also be performed directly in the  model itself.

The Euclidean distance between two trajectories is given by Equation 12. Where

𝑋1, 𝑌1 and 𝑋2, 𝑌2 are the latitude and longitude coordinates of back trajectories

1 and 2, respectively. 𝑛 is the number of back trajectory points (96 hours in this

case).

𝑑1,2 = 󰝔
𝑛

󰡗
𝑖=1

((𝑋1𝑖 − 𝑋2𝑖)2 + (𝑌1𝑖 − 𝑌2𝑖))2󰝕
1/2

(12)

The angle distance matrix is a measure of how similar two back trajectory points

are in terms of their angle from the origin i.e. the starting location of the back

trajectories. The angle-based measure will often capture some of the important

circulatory features in the atmosphere e.g. situations where there is a high pressure

located to the east of the UK. However, the most appropriate distance measure

will be application dependent and is probably best tested by the extent to which

they are able to differentiate different air-mass characteristics, which can be tested

through post-processing. The angle-based distance measure is defined as:

𝑑1,2 =
1
𝑛

𝑛
󰡗
𝑖=1

𝑐𝑜𝑠−1 ⎛⎜
⎝

0.5
𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖

󰠋𝐴𝑖𝐵𝑖

⎞⎟
⎠

(13)

where
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𝐴𝑖 = (𝑋1(𝑖) − 𝑋0)2 + (𝑌1(𝑖) − 𝑌0)2 (14)

𝐵𝑖 = (𝑋2(𝑖) − 𝑋0)2 + (𝑌2(𝑖) − 𝑌0)2 (15)

𝐶𝑖 = (𝑋2(𝑖) − 𝑋1(𝑖))2 + (𝑌2(𝑖) − 𝑌1(𝑖))2 (16)

where 𝑋0 and 𝑌0 are the coordinates of the location being studied i.e. the starting

location of the trajectories.

The trajCluster function has the following options:

traj An openair trajectory data frame resulting from the use of importTraj.

method Method used to calculate the distance matrix for the back trajectories.

There are two methods available: “Euclid” and “Angle”.

n.cluster Number of clusters to calculate.

plot Should a plot be produced?

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season. Note that

the cluster calculations are separately made of each level of ”type”.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “jet” and RColorBrewer colours — see the openair

openColours function for more details. For user defined the user can

supply a list of colour names recognised by R (type colours() to see

the full list). An example would be cols = c("yellow", "green",

"blue")

split.after For type other than “default” e.g. “season”, the trajectories can

either be calculated for each level of type independently or extracted

after the cluster calculations have been applied to the whole data set.

map.fill Should the base map be a filled polygon? Default is to fill countries.

map.cols If map.fill = TRUE map.cols controls the fill colour. Examples

include map.fill = "grey40" and map.fill = openColours("de-

fault", 10). The latter colours the countries and can help differen-

tiate them.

map.alpha The transpency level of the filled map which takes values from 0 (full

transparency) to 1 (full opacity). Setting it below 1 can help view

trajectories, trajectory surfaces etc. and a filled base map.
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clust <- trajCluster(traj, method = "Angle", n.cluster= 6, col = "Set2")

F . The 6-cluster solution to back trajectories calculated for the London North

Kensington site for 2011 showing the mean trajectory for each cluster.

... Other graphical parameters passed onto lattice:levelplot and

cutData. Similarly, common axis and title labelling options (such as

xlab, ylab, main) are passed to levelplot via quickText to handle

routine formatting.

As an example we will consider back trajectories for London in 2011.

First, the back trajectory data for London is imported together with the air

pollution data for the North Kensington site (KC1).

traj <- importTraj(site = "london", year = 2011)

kc1 <- importKCL(site = "kc1", year = 2011)

The clusters are straightforward to calculate. In this case the back trajectory data

(traj) is supplied and the angle-based distance matrix is used. Furthermore, we

choose to calculate 6 clusters and choose a specific colour scheme. In this case we

read the output from trajCluster into a variable clust so that the results can be

post-processed.

clust returns all the back trajectory information together with the cluster (as a

character). This data can now be used together with other data to analyse results

further. However, first it is possible to show all trajectories coloured by cluster,

although for a year of data there is significant overlap and it is difficult to tell them

apart.

trajPlot(clust, group = "cluster")

Perhaps more useful is to merge the cluster data with measurement data. In this

case the data at North Kensington site are used. Note that in merging these two

data frames it is not necessary to retain all 96 back trajectory hours and for this

reason we extract only the first hour.
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kc1 <- merge(kc1, subset(clust, hour.inc == 0), by = "date")

Now kc1 contains air pollution data identified by cluster. The size of this data

frame is about a third of the original size because back trajectories are only run

every 3 hours.

The numbers of each cluster are given by:

table(kc1[, "cluster"])

##

## C1 C2 C3 C4 C5 C6

## 347 661 989 277 280 333

i.e. is dominated by clusters 3 and 2 from west and south-west (Atlantic).

Now it is possible to analyse the concentration data according to the cluster. There

are numerous types of analysis that can be carried out with these results, which will

depend on what the aims of the analysis are in the first place. However, perhaps

one of the first things to consider is how the concentrations vary by cluster. As the

summary results below show, there are distinctly different mean concentrations of

most pollutants by cluster. For example, clusters 1 and 6 are associated with much

higher concentrations of PM10— approximately double that of other clusters. Both

of these clusters originate from continental Europe. Cluster 5 is also relatively high,

which tends to come from the rest of the UK. Other clues concerning the types of

air-mass can be gained from the mean pressure. For example, cluster 5 is associated

with the highest pressure (1014 kPa), and as is seen in Figure 26.11 the shape of

the line for cluster 5 is consistent with air-masses associated with a high pressure

system (a clockwise-type sweep).

ddply(kc1, .(cluster), numcolwise(mean), na.rm = TRUE)

## cluster nox no2 o3 so2 co pm10_raw pm10 pm25 v2.5 nv2.5

## 1 C1 89.89 51.37 32.86 3.345 0.3884 32.34 35.82 31.35 8.015 23.330

## 2 C2 40.89 30.93 39.58 1.249 0.2229 18.12 17.70 11.55 3.131 8.419

## 3 C3 47.15 32.30 39.84 1.721 0.1889 19.40 17.86 11.26 2.801 8.461

## 4 C4 44.09 30.64 40.06 1.728 0.1884 19.80 17.60 10.99 2.172 8.816

## 5 C5 57.00 39.16 41.43 2.124 0.2263 24.38 25.49 16.52 4.498 12.025

## 6 C6 64.88 42.38 46.40 2.837 0.2895 31.71 35.72 29.73 7.569 22.147

## receptor year month day hour hour.inc lat lon height pressure len

## 1 1 2011 7.660 15.28 10.12 0 51.5 -0.1 10 1005 97

## 2 1 2011 6.268 15.45 10.59 0 51.5 -0.1 10 1005 97

## 3 1 2011 7.470 15.75 10.41 0 51.5 -0.1 10 1006 97

## 4 1 2011 6.863 17.76 10.97 0 51.5 -0.1 10 1007 97

## 5 1 2011 5.225 16.13 10.12 0 51.5 -0.1 10 1014 97

## 6 1 2011 4.381 15.80 10.88 0 51.5 -0.1 10 1011 97

Simple plots can be generated from these results too. For example, it is easy to

consider the temporal nature of the volatile component of PM2.5 concentrations

(v2.5 in the kc1 data frame). Figure 26.12 for example shows how the concentration

of the volatile component of PM2.5 concentrations varies by cluster by plotting

the hour of day-month variation. It is clear from Figure 26.12 that the clusters

associated with the highest volatile PM2.5 concentrations are clusters 1 and 6

(European origin) and that these concentrations peak during spring. There is less
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trendLevel(kc1, pollutant = "v2.5", type = "cluster", layout = c(6, 1))
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F . Some of the temporal characteristics of the volatile PM2.5 component plotted

by month and hour of the day and by cluster for the London North Kensington site for

2011.

timeProp(kc1, pollutant="pm25", avg.time = "day", proportion = "cluster",

col="Set2", key.position = "top", key.columns = 6)
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F . Temporal variation in daily PM2.5 concentrations at the North Kensington

site show by contribution of each cluster.

data to see clearly what is going on with cluster 5. Nevertheless, the cluster analysis

has clearly separated different air mass characteristics which allows for more refined

analysis of different air-mass types.

Similarly, as considered in Section 15, the timeVariation function can also be

used to consider the temporal components.

Another useful plot to consider is timeProp, which can show how the concen-

tration of a pollutant is comprised. In this case it is useful to plot the time series of

PM2.5 and show how much of the concentration is contributed to by each cluster.

Such a plot is shown in Figure 26.13. It is now easy to see for example that during

the spring months many of the high concentration events were due to clusters 1

and 6, which correspond to European origin air-masses as shown in Figure 26.11.
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27 Model evaluation — the modStats function

27.1 Purpose

The modStats function provides key model evaluation statistics for comparing

models against measurements and models against other models.

There are a verywide range of evaluation statistics that can be used to assessmodel

performance. There is, however, no single statistic that encapsulates all aspects of

interest. For this reason it is useful to consider several performance statistics and

also to understand the sort of information or insight they might provide.

In the following definitions,𝑂𝑖 represents the 𝑖th observed value and𝑀𝑖 represents

the 𝑖th modelled value for a total of 𝑛 observations.

Fraction of predictions within a factor or two, 𝐹𝐴𝐶2
The fraction of modelled values within a factor of two of the observed values are

the fraction of model predictions that satisfy:

0.5 ≤
𝑀𝑖

𝑂𝑖
≤ 2.0 (17)

Mean bias, 𝑀𝐵
The mean bias provides a good indication of the mean over or under estimate of

predictions. Mean bias in the same units as the quantities being considered.

𝑀𝐵 =
1
𝑛

𝑁
󰡗
𝑖=1

𝑀𝑖 − 𝑂𝑖 (18)

Mean Gross Error, 𝑀𝐺𝐸
The mean gross error provides a good indication of the mean error regardless of

whether it is an over or under estimate. Mean gross error is in the same units as the

quantities being considered.

𝑀𝐺𝐸 =
1
𝑛

𝑁
󰡗
𝑖=1

|𝑀𝑖 − 𝑂𝑖| (19)

Normalised mean bias, 𝑁𝑀𝐵
The normalised mean bias is useful for comparing pollutants that cover different

concentration scales and the mean bias is normalised by dividing by the observed

concentration.

𝑁𝑀𝐵 =

𝑛
∑
𝑖=1

𝑀𝑖 − 𝑂𝑖

𝑛
∑
𝑖=1

𝑂𝑖

(20)
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Normalised mean gross error, 𝑁𝑀𝐺𝐸
The normalised mean gross error further ignores whether a prediction is an over or

under estimate.

𝑁𝑀𝐺𝐸 =

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

𝑂𝑖

(21)

Root mean squared error, 𝑅𝑀𝑆𝐸
The RMSE is a commonly used statistic that provides a good overall measure of

how close modelled values are to predicted values.

𝑅𝑀𝑆𝐸 =
⎛⎜⎜⎜⎜⎜
⎝

𝑛
∑
𝑖=1

(𝑀𝑖 − 𝑂𝑖)2

𝑛
⎞⎟⎟⎟⎟⎟
⎠

1/2

(22)

Correlation coefficient, 𝑟
The (Pearson) correlation coefficient is a measure of the strength of the linear

relationship between two variables. If there is perfect linear relationship with

positive slope between the two variables, 𝑟 = 1. If there is a perfect linear relationship
with negative slope between the two variables 𝑟 = −1. A correlation coefficient

of 0 means that there is no linear relationship between the variables. Note that

modStats accepts an option method, which can be set to “kendall” and “spearman”

for alternative calculations of 𝑟.

𝑟 =
1

(𝑛 − 1)

𝑛
󰡗
𝑖=1

⎛⎜
⎝

𝑀𝑖 − 𝑀
𝜎𝑀

⎞⎟
⎠

⎛⎜
⎝

𝑂𝑖 − 𝑂
𝜎𝑂

⎞⎟
⎠

(23)

Coefficient of Efficiency, 𝐶𝑂𝐸
The Coefficient of Efficiency based on Legates and McCabe (2012) and Legates

and McCabe Jr (1999). There have been many suggestions for measuring model

performance over the years, but the 𝐶𝑂𝐸 is a simple formulation which is easy to

interpret.

A perfect model has a 𝐶𝑂𝐸 = 1. As noted by Legates and McCabe although the

𝐶𝑂𝐸 has no lower bound, a value of 𝐶𝑂𝐸 = 0.0 has a fundamental meaning. It

implies that the model is no more able to predict the observed values than does the

observed mean. Therefore, since the model can explain no more of the variation

in the observed values than can the observed mean, such a model can have no

predictive advantage.

For negative values of 𝐶𝑂𝐸, the model is less effective than the observed mean

in predicting the variation in the observations.
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𝐶𝑂𝐸 = 1.0 −

𝑛
∑
𝑖=1

|𝑀𝑖 − 𝑂𝑖|
𝑛

∑
𝑖=1

|𝑂𝑖 − 𝑂|
(24)

27.2 Options available

mydata A data frame.

mod Name of a variable in mydata that respresents modelled values.

obs Name of a variable in mydata that respresents measured values.

type type determines how the data are split i.e. conditioned, and then plot-

ted. The default is will produce statistics using the entire data. type

can be one of the built-in types as detailed in cutData e.g. “season”,

“year”, “weekday” and so on. For example, type = "season" will

produce four sets of statistics — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

More than one type can be considered e.g. type = c("season",

"weekday") will produce statistics split by season and day of the

week.

rank.name Simple model ranking can be carried out if rank.name is supplied.

rank.namewill generally refer to a column representing amodel name,

which is to ranked. The ranking is based the COE performance, as

that indicator is arguably the best single model performance indicator

available.

... Other aruments to be passed to cutData e.g. hemisphere = "south-

ern"

27.3 Example of use

The function can be called very simply and only requires two numeric fields to

compare. To show how the function works, some synthetic data will be generated

for 5 models.
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## observations; 100 random numbers

set.seed(10)

obs <- 100 * runif(100)

mod1 <- data.frame(obs, mod = obs + 10, model = "model 1")

mod2 <- data.frame(obs, mod = obs + 20 * rnorm(100), model = "model 2")

mod3 <- data.frame(obs, mod = obs - 10 * rnorm(100), model = "model 3")

mod4 <- data.frame(obs, mod = obs / 2 + 10 * rnorm(100), model = "model 4")

mod5 <- data.frame(obs, mod = obs * 1.5 + 3 * rnorm(100), model = "model 5")

modData <- rbind(mod1, mod2, mod3, mod4, mod5)

head(modData)

## obs mod model

## 1 50.748 60.75 model 1

## 2 30.677 40.68 model 1

## 3 42.691 52.69 model 1

## 4 69.310 79.31 model 1

## 5 8.514 18.51 model 1

## 6 22.544 32.54 model 1

We now have a data frame with observations and predictions for 5 models. The

evaluation of the statistics is given by:

modStats(modData, obs = "obs", mod = "mod", type = "model")

## model n FAC2 MB MGE NMB NMGE RMSE r COE

## 1 model 1 100 0.89 10.0000 10.000 0.22456 0.2246 10.000 1.0000 0.538290

## 2 model 2 100 0.79 0.9224 16.592 0.02071 0.3726 19.318 0.8258 0.233921

## 3 model 3 100 0.88 1.0136 7.887 0.02276 0.1771 9.451 0.9371 0.635834

## 4 model 4 100 0.56 -20.6037 21.861 -0.46267 0.4909 25.759 0.8143 -0.009329

## 5 model 5 100 0.96 22.5217 22.569 0.50574 0.5068 26.133 0.9964 -0.042045

It is possible to rank the statistics based on the Coefficient of Efficiency, which is a

good general indicator of model performance.

modStats(modData, obs = "obs", mod = "mod", type = "model", rank.name = "model")

## model n FAC2 MB MGE NMB NMGE RMSE r COE

## 3 model 3 100 0.88 1.0136 7.887 0.02276 0.1771 9.451 0.9371 0.635834

## 1 model 1 100 0.89 10.0000 10.000 0.22456 0.2246 10.000 1.0000 0.538290

## 2 model 2 100 0.79 0.9224 16.592 0.02071 0.3726 19.318 0.8258 0.233921

## 4 model 4 100 0.56 -20.6037 21.861 -0.46267 0.4909 25.759 0.8143 -0.009329

## 5 model 5 100 0.96 22.5217 22.569 0.50574 0.5068 26.133 0.9964 -0.042045

The modStats function is however much more flexible than indicated above.

While it is useful to calculate model evaluation statistics in a straightforward way it

can be much more informative to consider the statistics split by different periods.

Data have been assembled from a Defra model evaluation exercise which consists

of hourly O3 predictions at 15 receptor points around the UK for 2006. The aim

here is not to identify a particular model that is ‘best’ and for this reason the models

are simply referred to as ‘model 1’, ‘model 2’ and so on. We will aim to make the

data more widely available. However, data set has this form:
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load("~/openair/Data/modelData.RData")

head(modTest)

## site date o3 mod group

## 1 Aston.Hill 2006-01-01 00:00:00 NA NA model 1

## 2 Aston.Hill 2006-01-01 01:00:00 74 65.28 model 1

## 3 Aston.Hill 2006-01-01 02:00:00 72 64.64 model 1

## 4 Aston.Hill 2006-01-01 03:00:00 72 64.46 model 1

## 5 Aston.Hill 2006-01-01 04:00:00 70 64.88 model 1

## 6 Aston.Hill 2006-01-01 05:00:00 66 65.80 model 1

There are columns representing the receptor location (site), the date, measured

values (o3), model predictions (mod) and the model itself (group). There are nu-

merous ways in which the statistics can be calculated. However, of interest here is

how the models perform at a single receptor by season. The seasonal nature of O3

is a very important characteristic and it is worth considering in more detail. The

statistics are easy enough to calculate as shown below. In this example a subset of

the data is selected to consider only the Harwell site. Second, the type option is

used to split the calculations by season and model. Finally the statistics are grouped

by the 𝐼𝑂𝐴 for each season. It is now very easy how model performance changes

by season and which models perform best in each season.
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27 Model evaluation — the modStats function

options(digits = 2) ## don't display too many decimal places

modStats(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

type = c("season", "group"), rank = "group")

## season group n FAC2 MB MGE NMB NMGE RMSE r COE

## 1 spring (MAM) model 1 1905 0.88 8.58 16.5 0.137 0.26 22 0.58 0.0747

## 2 spring (MAM) model 4 1905 0.88 -2.04 16.8 -0.032 0.27 22 0.45 0.0584

## 3 spring (MAM) model 3 1905 0.87 11.90 17.7 0.190 0.28 24 0.52 0.0082

## 4 spring (MAM) model 2 1905 0.88 4.98 18.1 0.079 0.29 24 0.36 -0.0151

## 5 spring (MAM) model 8 1905 0.87 10.77 19.5 0.172 0.31 24 0.59 -0.0940

## 6 spring (MAM) model 6 1825 0.82 7.79 20.0 0.123 0.32 26 0.48 -0.1181

## 7 spring (MAM) model 7 1905 0.79 -13.70 21.4 -0.218 0.34 26 0.53 -0.1950

## 8 spring (MAM) model 5 1905 0.73 -13.39 24.3 -0.213 0.39 30 0.31 -0.3619

## 9 spring (MAM) model 9 1905 0.74 1.01 24.9 0.016 0.40 33 0.26 -0.3922

## 10 summer (JJA) model 1 2002 0.92 3.83 15.5 0.063 0.26 21 0.75 0.3171

## 11 summer (JJA) model 7 2002 0.92 7.01 15.7 0.116 0.26 21 0.80 0.3082

## 12 summer (JJA) model 3 2002 0.89 14.02 18.3 0.232 0.30 24 0.80 0.1967

## 13 summer (JJA) model 2 2002 0.90 7.16 18.7 0.118 0.31 25 0.64 0.1787

## 14 summer (JJA) model 4 2002 0.90 10.01 19.0 0.165 0.31 24 0.72 0.1648

## 15 summer (JJA) model 6 1917 0.85 11.35 22.3 0.186 0.37 27 0.67 0.0274

## 16 summer (JJA) model 9 2002 0.79 1.39 24.8 0.023 0.41 34 0.30 -0.0909

## 17 summer (JJA) model 5 2002 0.80 1.78 24.8 0.029 0.41 32 0.27 -0.0920

## 18 summer (JJA) model 8 2002 0.84 25.60 27.6 0.423 0.46 32 0.81 -0.2149

## 19 autumn (SON) model 1 2172 0.87 4.67 12.7 0.095 0.26 17 0.68 0.2224

## 20 autumn (SON) model 7 2172 0.85 -5.95 13.0 -0.121 0.26 16 0.69 0.2045

## 21 autumn (SON) model 2 2172 0.88 2.61 14.2 0.053 0.29 18 0.49 0.1299

## 22 autumn (SON) model 4 2172 0.82 7.63 16.8 0.155 0.34 22 0.41 -0.0290

## 23 autumn (SON) model 6 2081 0.80 10.02 17.5 0.202 0.35 22 0.54 -0.0752

## 24 autumn (SON) model 3 2172 0.83 14.17 17.6 0.287 0.36 23 0.56 -0.0834

## 25 autumn (SON) model 5 2172 0.80 7.05 18.1 0.143 0.37 25 0.29 -0.1115

## 26 autumn (SON) model 8 2170 0.84 13.79 18.4 0.280 0.37 23 0.66 -0.1318

## 27 autumn (SON) model 9 2172 0.76 5.65 19.1 0.115 0.39 25 0.44 -0.1712

## 28 winter (DJF) model 1 1847 0.80 -1.85 9.6 -0.040 0.21 12 0.89 0.5738

## 29 winter (DJF) model 3 2117 0.77 -1.97 10.8 -0.043 0.24 14 0.85 0.5279

## 30 winter (DJF) model 8 2117 0.71 -3.01 11.1 -0.066 0.24 15 0.89 0.5143

## 31 winter (DJF) model 6 1915 0.69 0.66 14.6 0.014 0.32 20 0.75 0.3672

## 32 winter (DJF) model 2 2117 0.76 -4.88 14.6 -0.107 0.32 18 0.76 0.3621

## 33 winter (DJF) model 4 2117 0.72 -1.04 16.3 -0.023 0.36 21 0.66 0.2871

## 34 winter (DJF) model 9 2110 0.55 -7.65 18.3 -0.168 0.40 25 0.73 0.1990

## 35 winter (DJF) model 5 2117 0.66 -8.67 19.1 -0.190 0.42 24 0.57 0.1649

## 36 winter (DJF) model 7 2117 0.40 -23.14 23.5 -0.507 0.51 28 0.81 -0.0239

Note that it is possible to read the results of the modStats function into a data

frame, which then allows the results to be plotted. This is generally a good idea

when there is a lot of numeric data to consider and plots will convey the information

better.

The modStats function is much more flexible than indicated above and can be

used in lots of interesting ways. The type option in particular makes it possible to

split the statistics in numerous ways. For example, to summarise the performance

of models by site, model and day of the week:

modStats(modStats, obs = "o3", mod = "mod",

type = c("site", "weekday", "group"), rank = "group")

Similarly, if other data are available e.g. meteorological data or other pollutant

species then these variables can also be used to test models against ranges in their
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values. This capability is potentially very useful because it allows for a much more

probing analysis into model evaluation. For example, with wind speed and direction

it is easy to consider how model performance varies by wind speed intervals or

wind sectors, both of which could reveal important performance characteristics.

28 Model evaluation — the TaylorDiagram function

28.1 Purpose

The Taylor Diagram is one of the more useful methods for evaluating model per-

formance. Details of the diagram can be found at http://www-pcmdi.llnl.gov/

about/staff/Taylor/CV/Taylor_diagram_primer.pdf and inTaylor (2001). The

diagram provides a way of showing how three complementary model performance

statistics vary simultaneously. These statistics are the correlation coefficient R, the

standard deviation (sigma) and the (centred) root-mean-square error. These three

statistics can be plotted on one (2D) graph because of the way they are related to

one another which can be represented through the Law of Cosines.

The openair version of the Taylor Diagram has several enhancements that in-

crease its flexibility. In particular, the straightforwardway of producing conditioning

plots should prove valuable under many circumstances (using the type option).

Many examples of Taylor Diagrams focus on model-observation comparisons for

several models using all the available data. However, more insight can be gained

into model performance by partitioning the data in various ways e.g. by season,

daylight/nighttime, day of the week, by levels of a numeric variable e.g. wind

speed or by land-use type etc.

We first show a diagram and then pick apart the different components to un-

derstand how to interpret it. The diagram can look overly complex but once it is

understood how to interpret the three main characteristics it becomes much easier

to understand. A typical diagram is shown in Figure 28.1 for nine anonymised

models used for predicting hourly O3 concentrations at 15 sites around the UK.

The plots shown in Figure 28.2 break the Taylor Diagrams into three components

to aid interpretation. The first plot (top left) highlights the comparison of variability

in for each model compared with the measurements. The variability is represented

by the standard deviation of the observed and modelled values. The plot shows

that the observed variability (given by the standard deviation) is about 27 (µg m−3)

and is marked as ‘observed’ on the x-axis. The magnitude of the variability is

measured as the radial distance from the origin of the plot (the red line with the

arrow shows the standard deviation for model 𝑔, which is about 25 µg m−3). To

aid interpretation the radial dashed line is shown from the ‘observed’ point. Each

model is shown in this case by the position of the letters a to i. On this basis it can

be seen that models 1, 𝑎, 𝑏 have more variability than the measurements (because

they extend beyond the dashed line), whereas the others have less variability than

the measurements. Models 𝑎 and 𝑏 are also closed to the dashed line and therefore

have the closest variability compared with the observations.

The next statistic to consider is the correlation coefficient, 𝑅 shown by the

top-right Figure in Figure 28.2. This is shown on the arc and points that lie closest

to the x-axis have the highest correlation. The grey lines help to show this specific

correlation coefficients. The red arc shows 𝑅=0.7 for model 𝑔. The best performing
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28 Model evaluation — the TaylorDiagram function

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group")
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F . An example of the use of the TaylorDiagram function.

models with the highest 𝑅 are models 𝑏 and 𝑔 with correlation coefficients around

0.7. Twomodels stand out as havingmuchworse correlations with the observations:

models 𝑒 and 𝑖 (values of around 0.4).

Finally, the lower plot in Figure 28.2 highlights the centred root-mean square

error (RMS). It is centred because the mean values of the data (observations and

predictions) are subtracted first. The concentric dashed lines emanating from the

‘observed’ point show the value of the RMS error — so points furthest from the

‘observed’ value are the worst performing models because they have the highest

RMS errors. On this basis, model 𝑔 has the lowest error of about 20 µg m−3, shown

again by the red line. Models 𝑒 and 𝑖 are considerably worse because they have

RMS errors of around 30 µg m−3.

So which model is best? Taken as a whole it is probably model 𝑔 because it

has reasonably similar variability compared with the observations, the highest

correlation and the least RMS error. However, models 𝑓 and 𝑏 also look to be good.
Perhaps it is easier to conclude that models 𝑒 and 𝑖 are not good ….

Note that in cases where there is a column ‘site’ it makes sense to use type =

"site" to ensure that the statistics are calculated on a per site basis and each panel

represents a single site.

28.2 Options available

mydata A data frame minimally containing a column of observations and a

column of predictions.

obs A column of observations with which the predictions (mod) will be

compared.

mod A column of model predictions. Note, mod can be of length 2 i.e. two

lots of model predictions. If two sets of predictions are are present
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F . Taylor Diagrams broken down to highlight how to interpret the three main

statistics. The red line/arrow indicate how to read interpret each of the three statistics.

e.g. mod = c("base", "revised"), then arrows are shown on the

Taylor Diagram which show the change in model performance in

going from the first to the second. This is useful where, for example,

there is interest in comparing how one model run compares with

another using different assumptions e.g. input data or model set up.

See examples below.

group The group column is used to differentiate between different models

and can be a factor or character. The total number ofmodels compared

will be equal to the number of unique values of group.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire
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data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

Note that often it will make sense to use type = "site" when mul-

tiple sites are available. This will ensure that each panel contains data

specific to an individual site.

normalise Should the data be normalised by dividing the standard deviation

of the observations? The statistics can be normalised (and non-

dimensionalised) by dividing both the RMS difference and the stand-

ard deviation of the mod values by the standard deviation of the ob-

servations (obs). In this case the “observed” point is plotted on the

x-axis at unit distance from the origin. This makes it possible to plot

statistics for different species (maybe with different units) on the same

plot. The normalisation is done by each group/type combination.

cols Colours to be used for plotting. Useful options for categorical data

are avilable from RColorBrewer colours — see the openair openCol-

ours function for more details. Useful schemes include “Accent”,

“Dark2”, “Paired”, “Pastel1”, “Pastel2”, “Set1”, “Set2”, “Set3” —

but see ?brewer.pal for the maximum useful colours in each. For

user defined the user can supply a list of colour names recognised by

R (type colours() to see the full list). An example would be cols =

c("yellow", "green", "blue").

rms.col Colour for centred-RMS lines and text.

cor.col Colour for correlation coefficient lines and text.

arrow.lwd Width of arrow used when used for comparing two model outputs.

key Should the key be shown?

key.title Title for the key.

key.columns Number of columns to be used in the key. With many pollutants a

single column can make to key too wide. The user can thus choose to

use several columns by setting columns to be less than the number of

pollutants.
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key.pos Position of the key e.g. “top”, “bottom”, “left” and “right”. See

details in lattice:xyplot for more details about finer control.

strip Should a strip be shown?

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters are passed onto cutData and lattice:xyplot.

For example, TaylorDiagram passes the option hemisphere = "south-

ern" on to cutData to provide southern (rather than default northern)

hemisphere handling of type = "season". Similarly, common graph-

ical parameters, such as layout for panel arrangement and pch and

cex for plot symbol type and size, are passed on to xyplot. Most

are passed unmodified, although there are some special cases where

openairmay locally manage this process. For example, common axis

and title labelling options (such as xlab, ylab, main) are passed via

quickText to handle routine formatting.

28.3 Example of use

The example used here carries on from the previous section using data from a Defra

model evaluation exercise. As mentioned previously, the use of the type option

offers enormous flexibility for comparing models. However, we will only focus on

the seasonal evaluation of the models. In the call below, group is the column that

identified the model and type is the conditioning variable that produces in this case

four panels — one for each season. Note that in this case we focus on a single site.

Figure 28.3 contains a lot of useful information. Consider the summertime com-

parison first. All models tend to underestimate the variability of O3 concentrations

because they all lies withing the black dashed line. However, models 7 and 9 are

close to the observed variability. The general underestimate of the variability for

summertime conditions might reflect that the models do not adequately capture

regional O3 episodes when concentrations are high. Models 7 and 8 do best in

terms of high correlation with the measurements (around 0.8) and lowest RMS

error (around 20–22 µg m−3). Models 3, 5 and 6 tend to do worse on all three

statistics during the summer.

By contrast, during wintertime conditions models 1 and 3 are clearly best. From

an evaluation perspective it would be useful to understand why some models are

better for wintertime conditions and others better in summer and this is clearly

something that could be investigated further.

There are many other useful comparisons that can be undertaken easily. A few

of these are shown below, but not plotted.
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## select a single site

LH <- subset(modTest, site == "Lullington.Heath")

TaylorDiagram(LH, obs = "o3", mod = "mod", group = "group", type = "season")
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F . Use of the TaylorDiagam function to show model performance for 9 models

used to predict O3 concentrations at the Lullington Heath site.

## by receptor comparison

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group", type = "site")

## by month comparison for a SINGLE site

TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = "month")

## By season AND daylight/nighttime

TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = c("season", "daylight"))
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29 Model evaluation — the conditionalQuantile and
conditionalEval functions

29.1 Purpose

Conditional quantiles are a very useful way of considering model performance

against observations for continuous measurements Wilks 2005. The conditional

quantile plot splits the data into evenly spaced bins. For each predicted value bin

e.g. from 0 to 10 µg m−3 the corresponding values of the observations are identified

and the median, 25/75th and 10/90 percentile (quantile) calculated for that bin.

The data are plotted to show how these values vary across all bins. For a time

series of observations and predictions that agree precisely the median value of the

predictions will equal that for the observations for each bin.

The conditional quantile plot differs from the quantile-quantile plot (Q-Q plot)

that is often used to compare observations and predictions. A Q-Q plot separately

considers the distributions of observations and predictions, whereas the conditional

quantile uses the corresponding observations for a particular interval in the predic-

tions. Take as an example two time series, the first a series of real observations and

the second a lagged time series of the same observations representing the predictions.

These two time series will have identical (or very nearly identical) distributions

(e.g. same median, minimum and maximum). A Q-Q plot would show a straight

line showing perfect agreement, whereas the conditional quantile will not. This is

because in any interval of the predictions the corresponding observations now have

different values.

Plotting the data in this way shows how well predictions agree with observations

and can help reveal many useful characteristics of how well model predictions agree

with observations— across the full distribution of values. A single plot can therefore

convey a considerable amount of information concerning model performance. The

basic function is considerably enhanced by allowing flexible conditioning easily

e.g. to evaluate model performance by season, day of the week and so on, as in

other openair functions.

29.2 Options available

mydata A data frame containing the field obs and mod representing observed

and modelled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character
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or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

Type can be up length two e.g. type = c("season", "weekday")

will produce a 2x2 plot split by season and day of the week. Note,

when two types are provided the first forms the columns and the

second the rows.

bins Number of bins to be used in calculating the different quantile levels.

min.bin The minimum number of points required for the estimates of the

25/75th and 10/90th percentiles.

xlab label for the x-axis, by default “predicted value”.

ylab label for the y-axis, by default “observed value”.

col Colours to be used for plotting the uncertainty bands and median line.

Must be of length 5 or more.

key.columns Number of columns to be used in the key.

key.position Location of the key e.g. “top”, “bottom”, “right”, “left”. See

lattice xyplot for more details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will

automatically try and format pollutant names and units properly e.g.

by subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto cutData and lattice:xyplot.

For example, conditionalQuantile passes the option hemisphere

= "southern" on to cutData to provide southern (rather than default

northern) hemisphere handling of type = "season". Similarly, com-

mon axis and title labelling options (such as xlab, ylab, main) are

passed to xyplot via quickText to handle routine formatting.

29.3 Example of use

To make things more interesting we will use data from a model evaluation exercise

organised by Defra in 2010/2011. A large number of models were evaluated as part

of the evaluation but we only consider hourly ozone predictions from the CMAQ

model being used at King’s College London.

First the data are loaded:

load("~/openair/Data/CMAQozone.RData")

head(CMAQ.KCL)

## site date o3 rollingO3Meas mod rollingO3Mod group

## 1 Aston.Hill 2006-01-01 00:00:00 NA NA 93 NA CMAQ.KCL

## 2 Aston.Hill 2006-01-01 01:00:00 74 NA 92 NA CMAQ.KCL

## 3 Aston.Hill 2006-01-01 02:00:00 72 NA 92 NA CMAQ.KCL

## 4 Aston.Hill 2006-01-01 03:00:00 72 NA 92 NA CMAQ.KCL

## 5 Aston.Hill 2006-01-01 04:00:00 70 NA 92 NA CMAQ.KCL

## 6 Aston.Hill 2006-01-01 05:00:00 66 NA 92 NA CMAQ.KCL
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conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod")
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F . Example of the use of conditional quantiles applied to the KCL CMAQmodel

for 15 rural O3 monitoring sites in 2006, for hourly data. The blue line shows the results

for a perfect model. In this case the observations cover a range from 0 to 270 µg m−3.

The red line shows the median value of the predictions. The maximum predicted value is

125 µg m−3, somewhat less than the maximum observed value. The shading shows the

predicted quantile intervals i.e. the 25/75th and the 10/90th. A perfect model would lie

on the blue line and have a very narrow spread. There is still some spread because even

for a perfect model a specific quantile interval will contain a range of values. However, for

the number of bins used in this plot the spread will be very narrow. Finally, the histogram

shows the counts of predicted values.

The data consists of hourly observations of O3 in µg m−3 at 15 rural O3 sites in

the UK together with predicted values.16 First of all we consider O3 predictions

across all sites to help illustrate the purpose of the function. The results are shown

in Figure 29.1. An explanation of the Figure is given in its caption.

A more informative analysis can be undertaken by considering conditional

quantiles separately by site, which is easily done using the type option. The

results are shown in Figure 29.2. It is now easier to see where the model performs

best and how it varies by site type. For example, at a remote site in Scotland like

Strath Vaich it is clear that the model does not capture either the lowest or highest

O3 concentrations very well.

As with other openair functions, the ability to consider conditioning can really
help with interpretation. For example, what do the conditional quantiles at Lul-

lington Heath (in south-east England) look like by season? This is easily done

by subsetting the data to select that site and setting type = "season", as shown

in Figure 29.3. These results show that winter predictions have good coverage

i.e. with width of the blue ‘perfect model’ line is the same as the observations.

However, the predictions tend to be somewhat lower than observations for most

concentrations (the median line is below the blue line) — and the width of the

10/75th and 10/90th percentiles is quite broad. However, the area where the model

is less good is in summer and autumn because the predictions have low coverage

16We thank Dr Sean Beevers and Dr Nutthida Kitwiroon for access to these data.
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29 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod", type = "site")
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F . Conditional quantiles by site for 15 O3 monitoring sites in the UK.

(the red line only covers less than half of the observation line and the width of the

percentiles is wide).

Of course it is also easy to plot by hour of the day, day of the week, by day-

light/nighttime and so on— easily. All these approaches can help better understand

why a model does not perform very well rather than just quantifying its performance.

Also, these types of analysis are particularly useful when more than one model is

involved in a comparison as in the recent Defra model evaluation exercise, which

we will come back to later when some of the results are published.

There are numerous ways in which model performance can be assessed, including

the use of common statistical measures described in Section 27. These approaches

are very useful for comparing models against observations and other models. How-

ever, model developers would generally like to know why a model may have poor

performance under some situations. This is a much more challenging issue to
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29 Model evaluation — the conditionalQuantile and conditionalEval functions

conditionalQuantile(subset(CMAQ.KCL, site == "Lullington.Heath"), obs = "o3",

mod = "mod", type = "season")
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F . Conditional quantiles at Lullington Heath conditioned by season.

address. However, useful information can be gained by considering how other

variables vary simultaneously.

The conditionalEval function provides information on how other variables

vary across the same intervals as shown on the conditional quantile plot. There

are two types of variable that can be considered by setting the value of statistic.

First, statistic can be another variable in the data frame. In this case the plot will

show the different proportions of statistic across the range of predictions. For

example statistic = "season" will show for each interval of mod the proportion

of predictions that were spring, summer, autumn or winter. This is useful because if

model performance is worse for example at high concentrations of mod then knowing

that these tend to occur during a particular season etc. can be very helpful when

trying to understand why a model fails. See Section 11 for more details on the

types of variable that can be statistic. Another example would be statistic =

"ws" (if wind speed were available in the data frame), which would then split wind

speed into four quantiles and plot the proportions of each. Again, this would help

show whether model performance in predicting concentrations of O3 for example

is related to low to high wind speed conditions.

conditionalEval can also simultaneously plot the model performance of other

observed/predicted variable pairs according to different model evaluation statistics.

These statistics derive from the Section 27 function and includeMB, NMB, r, COE,
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29 Model evaluation — the conditionalQuantile and conditionalEval functions

MGE, NMGE, RMSE and FAC2. More than one statistic can be supplied e.g. stat-

istic = c("NMB", "COE"). Bootstrap samples are taken from the corresponding

values of other variables to be plotted and their statistics with 95% confidence

intervals calculated. In this case, the model performance of other variables is shown

across the same intervals of mod, rather than just the values of single variables. In

this second case the model would need to provide observed/predicted pairs of other

variables.

For example, a model may provide predictions of NOx and wind speed (for which

there are also observations available). The conditionalEval function will show

how well these other variables are predicted for the same prediction intervals of

the main variable assessed in the conditional quantile plot e.g. ozone. In this

case, values are supplied to var.obs (observed values for other variables) and

var.mod (modelled values for other variables). For example, to consider how well

the model predicts NOx and wind speed var.obs = c("nox.obs", "ws.obs")

and var.mod = c("nox.mod", "ws.mod")would be supplied (assuming nox.obs,

nox.mod, ws.obs, ws.mod are present in the data frame). The analysis could show

for example, when ozone concentrations are under-predicted, the model may also

be shown to over-predict concentrations of NOx at the same time, or under-predict

wind speeds. Such information can thus help identify the underlying causes of poor

model performance. For example, an under-prediction in wind speed could result

in higher surface NOx concentrations and lower ozone concentrations. Similarly if

wind speed predictions were good and NOx was over predicted it might suggest an

over-estimate of NOx emissions. One or more additional variables can be plotted.

A special case is statistic = "cluster". In this case a data frame is provided

that contains the cluster calculated by trajCluster and importTraj. Alternatively

users could supply their own pre-calculated clusters. These calculations can be very

useful in showing whether certain back trajectory clusters are associated with poor

(or good) model performance. Note that in the case of statistic = "cluster"

there will be fewer data points used in the analysis compared with the ordinary

statistics above because the trajectories are available for every three hours. Also

note that statistic = "cluster" cannot be used together with the ordinary

model evaluation statistics such asMB. The output will be a bar chart showing the

proportion of each interval of mod by cluster number.

Far more insight can be gained into model performance through conditioning

using type. For example, type = "season" will plot conditional quantiles and the

associated model performance statistics of other variables by each season. type

can also be a factor or character field e.g. representing different models used.

The conditionalEval function has the following options:

mydata A data frame containing the field obs and mod representing observed

and modelled values.

obs The name of the observations in mydata.

mod The name of the predictions (modelled values) in mydata.

var.obs Other variable observations for which statistics should be calculated.

Can bemore than length one e.g. var.obs = c("nox.obs", "ws.obs").
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29 Model evaluation — the conditionalQuantile and conditionalEval functions

var.mod Other variable predictions for which statistics should be calculated.

Can bemore than length one e.g. var.obs = c("nox.obs", "ws.obs").

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. ”season”, ”year”, ”weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.

bins Number of bins used in conditionalQuantile.

statistic Statistic(s) to be plotted. Can be “MB”, “NMB”, “r”, “COE”, “MGE”,

“NMGE”, “RMSE” and “FAC2”, as described in modStats. When

these statistics are chosen, they are calculated from var.mod and

var.mod.

statistic can also be a value that can be supplied to cutData. For

example, statistic = "season"will show how model performance

varies by season across the distribution of predictions which might

highlight that at high concentrations of NOx the model tends to

underestimate concentrations and that these periods mostly occur

in winter. statistic can also be another variable in the data frame

— see cutData for more information. A special case is statistic =

"cluster" if clusters have been calculated using trajCluster.

xlab label for the x-axis, by default "predicted value".

ylab label for the y-axis, by default "observed value".

col Colours to be used for plotting the uncertainty bands and median line.

Must be of length 5 or more.

col.var Colours for the additional variables to be compared. See openColours

for more details.

var.names Variable names to be shown on plot for plotting var.obs and var.mod.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will

automatically try and format pollutant names and units properly e.g.

by subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto conditionalQuantile and

cutData. For example, conditionalQuantile passes the option

hemisphere = "southern" on to cutData to provide southern (rather

than default northern) hemisphere handling of type = "season".

Similarly, common axis and title labelling options (such as xlab, ylab,
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29 Model evaluation — the conditionalQuantile and conditionalEval functions

main) are passed to xyplot via quickText to handle routine format-

ting.

As an example, similar data to that described above from CMAQ have been used

as an example.

A subset of the data for the North Kensington site can be imported as shown

below.

load(url("http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/condDat.RData"))

The file contains observed and modelled hourly values for O3, NOx, wind speed,

wind direction, temperature and relative humidity.

head(condDat)

## date O3.obs NOx.obs ws.obs wd.obs temp.obs rh.obs O3.mod

## 5 2006-01-01 00:00:00 10 29 4.6 190 4.9 89 15

## 10 2006-01-01 01:00:00 15 18 NA 210 5.1 90 17

## 15 2006-01-01 02:00:00 11 20 2.6 220 4.9 94 18

## 20 2006-01-01 03:00:00 11 19 3.6 270 5.7 91 18

## 25 2006-01-01 04:00:00 11 17 3.1 270 5.0 94 18

## 30 2006-01-01 05:00:00 12 16 3.6 260 5.8 94 15

## NOx.mod ws.mod wd.mod temp.mod rh.mod

## 5 24 2.8 224 3.8 93

## 10 20 2.6 226 3.8 93

## 15 18 2.5 236 2.8 99

## 20 18 2.5 253 2.8 99

## 25 18 2.2 275 3.8 97

## 30 21 2.4 285 4.8 94

The conditionalEval function can be used in a straightforward way to provide

information on how predictions depend on another variable in general. In this

case the option statistic can refer to another variable in the data frame to see

how the quality of predictions depend on values of that variable. For example, in

Figure 29.4 it can be seen how wind speed varies across the O3 prediction intervals.

At low predicted concentrations of O3 there is a high proportion of low wind speed

conditions (0 to 2.57 m s−1). When O3 is predicted to be around 40 ppb the wind

speed tends to be higher — and finally at higher predicted concentrations of O3

the wind speed tends to decrease again. The important aspect of plotting data

in this way is that it can directly relate the prediction performance to values of

other variables, which should help develop a much better idea of the conditions

that matter most. The user can therefore develop a good feel for the types of

conditions where a model performs well or poorly and this might provide clues as

to the underlying reasons for specific model behaviour.

In an extension to Figure 29.4 it is possible to derive information on the simul-

taneous model performance of other variables. Figure 29.5 shows the conditional

quantile plot for hourly O3 predictions. This shows among other things that concen-

trations of O3 tend to be under-predicted for concentrations less than about 20 ppb.

The Figure on the right shows the simultaneous model performance for wind speed

and NOx for the same prediction intervals as shown in the conditional quantile plot.

The plot on the right shows that for low concentrations of predicted O3 there is a

tendency for NOx concentrations to be overestimated (NMB≈0.2 to 0.4) and wind
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conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

statistic = "ws.obs",

col.var = "Set3")
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F . Conditional quantiles at for O3 concentrations (left plot). On the right is a

plot showing how the wind speed varies across the O3 prediction intervals.

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

var.obs = c("NOx.obs", "ws.obs"),

var.mod = c("NOx.mod", "ws.mod"),

statistic = "NMB",

var.names = c("nox", "wind speed"))
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F . Conditional quantiles at for O3 concentrations (left plot). On the right is

the model performance for wind speed and NOx predictions, which in this case is for the

Normalised Mean Bias.

speeds to be underestimated (NMB≈ −0.2 to −0.3). One possible explanation

for this behaviour is that the meteorological model tends to produce wind speeds

that are too low, which would result in higher concentrations of NOx, which in

turn would result in lower concentrations of O3. Note that it is possible to include

more than one statistic, which would be plotted in a new panel e.g. statistic =

c("NMB", "r").

In essence the conditionalEval function provides more information on model

performance that can help better diagnose potential problems. Clearly, there are

many other ways in which the results can be analysed, which will depend on the

data available.

A plot using temperature predictions shows that for most of the range in O3

predictions there is very little bias in temperature (although there is some negative

bias in temperature for very low concentration O3 predictions):
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30 The calcFno2 function—estimating primary NO2 fractions

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

var.obs = c("temp.obs", "ws.obs"),

var.mod = c("temp.mod", "ws.mod"),

statistic = "NMB", var.names = c("temperature", "wind speed"))

Finally (but not shown) it can be very useful to consider model performance in

terms of air mass origin. In the example below, trajectories are imported, a cluster

analysis undertaken and then evaluated using conditionalEval.

## import trajectories for 2006

traj <- importTraj("london", 2006)

## carry out a cluster analysis

cl <- trajCluster(traj, method = "Angle", n.cluster = 5)

## merge with orginal model eval data

condDat <- merge(condDat, cl, by = "date")

## plot it

conditionalEval(condDat, obs = "O3.obs", mod = "O3.mod",

statistic = "cluster",

col.var = "Set3")

30 The calcFno2 function—estimating primary NO2

fractions

30.1 Purpose
see also line-
arRelation
for oxidant

slopes if
NOx, NO2

and O3 are
available

Recent research has shown that emissions of directly emitted (primary) NO2 from

road vehicles have increased and these increases have had important effects on

concentrations of NO2 (Carslaw 2005; Carslaw and Beevers 2004; Carslaw and

Carslaw 2007). Many organisations would like to quantify the level of primary

NO2 from the analysis of ambient monitoring data to help with their air quality

management responsibilities. The difficulty is that this is not a straightforward thing

to do— it requires some form of modelling. In some situations where NO, NO2 and

O3 are measured, it is possible to derive an estimate of the primary NO2 fraction by

considering the gradient in ‘total oxidant’ defined as NO2 + O3 (Clapp and Jenkin

2001).17 However, where we most want to estimate primary NO2 (roadside sites),

O3 is rarely measured and an alternative approach must be used. One approach

is using a simple constrained chemistry model described in (Carslaw and Beevers

2005). The calcFno2method is based on this work but makes a few simplifying

assumptions to make it easier to code.

There are several assumptions that users should be aware of when using this

function. First, it is most reliable at estimating f-NO2 when the roadside concen-

tration is much greater than the background concentration. Second, it is best if

the chosen background site is reasonably close to the roadside site and not greatly

affected by local sources (which it should not be as a background site). The way

17Note that the volume fraction of NO2 of total NOx is termed f-NO2. See the AQEG report for

more information (AQEG 2008).
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30 The calcFno2 function—estimating primary NO2 fractions

the calculations work is to try and distinguish between NO2 that is directly emitted

from vehicles and that derived through the reaction between NO and O3. During

summertime periods when concentrations of NOx are lower these two influences

tend to vary linearly with NOx, making it difficult for the method to separate them.

It can often be useful to select only winter months under these situations (or at

least October–March). Therefore, as a simplifying assumption, the time available

for chemical reactions to take place, 𝜏, is set to 60 seconds. We have tested the

method at roadside sites where O3 is also measured and 𝜏 = 60 s seems to provide a

reasonably consistent calculation of f-NO2.

Note that in some situations it may be worth filtering the data e.g. by wind direc-

tion to focus on the road itself. In this respect, the polarPlot function described

on page 125 can be useful.

30.2 Options available

input A data frame with the following fields. nox andno2 (roadside NOX

and NO2 concentrations), back_nox, back_no2 and back_o3 (hourly

background concentrations of each pollutant). In addition temp (tem-

perature in degrees Celsius) and cl (cloud cover in Oktas). Note that

if temp and cl are not available, typical means values of 11 deg. C

and cloud = 3.5 will be used.

tau Mixing time scale. It is unlikely the user will need to adjust this. See

details below.

user.fno2 User-supplied f-NO2 fraction e.g. 0.1 is a NO2/NOX ratio of 10

applied to the whole time series and is useful for testing ”what if”

questions.

main Title of plot if required.

xlab x-axis label.

... Other graphical parameters send to scatterPlot.

30.3 Example of use

We apply the technique to roadside data at Marylebone Road, with additional data

from a nearby background site at North Kensington and appropriate meteorological

variables. The data can be downloaded from the openair website (http://www.
openair-project.org), and remember to change the file path below. The code

run is:18

18Note that the choice to give the plot a heading is optional.
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30 The calcFno2 function—estimating primary NO2 fractions

load("~/openair/Data/f-no2Data.RData")

## check first few lines of the file

head(fno2Data)

## date nox no2 back_nox back_no2 back_o3 temp cl wd

## 1 01/01/1998 00:00 285 39 49 34 1 3.3 2 280

## 2 01/01/1998 01:00 NA NA 56 35 0 3.3 5 230

## 3 01/01/1998 02:00 NA NA 41 31 4 4.4 5 190

## 4 01/01/1998 03:00 493 52 52 33 1 3.9 5 170

## 5 01/01/1998 04:00 468 78 41 30 3 3.9 5 180

## 6 01/01/1998 05:00 264 42 36 29 6 3.3 2 190

Now apply the function, and collect the results as shown in Figure 30.1, with

additional options that are sent to scatterPlot.

Note that this is a different way to run a function compared with what has been

done previously. This time the results are read into the variable results, which

stores the monthly mean estimated f-NO2 values.

The results (expressed as a percentage) for f-NO2 are then available for any other

processing or plotting. The function also automatically generates a plot of monthly

mean f-NO2 values as shown in Figure 30.1. It is clear from this Figure that f-NO2

was relatively stable at around 10 % until the end of 2002, before increasing sharply

during 2003— and remaining at about 20%until the end of 2007. At this particular

site the increases in f-NO2 are very apparent.

An interesting question is what would NO2 concentrations have been if f-NO2

remained at the 10 % level, or indeed any other level. The calcFno2 function also

allows the user to input their own f-NO2 level and make new predictions. In this

case the code run is slightly different, shown in Figure 30.2.

By providing a value to the option user.fno2 (expressed as a fraction), the

function will automatically calculate NO2 concentrations with the chosen f-NO2

value applied to the whole time series. In this case results will return a data frame

with dates and NO2 concentrations. In addition a plot is produced as shown in

Figure 30.2. The blue line and shading show the measured data and highlight a

clear increase in NO2 concentrations from 2003 onwards. The red line and shading

shows the predicted values assuming (in this case) that f-NO2 was constant at

0.095. Based on these results it is clear that NO2 concentrations would have been

substantially less if it were not for the recent increases in f-NO2.
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results <- calcFno2(fno2Data, main = "Trends in f-NO2 at Marylebone Road",

pch = 16, smooth = TRUE, cex = 1.5)
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## the results are a list of two data frame, the first is the f-NO2 results:

head(results$data[[1]])

## date fno2

## 1.1998 1998-01-01 8.9

## 2.1998 1998-02-01 9.2

## 3.1998 1998-03-01 10.1

## 4.1998 1998-04-01 9.7

## 5.1998 1998-05-01 10.3

## 6.1998 1998-06-01 10.6

## the second are the hourly nox, no2 and estimated o3:

head(results$data[[2]])

## date nox no2 o3

## 1 1998-01-01 00:00:00 285 56 0.19

## 2 1998-01-01 03:00:00 493 73 0.11

## 3 1998-01-01 04:00:00 468 71 0.35

## 4 1998-01-01 05:00:00 264 54 1.23

## 5 1998-01-01 06:00:00 171 47 0.92

## 6 1998-01-01 07:00:00 195 51 2.18

F . Plot from the application of the calcFno2 function applied to Marylebone

Road. The plot shows a smooth fit with 95 % confidence intervals.
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results <- calcFno2(fno2Data, user.fno2 = 0.095, smooth = TRUE, pch = 16, cex = 1.5)
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F . Plot from the application of the calcFno2 function applied to Marylebone

Road with a forced f-NO2 values of 0.095 over the whole series. The red line and shading

shows the trend in actual measurements and the blue line and shading the predicted trend

in NO2 if the f-NO2 ratio had remained at 0.095.

31 Utility functions

31.1 Selecting data by date

Selecting by date/time in R can be intimidating for new users—and time consuming

for all users. The selectByDate function aims to make this easier by allowing users

to select data based on the British way of expressing date i.e. d/m/y. This function

should be very useful in circumstances where it is necessary to select only part of a

data frame.

The function has the following options.

mydata A data frame containing a date field in hourly or high resolution

format.

start A start date string in the form d/m/yyyy e.g. “1/2/1999” or in ‘R’

format i.e. “YYYY-mm-dd”, “1999-02-01”

end See start for format.

year A year or years to select e.g. year = 1998:2004 to select 1998-2004

inclusive or year = c(1998, 2004) to select 1998 and 2004.

month A month or months to select. Can either be numeric e.g. month =

1:6 to select months 1-6 (January to June), or by name e.g. month =

c("January", "December"). Names can be abbreviated to 3 letters

and be in lower or upper case.
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day A day name or or days to select. day can be numeric (1 to 31) or

character. For example day = c("Monday", "Wednesday") or day

= 1:10 (to select the 1st to 10th of each month). Names can be

abbreviated to 3 letters and be in lower or upper case. Also accepts

“weekday” (Monday - Friday) and “weekend” for convenience.

hour An hour or hours to select from 0-23 e.g. hour = 0:12 to select hours

0 to 12 inclusive.

## select all of 1999

data.1999 <- selectByDate(mydata, start = "1/1/1999", end = "31/12/1999")

head(data.1999)

## date ws wd nox no2 o3 pm10 so2 co pm25 split.by

## 8761 1999-01-01 00:00:00 5.0 140 88 35 4 21 3.8 1.02 18 before Jan. 2003

## 8762 1999-01-01 01:00:00 4.1 160 132 41 3 17 5.2 2.70 11 before Jan. 2003

## 8763 1999-01-01 02:00:00 4.8 160 168 40 4 17 6.5 2.87 8 before Jan. 2003

## 8764 1999-01-01 03:00:00 4.9 150 85 36 3 15 4.2 1.62 10 before Jan. 2003

## 8765 1999-01-01 04:00:00 4.7 150 93 37 3 16 4.2 1.02 11 before Jan. 2003

## 8766 1999-01-01 05:00:00 4.0 160 74 29 5 14 3.9 0.72 NA before Jan. 2003

## feature new

## 8761 easterly 0.044

## 8762 easterly 0.040

## 8763 easterly 0.039

## 8764 easterly 0.049

## 8765 easterly 0.046

## 8766 other 0.052

tail(data.1999)

## date ws wd nox no2 o3 pm10 so2 co pm25 split.by

## 17515 1999-12-31 18:00:00 4.7 190 226 39 NA 29 5.5 2.4 23 before Jan. 2003

## 17516 1999-12-31 19:00:00 4.0 180 202 37 NA 27 4.8 2.1 23 before Jan. 2003

## 17517 1999-12-31 20:00:00 3.4 190 246 44 NA 30 5.9 2.4 23 before Jan. 2003

## 17518 1999-12-31 21:00:00 3.7 220 231 35 NA 28 5.3 2.2 23 before Jan. 2003

## 17519 1999-12-31 22:00:00 4.1 200 217 41 NA 31 4.8 2.2 26 before Jan. 2003

## 17520 1999-12-31 23:00:00 3.2 200 181 37 NA 28 3.5 1.8 22 before Jan. 2003

## feature new

## 17515 other 0.024

## 17516 other 0.024

## 17517 other 0.024

## 17518 other 0.023

## 17519 other 0.022

## 17520 other 0.019

## easier way

data.1999 <- selectByDate(mydata, year = 1999)

## more complex use: select weekdays between the hours of 7 am to 7 pm

sub.data <- selectByDate(mydata, day = "weekday", hour = 7:19)

## select weekends between the hours of 7 am to 7 pm in winter (Dec, Jan, Feb)

sub.data <- selectByDate(mydata, day = "weekend", hour = 7:19,

month = c("dec", "jan", "feb"))

The function can be used directly in other functions. For example, to make a
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polar plot using year 2000 data:

polarPlot(selectByDate(mydata, year = 2000), pollutant = "so2")

31.2 Selecting run lengths of values above a threshold — pollution
episodes

A seemingly easy thing to do that has relevance to air pollution episodes is to

select run lengths of contiguous values of a pollutant above a certain threshold. For

example, one might be interested in selecting O3 concentrations where there are at

least 8 consecutive hours above 90 ppb. In other words, a selection that combines

both a threshold and persistence. These periods can be very important from a health

perspective and it can be useful to study the conditions under which they occur.

But how do you select such periods easily? The selectRunning utility function

has been written to do this. It could be useful for all sorts of situations e.g.

• Selecting hours where primary pollutant concentrations are persistently high

— and then applying other openair functions to analyse the data in more

depth.

• In the study of particle suspension or deposition etc. it might be useful to

select hours where wind speeds remain high or rainfall persists for several

hours to see how these conditions affect particle concentrations.

• It could be useful in health impact studies to select blocks of data where

pollutant concentrations remain above a certain threshold.

The selectRunning has the following options:

mydata A data frame with a date field and at least one numeric pollutant

field to analyse.

pollutant Name of variable to process. Mandatory.

run.len Run length for extracting contiguous values of pollutant above the

threshold value.

threshold The threshold value for pollutant above which data should be ex-

tracted.

As an example we are going to consider O3 concentrations at a semi-rural site in

south-west London (Teddington). The data can be downloaded as follows:

ted <- importKCL(site = "td0", year = 2005:2009, met = TRUE)

## see how many rows there are

nrow(ted)

We are going to contrast two polar plots of O3 concentration. The first uses all

hours in the data set, and the second uses a subset of hours. The subset of hours is

defined by O3 concentrations above 90 ppb for periods of at least 8-hours i.e. what

might be considered as ozone episode conditions.
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polarPlot(ted, pollutant = "o3", min.bin = 2)
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F . Example of using the selectRunning function to select episode hours to

produce bivariate polar plots of O3 concentration.

episode <- selectRunning(ted, pollutant = "o3", threshold = 90, run.len = 8)

## see how many rows there are

nrow(episode)

## [1] 1399

Now we are going to produce two bivariate polar plots shown in Figure 31.1.

The results are shown in Figure 31.1. The polar plot for all data (left plot of

Figure 31.1) shows that the highest O3 concentrations tend to occur for high

wind speed conditions from almost every direction. Lower concentrations are

observed for low wind speeds because concentrations of NOx are higher, resulting

in O3 destruction. By contrast, a polar plot of the episode conditions (right plot of

Figure 31.1) is very different. In this case there is a clear set of conditions where

these criteria are met i.e. lengths of at least 8-hours where the O3 concentration is at

least 90 ppb. It is clear the highest concentrations are dominated by south-easterly

conditions i.e. corresponding to easterly flow from continental Europe where there

has been time to the O3 chemistry to take place.
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Another interesting test plot is to consider NOx concentrations at Marylebone

Road — see Figure 15.1, which shows that high concentrations are dominated by

a swathe of south-westerly wind conditions (even for high wind speeds). However,

if a selection is made of episode conditions (defined here as NOx concentrations

>500 ppb for at least 5-hours), then it can be seen that it is actually the low wind

speed conditions that dominate. These conditions correspond to low in-canyon

wind speeds and low wind speeds across London, which tend to elevate local

and background NOx concentrations. Even though high concentrations of NOx

are observed at high wind speeds, it does not seem that these conditions are as

important for episode conditions. Users can run the code below to verify these

observations.

episode <- selectRunning(mydata, pollutant = "nox", threshold = 800, run.len = 5)

polarPlot(episode, pollutant = "nox", min.bin = 2)

31.3 Calculating rolling means

Some air pollution statistics such as for O3 and particulate matter are expressed as

rolling means and it is useful to be able to calculate these. It can also be useful to

help smooth-out data for clearer plotting. The rollingMean function makes these

calculations. One detail that can be important is that for some statistics a mean

is only considered valid if there are a sufficient number of valid readings over the

averaging period. Often there is a requirement for at least 75 % data capture. For

example, with an averaging period of 8 hours and a data capture threshold of 75%,

at least 6 hours are required to calculate the mean.

The function is called as follows; in this case to calculate 8-hour rolling mean

concentrations of O3.

data(mydata)

mydata <- rollingMean(mydata, pollutant = "o3", hours = 8,

new.name = "rollingo3", data.thresh = 75)

tail(mydata)

## date ws wd nox no2 o3 pm10 so2 co pm25 rollingo3

## 65528 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.8 28 6.9

## 65529 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.6 26 8.5

## 65530 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.3 34 12.2

## 65531 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.3 34 14.0

## 65532 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.3 33 NA

## 65533 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.3 35 NA

Note that calculating rolling means shortens the length of the data set. In the

case of O3, no calculations are made for the last 7 hours.

Type help(rollingMean) into R for more details. Note that the function cur-

rently only works with a single site.

31.4 Aggregating data by different time intervals

Aggregating data by different averaging periods is a common and important task.

There are many reasons for aggregating data in this way:
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1. Data sets may have different averaging periods and there is a need to combine

them. For example, the task of combining an hourly air quality data set with

a 15-minute average meteorological data set. The need here would be to

aggregate the 15-minute data to 1-hour before merging.

2. It is extremely useful to consider data with different averaging times in a

straightforward way. Plotting a very long time series of hourly or higher

resolution data can hide the main features and it would be useful to apply a

specific (but flexible) averaging period to the data for plotting.

3. Those who make measurements during field campaigns (particularly for

academic research) may have many instruments with a range of different

time resolutions. It can be useful to re-calculate time series with a common

averaging period; or maybe help reduce noise.

4. It is useful to calculate statistics other than means when aggregating e.g.

percentile values, maximums etc.

5. For statistical analysis there can be short-term autocorrelation present. Being

able to choose a longer averaging period is sometimes a useful strategy for

minimising autocorrelation.

In aggregating data in this way, there are a couple of other issues that can be

useful to deal with at the same time. First, the calculation of proper vector-averaged

wind direction is essential. Second, sometimes it is useful to set a minimum number

of data points that must be present before the averaging is done. For example, in

calculating monthly averages, it may be unwise to not account for data capture if

some months only have a few valid points.

All these issues are (hopefully) dealt with by the timeAverage function. The

options are shown below, but as ever it is best to check the help that comes with

the openair package.
see also

timePlot for
plotting with

different
averaging
times and
statistics

The timeAverage function has the following options:

mydata A data frame containing a date field . Can be class POSIXct or Date.

avg.time This defines the time period to average to. Can be “sec”, “min”,

“hour”, “day”, “DSTday”, “week”, “month”, “quarter” or “year”.

For much increased flexibility a number can precede these options

followed by a space. For example, a timeAverage of 2 months would

be period = "2 month". In addition, avg.time can equal “season”,

in which case 3-month seasonal values are calculated with spring

defined as March, April, May and so on.

Note that avg.time can be less than the time interval of the original

series, in which case the series is expanded to the new time interval.

This is useful, for example, for calculating a 15-minute time series

from an hourly one where an hourly value is repeated for each new

15-minute period. Note that when expanding data in this way it

is necessary to ensure that the time interval of the original series is

an exact multiple of avg.time e.g. hour to 10 minutes, day to hour.

Also, the input time series must have consistent time gaps between
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successive intervals so that timeAverage can work out how much

‘padding’ to apply. To pad-out data in this way choose fill = TRUE.

data.thresh The data capture threshold to use (%). A value of zero means that

all available data will be used in a particular period regardless if of the

number of values available. Conversely, a value of 100 will mean that

all data will need to be present for the average to be calculated, else it

is recorded as NA.

statistic The statistic to apply when aggregating the data; default is the mean.

Can be one of “mean”, “max”, “min”, “median”, “frequency”, “sd”,

“percentile”. Note that “sd” is the standard deviation and “frequency”

is the number (frequency) of valid records in the period. “percentile”

is the percentile level (%) between 0-100, which can be set using

the “percentile” option — see below. Not used if avg.time = "de-

fault".

percentile The percentile level in % used when statistic = "percentile".

The default is 95.

start.date A string giving a start date to use. This is sometimes useful if a time

series starts between obvious intervals. For example, for a 1-minute

time series that starts “2009-11-29 12:07:00” that needs to be aver-

aged up to 15-minute means, the intervals would be “2009-11-29

12:07:00”, “2009-11-29 12:22:00” etc. Often, however, it is bet-

ter to round down to a more obvious start point e.g. “2009-11-29

12:00:00” such that the sequence is then “2009-11-29 12:00:00”,

“2009-11-29 12:15:00” …start.date is therefore used to force this

type of sequence.

vector.ws Should vector averaging be carried out on wind speed if available?

The default is FALSE and scalar averages are calculated. Vector aver-

aging of the wind speed is carried out on the u and vwind components.

For example, consider the average of two hours where the wind dir-

ection and speed of the first hour is 0 degrees and 2m/s and 180

degrees and 2m/s for the second hour. The scalar average of the

wind speed is simply the arithmetic average = 2m/s and the vector

average is 0m/s. Vector-averaged wind speeds will always be lower

than scalar-averaged values.

fill When time series are expanded i.e. when a time interval is less than

the original time series, data are ‘padded out’ with NA. To ‘pad-out’

the additional data with the first row in each original time interval,

choose fill = TRUE.

## load in fresh version of mydata

data(mydata)

To calculate daily means from hourly (or higher resolution) data:
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daily <- timeAverage(mydata, avg.time = "day")

head(daily)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01-01 6.8 188 154 39 6.9 18 3.2 2.7 NaN

## 2 1998-01-02 7.1 223 132 39 6.5 28 3.9 1.8 NaN

## 3 1998-01-03 11.0 226 120 38 8.4 20 3.2 1.7 NaN

## 4 1998-01-04 11.5 223 105 35 9.6 21 3.0 1.6 NaN

## 5 1998-01-05 6.6 237 175 46 5.0 24 4.5 2.1 NaN

## 6 1998-01-06 4.4 197 214 45 1.3 35 5.7 2.5 NaN

Monthly 95th percentile values:

monthly <- timeAverage(mydata, avg.time = "month", statistic = "percentile",

percentile = 95)

head(monthly)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01-01 11.2 45 371 69 14 53 11 4.0 NA

## 2 1998-02-01 8.2 17 524 92 7 69 17 5.6 NA

## 3 1998-03-01 10.6 38 417 85 15 61 18 4.9 NA

## 4 1998-04-01 8.2 44 384 82 20 52 15 4.2 NA

## 5 1998-05-01 7.6 41 300 80 25 61 13 3.6 40

## 6 1998-06-01 8.5 51 377 74 15 53 12 4.3 34

2-week averages but only calculate if at least 75% of the data are available:

twoweek <- timeAverage(mydata, avg.time = "2 week", data.thresh = 75)

head(twoweek)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1997-12-29 7.0 212 167 41 4.6 29 4.5 2.2 NA

## 2 1998-01-12 4.9 221 173 42 4.7 29 5.1 1.9 NA

## 3 1998-01-26 2.8 242 233 51 2.3 35 8.1 2.4 NA

## 4 1998-02-09 4.4 215 276 57 2.6 44 9.0 2.9 NA

## 5 1998-02-23 6.9 237 248 57 5.0 29 9.8 2.6 NA

## 6 1998-03-09 3.0 288 160 45 5.6 33 8.6 1.6 NA

timeAverage also works the other way in that it can be used to derive higher

temporal resolution data e.g. hourly from daily data or 15-minute from hourly

data. An example of usage would be the combining of daily mean particle data

with hourly meteorological data. There are two ways these two data sets can be

combined: either average themeteorological data to daily means or calculate hourly

means from the particle data. The timeAverage function when used to ‘expand’

data in this way will repeat the original values the number of times required to fill

the new time scale. In the example below we calculate 15-minute data from hourly

data. As it can be seen, the first line is repeated four times and so on.
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data15 <- timeAverage(mydata, avg.time = "15 min", fill = TRUE)

head(data15, 20)

## date ws wd nox no2 o3 pm10 so2 co pm25

## 1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.7 3.4 NA

## 2 1998-01-01 00:15:00 0.6 280 285 39 1 29 4.7 3.4 NA

## 3 1998-01-01 00:30:00 0.6 280 285 39 1 29 4.7 3.4 NA

## 4 1998-01-01 00:45:00 0.6 280 285 39 1 29 4.7 3.4 NA

## 5 1998-01-01 01:00:00 2.2 230 NA NA NA 37 NA NA NA

## 6 1998-01-01 01:15:00 2.2 230 NA NA NA 37 NA NA NA

## 7 1998-01-01 01:30:00 2.2 230 NA NA NA 37 NA NA NA

## 8 1998-01-01 01:45:00 2.2 230 NA NA NA 37 NA NA NA

## 9 1998-01-01 02:00:00 2.8 190 NA NA 3 34 6.8 9.6 NA

## 10 1998-01-01 02:15:00 2.8 190 NA NA 3 34 6.8 9.6 NA

## 11 1998-01-01 02:30:00 2.8 190 NA NA 3 34 6.8 9.6 NA

## 12 1998-01-01 02:45:00 2.8 190 NA NA 3 34 6.8 9.6 NA

## 13 1998-01-01 03:00:00 2.2 170 493 52 3 35 7.7 10.2 NA

## 14 1998-01-01 03:15:00 2.2 170 493 52 3 35 7.7 10.2 NA

## 15 1998-01-01 03:30:00 2.2 170 493 52 3 35 7.7 10.2 NA

## 16 1998-01-01 03:45:00 2.2 170 493 52 3 35 7.7 10.2 NA

## 17 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.1 8.9 NA

## 18 1998-01-01 04:15:00 2.4 180 468 78 2 34 8.1 8.9 NA

## 19 1998-01-01 04:30:00 2.4 180 468 78 2 34 8.1 8.9 NA

## 20 1998-01-01 04:45:00 2.4 180 468 78 2 34 8.1 8.9 NA

The timePlot can apply this function directly to make it very easy to plot data

with different averaging times and statistics.

31.5 Calculating percentiles

calcPercentile makes it straightforward to calculate percentiles for a single pol-

lutant. It can take account of different averaging periods, data capture thresholds

— see Section 31.4 for more details. The function has the following options:

mydata A data frame of data with a date field in the format Date or POSIXct.

Must have one variable to apply calculations to.

pollutant Name of variable to process. Mandatory.

avg.time Averaging period to use. See timeAverage for details.

percentile A vector of percentile values. For example percentile = 50 for

median values, percentile = c(5, 50, 95 for multiple percentile

values.

data.thresh Data threshold to apply when aggregating data. See timeAverage

for details.

start Start date to use - see timeAverage for details.

For example, to calculate the 25, 50, 75 and 95th percentiles of O3 concentration

by year:
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calcPercentile(mydata, pollutant = "o3", percentile = c(25, 50, 75, 95),

avg.time = "year")

## date percentile.25 percentile.50 percentile.75 percentile.95

## 1 1998-01-01 2 4 7 16

## 2 1999-01-01 2 4 9 21

## 3 2000-01-01 2 4 9 22

## 4 2001-01-01 2 4 10 24

## 5 2002-01-01 2 4 10 24

## 6 2003-01-01 2 4 11 24

## 7 2004-01-01 2 5 11 23

## 8 2005-01-01 3 7 16 28

31.6 The corPlot function — correlation matrices

Understanding howdifferent variables are related to one another is always important.

However, it can be difficult to easily develop an understanding of the relationships

when many different variables are present. One of the useful techniques used is

to plot a correlation matrix, which provides the correlation between all pairs of

data. The basic idea of a correlation matrix has been extended to help visualise

relationships between variables by Friendly (2002) and Sarkar (2007).

The corPlot shows the correlation coded in three ways: by shape (ellipses), col-

our and the numeric value. The ellipses can be thought of as visual representations

of scatter plot. With a perfect positive correlation a line at 45 degrees positive slope

is drawn. For zero correlation the shape becomes a circle — imagine a ‘fuzz’ of

points with no relationship between them.

With many different variables it can be difficult to see relationships between

variables i.e. which variables tend to behave most like one another. For this reason

hierarchical clustering is applied to the correlation matrices to group variables that

are most similar to one another (if cluster = TRUE.)

It is also possible to use the openair type option to condition the data in many

flexible ways, although this may become difficult to visualise with too many panels.

The corPlot function has the following options:

mydata A data frame which should consist of some numeric columns.

pollutants the names of data-series in mydata to be plotted by corPlot. The

default option NULL and the alternative “all” use all available valid

(numeric) data.

type type determines how the data are split i.e. conditioned, and then

plotted. The default is will produce a single plot using the entire

data. Type can be one of the built-in types as detailed in cutData

e.g. “season”, “year”, “weekday” and so on. For example, type =

"season" will produce four plots — one for each season.

It is also possible to choose type as another variable in the data frame.

If that variable is numeric, then the data will be split into four quantiles

(if possible) and labelled accordingly. If type is an existing character

or factor variable, then those categories/levels will be used directly.

This offers great flexibility for understanding the variation of different

variables and how they depend on one another.
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cluster Should the data be ordered according to cluster analysis. If TRUE

hierarchical clustering is applied to the correlation matrices using

hclust to group similar variables together. With many variables

clustering can greatly assist interpretation.

cols Colours to be used for plotting. Options include “default”, “incre-

ment”, “heat”, “spectral”, “hue”, “greyscale” and user defined (see

openColours for more details).

r.thresh Values of greater than r.thresh will be shown in bold type. This

helps to highlight high correlations.

text.col The colour of the text used to show the correlation values. The

first value controls the colour of negative correlations and the second

positive.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will auto-

matically try and format pollutant names and units properly e.g. by

subscripting the ‘2’ in NO2.

... Other graphical parameters passed onto lattice:levelplot, with

common axis and title labelling options (such as xlab, ylab, main)

being passed via quickText to handle routine formatting.

An example of the corPlot function is shown in Figure 31.2. In this Figure it

can be seen the highest correlation coefficient is between PM10 and PM2.5 (r = 0.

84) and that the correlations between SO2, NO2 and NOx are also high. O3 has a

negative correlation with most pollutants, which is expected due to the reaction

between NO and O3. It is not that apparent in Figure 31.2 that the order the

variables appear is due to their similarity with one another, through hierarchical

cluster analysis.

Note also that the corPlot accepts a type option, so it possible to condition the

data in many flexible ways, although this may become difficult to visualise with

too many panels. For example:

corPlot(mydata, type = "season")

When there are a very large number of variables present, the corPlot is a very

effective way of quickly gaining an idea of how variables are related. As an example

(not plotted) it is useful to consider the hydrocarbonsmeasured atMaryleboneRoad.

There is a lot of information in the hydrocarbon plot (about 40 species), but due to

the hierarchical clustering it is possible to see that isoprene, ethane and propane

behave differently to most of the other hydrocarbons. This is because they have

different (non-vehicle exhaust) origins. Ethane and propane results from natural

gas leakage whereas isoprene is biogenic in origin (although some is from vehicle

exhaust too). It is also worth considering how the relationships change between

the species over the years as hydrocarbon emissions are increasingly controlled, or

maybe the difference between summer and winter blends of fuels and so on.
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corPlot(mydata)
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F . Example of a correlation matrix showing the relationships between variables.

hc <- importAURN(site = "my1", year = 2005, hc = TRUE)

## now it is possible to see the hydrocarbons that behave most

## similarly to one another

corPlot(hc)

31.7 Preparing data to compare sites, for model evaluation and
intervention analysis

Many of the functions described have the potential to be extremely flexible. Men-

tion has already beenmade of how to compare different sites in some of the functions.

It was stated that the data had to be in a certain format for the functions to work.

This section describes a few simple functions to do this — and more.

31.7.1 Intervention analysis

Another common scenario is that there is interest in showing plots by different time

intervals on the same scale. There could be all sorts of reasons for wanting to do this.

A classic example would be to show a before/after plot due to some intervention

such as a low emission zone. Again, the function below exploits the flexible ‘site’

option available in many functions.

A small helper function splitByDate has been written to simplify chopping up a
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data set into different defined periods. The function takes three arguments: a data

frame to process, a date (or dates) and labels for each period. If there was interest

in looking at mydata before and after the 1st Jan 2003, it would be split into two

periods (before that date and after). In other words, there will always be one more

label than there is date. We have made the function easier to use for supplying

dates. Dates can be accepted in the form ‘dd/mm/yyyy’ e.g. 13/04/1999 or as

‘yyyy-mm-dd’ e.g. ‘1999-04-13’.

The example below chops the data set up into three sections, called ‘before’,

‘during’ and ‘after’. This is done to show how more than one date can be supplied

to the function.

mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"),

labels = c("before", "during", "after"))

head(mydata)

## date ws wd nox no2 o3 pm10 so2 co pm25 split.by

## 1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.7 3.4 NA before

## 2 1998-01-01 01:00:00 2.2 230 NA NA NA 37 NA NA NA before

## 3 1998-01-01 02:00:00 2.8 190 NA NA 3 34 6.8 9.6 NA before

## 4 1998-01-01 03:00:00 2.2 170 493 52 3 35 7.7 10.2 NA before

## 5 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.1 8.9 NA before

## 6 1998-01-01 05:00:00 3.0 190 264 42 0 16 5.5 3.1 NA before

tail(mydata)

## date ws wd nox no2 o3 pm10 so2 co pm25 split.by

## 65528 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.8 28 after

## 65529 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.6 26 after

## 65530 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.3 34 after

## 65531 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.3 34 after

## 65532 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.3 33 after

## 65533 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.3 35 after

As can be seen, there is a new field split.by (although the name can be set by

the user), where at the beginning of the time series it is labelled ‘before’ and at the

end it is labelled ‘after’. Now let us make a polar annulus plot showing the diurnal

variation of NO2 by wind direction:

In some cases it would make sense to have labels that refer to dates. Here is an

example:

mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"),

labels = c("before Jan. 2000", "Jan. 2000 - Mar. 2003",

"after Mar. 2003"))

31.7.2 Combining lots of sites

A typical example is that imported data have a date field and one or more pollutant

fields from one of more sites in a series of columns. The aim would be, for example,

to produce a series of plots by site for the same pollutant. If the data contains

multiple pollutants and multiple sites, it makes sense to subset the data first.19 For

19Note that if you are able to use data from the AURN archive using the importAURN function, the

data will already be in the correct format for direct use by many of the functions—although it
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polarAnnulus(mydata, pollutant = "no2", type = "split.by", period = "hour",

layout = c(3, 1))
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F . Example of processing data for use in the polarAnnulus function by time

period for NO2 concentrations at Marylebone Road.

example, if a data frame mydata has fields ‘date’, ‘nox.site1’, ‘so2.site1’, ‘nox.site2’,

‘so2.site2’, then just working with the NOx data can be done by:

subdata <- subset(mydata, select = c(date, nox.site1, nox.site2))

Rather than import new data, the code below first makes an artificial data set

from which to work. In a real situation, the first few lines would not be needed.

may well be necessary to merge some meteorological data first.
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## load reshape2 package if it is not already loaded...

library(reshape2)

## first make a subset of the data: date and nox, ws, wd

siteData <- subset(mydata, select = c(date, ws, wd, nox))

## look at the first few lines

head(siteData)

## date ws wd nox

## 1 1998-01-01 00:00:00 0.6 280 285

## 2 1998-01-01 01:00:00 2.2 230 NA

## 3 1998-01-01 02:00:00 2.8 190 NA

## 4 1998-01-01 03:00:00 2.2 170 493

## 5 1998-01-01 04:00:00 2.4 180 468

## 6 1998-01-01 05:00:00 3.0 190 264

## rename the nox field to "site1"

names(siteData)[4] <- "site1"

## now make another field "site2" to be equal to half of site1

siteData$site2 <- siteData$site1 * 0.5

## end of making new data, now let's process it

head(siteData)

## date ws wd site1 site2

## 1 1998-01-01 00:00:00 0.6 280 285 142

## 2 1998-01-01 01:00:00 2.2 230 NA NA

## 3 1998-01-01 02:00:00 2.8 190 NA NA

## 4 1998-01-01 03:00:00 2.2 170 493 246

## 5 1998-01-01 04:00:00 2.4 180 468 234

## 6 1998-01-01 05:00:00 3.0 190 264 132

## now we need to "stack" the data, ready for openair functions

## use the melt function in the reshape2 package (loaded with openair)

siteData <- melt(siteData, measure.vars = c("site1", "site2"))

head(siteData)

## date ws wd variable value

## 1 1998-01-01 00:00:00 0.6 280 site1 285

## 2 1998-01-01 01:00:00 2.2 230 site1 NA

## 3 1998-01-01 02:00:00 2.8 190 site1 NA

## 4 1998-01-01 03:00:00 2.2 170 site1 493

## 5 1998-01-01 04:00:00 2.4 180 site1 468

## 6 1998-01-01 05:00:00 3.0 190 site1 264

## change the variable names (one of them has to be "site")

names(siteData)[4:5] <- c("site", "nox")

Now it is possible to run many openair functions on this dataset. In this case,

let us consider a polarPlot. Note that this process would work with many more

sites than shown here. Note, however, many functions such as polarPlot accept

multiple pollutants and the importAURN and importKCL format multiple site data

directly and no additional work is required by the user.
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polarPlot(siteData, pollutant = "nox", type = "site")
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F . Example of processing data for use in the polarPlot function by site.
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suggestions for existing functions, suggestions for new functions and offer of code

contributions. When reporting potential bugs, it is helpful (sometimes essential) to

submit a reproducible example, which would normally require sending a description

of the problem and the data set used. Also, we are interested in developing further

funded case studies.
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A Installing and maintaining R

A.1 Downloading and installing R

R can be downloaded from http://www.r-project.org, shown in Figure A.1. On

the left hand side there is a link to the Comprehensive R Archive Network (CRAN),

which provides links to local repositories where the software can be downloaded

from. The one most relevant to the UK is hosted by the University of Bristol.

Follow the link and choose to download ‘Precompiled binary distributions’ from

the Download and Install R section. Most likely you will want the Windows

version, but versions for Linux and Apple Mac are also available. This will provide

an executable file that can be downloaded (something like R-2.12.0-win.exe). A

direct link from the UK to theWindows download file is http://www.stats.bris.

ac.uk/R/bin/windows/base/

Important Information — Internet connections for Windows
users

Note that R set up and maintenance works best when users have direct
Internet access. Many users that use R through their organisation’s com-
puters may need to install R slightly differently due to the proxy settings used.
Rather than accept all the defaults during installation, at the Setup screen
choose not to accept the defaults and when offered, choose ‘Internet2’ as
the Internet option. This will force R to use the same proxy settings used by
Internet Explorer. The defaults for all other options can be accepted.

The other issue on Windows systems is Administrator rights. When it comes
to installing or updating packages it may be necessary to ‘Run as Admin-
istrator’. To do this, go to R on the Windows menu and right-click, then
choose to ‘Run as administrator’.

The installation of R is straightforward. Most users can happily accept all the

defaults. However, see box for installation information for users installing R on an

organisation’s computer system. Choose where you want to install it (the default

is usually appropriate for most systems). It is a good idea to install it where you

have write privileges — probably more of an issue for Windows Vista/7 users.

Many more details are provided on the R website regarding installation on specific

systems.

…then accept all the defaults unless you have a preference for an alternative

option.

A.2 Maintenance

One of the advantages of R compared with most commercially available software is

that it is regularly updated; fixing any bugs and adding new features. New versions

tend to be released every six months and it is wise to keep the version as up to date

as possible. You can check the website occasionally, or sign up to be alerted to new

releases (recommended). Often, as new versions of the base system are released,
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F A. The R-project web pages.

 

F A. Choose where R should be installed.

certain R packages will also require updating. If there is incompatibility between

the base system and an R package you will likely receive a warning message. To

keep the packages up to date select Packages | Update packages …, which will prompt

you to choose a CRAN mirror (choose the UK one again). This will check to see

if all you packages are up to date, and if not, automatically download and install

more recent versions. Note the information about R in the box where it may be

necessary to run R as an administrator.

B Bootstrap estimates of uncertainty

B.1 The bootstrap

The bootstrap is a data-based simulation method for analysing data, including

hypothesis testing, standard error and confidence interval estimation. It involves

repeatedly drawing random samples from the original data, with replacement (see
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E and T (1993) and D and H (1997) for a detailed

history and examples of use of the bootstrap). Each bootstrap sample is the same

size as the original sample. The ‘with replacement’ bit is important. Sampling with

replacement means that after we randomly draw an observation from the original

sample we put it back before drawing the next observation i.e. it is possible to draw

the same sample more than once. In fact, on average, 37 % of data will not be

sampled each time. If one sampled without replacement it would be equivalent

to just shuffling the data and no new information is available. Typically, 100s or

1000s of samples are required in order to derive reliable statistics.

The term bootstrap derives from the phrase “to pull oneself up by one’s boot-

straps”. The phrase is based on one of the eighteenth century Adventures of Baron

Munchausen by Rudolph Erich Raspe. The Baron had fallen to the bottom of a

deep lake. Just when it looked like all was lost, he thought to pick himself up by his

own bootstraps! In a statistical sense it is meant to convey the idea of generating

‘new’ data from the original data set itself, which seems like an implausible thing to

do, but has been shown to be valid.

When the bootstrap was discovered in the 1970s it was difficult to apply to many

practical problems because computers were not powerful enough to carry out such

repetitive and intensive calculations. However, computers are now sufficiently

powerful to allow these methods to be used (in most circumstances) easily. This

section does not aim to provide an in-depth consideration of statistics and justify

the use of these methods, but rather aims to provide some background in their use

in openair.
When used to estimate confidence intervals, the bootstrap sampling will yield, say,

1000 estimates of the statistic of interest e.g. the slope of a trend. This distribution

could be highly skewed and this is one of the principal advantages of the technique:

normality is not required. We now have a 1000 bootstrap samples, and 1000

estimates of the statistic of interest, one from each bootstrap sample. If these 1000

bootstrap samples are ordered in increasing value, a bootstrap 95 % confidence

interval for the meanwould be from the 25th to the 975th largest values. Sometimes,

uncertainty estimates are not symmetrical. For example, it may not be possible to

report an uncertainty as 100 ± 12, but 100 [87, 121], where 87 and 121 are the

lower and upper 95 % confidence intervals, respectfully.

B.2 The block bootstrap

The basic bootstrap assumes that data are independent. However, in time series this

is rarely the case due to autocorrelation when consecutive points in time are related

to one another. For example, for data with a strong seasonal effect, the month

of January may tend to have higher values than other months. These effects can,

however, be difficult to characterise and model. The motivation for accounting

for autocorrelation in this project is mostly to ensure that uncertainty estimates in

trends and other statistics are not overly optimistic, which would generally be the

case if autocorrelation was not accounted for. These effects can be accounted for

by ensuring that the random sampling captures the correlation structure of the data

using a block bootstrap (K 1989). The idea is that if data (or residuals from a

model) are sampled in small blocks, the correlation structure is retained, provided

there is not significant correlation between the blocks.
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F B. AR1 time random series where the autocorrelation coefficient is zero.

The following Figures highlight the importance of accounting for autocorrelation

using the TheilSen function. Figure B.1 shows a simulated time series comprising

of a linear trend + some random noise with no autocorrelation. The Sen-Theil

slope and the slope uncertainties are shown (and the slope statistics upper left). By

contrast, Figure B.2 shows a similar series but with a high autocorrelation value of

0.8. In this time series it is possible to see that the values seem to fall and rise in

‘chunks’, indicative of autocorrelation. In this plot, no account has been taken of

autocorrelation and the uncertainty in the slope is very similar to Figure B.1.

However, if autocorrelation is accounted for using the data shown in Figure B.2,

the uncertainty in the slope increases markedly, as shown in Figure B.3. Instead

of the 95 % confidence intervals ranging from 0.42–0.54, they now range from

0.36–0.61 — approximately double the uncertainty of the case where no account

is taken of autocorrelation.

The block bootstrap has also been applied tomodels e.g. theGeneralizedAdditive

Model (GAM) used in the smoothTrend function. There are two options here: the

observations can be sampled and themodels runmany times (called case resampling),

or the residuals from the model can be sampled and added to the model predictions

to make ‘new’ input data and run many times (called residual resampling). There

are pros and cons with each approach, but often the two methods yield similar

results. In the case of a GAM (or specifically the mgcv package), which uses

cross-validation for model fitting, having duplicate samples through bootstrapping

would seem to make little sense. The approach adopted here therefore is to use

residual resampling. The effect of taking account of autocorrelation often (but not

always) is an increase in the predicted uncertainty intervals, and a smooth function

that is less ‘wiggly’ than that derived by not accounting for autocorrelation.

A more ‘robust’ approach is outlined in Appendix C, where models are used to

describe the correlation structure of the data.

Clearly, the importance of these issues is data-dependent and there are other

issues to consider too. However, if one is interested in drawing important inferences

from data, then it would seem wise to account for these effects. It should be noted

that these issues are an area of active research and will be revisited from time to

time with the aim of improving the robustness of the techniques used.
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F B. AR1 time random series where the autocorrelation coefficient is 0.8. The

uncertainty in the Sen-Theil slope estimate does not account for autocorrelation.
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F B. AR1 time random series where the autocorrelation coefficient is 0.8. The

uncertainty in the Sen-Theil slope estimate does account for autocorrelation.

C A closer look at trends

Understanding trends is a core component of air quality and the atmospheric

sciences in general. openair provides two main functions for considering trends

(smoothTrend and TheilSen), the latter useful for linear trend estimates. Under-

standing trends and quantifying them robustly is not so easy and careful analysis

would treat each time series individually and consider a wide range of diagnostics.

In this section we take advantage of some of the excellent capabilities that R has

to consider fitting trend models. Experience with real atmospheric composition

data shows that trends are rarely linear, which is unfortunate given how much of

statistics has been built around the linear model.

Generalized Additive Models (GAMs) offer a flexible approach to calculating

trends and in particular, the mgcv package contains many functions that are very

useful for such modelling. Some of the details of this type of model are presented

in W (2006) and the mgcv package itself.

The example considered is 23 years of O3 measurements at Mace Head on the

West coast of Ireland. The example shows the sorts of steps that might be taken to
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timePlot(monthly, pollutant = "o3")
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F C. Monthly mean O3 concentrations at Mace Head, Ireland (1998–2010).

build a model to explain the trend. The data are first imported and then the year,

month and ‘trend’ estimated. Note that ‘trend’ here is simply a decimal date that

can be used to construct various explanatory models.

First we import the data:

library(mgcv)

dat <- importAURN(site = "mh", year = 1988:2010)

## calculate monthly means

monthly <- timeAverage(dat, avg.time = "month")

## now calculate components for the models

monthly$year <- as.numeric(format(monthly$date, "%Y"))

monthly$month <- as.numeric(format(monthly$date, "%m"))

monthly <- transform(monthly, trend = year + (month - 1) / 12)

It is always a good idea to plot the data first:

Figure C.1 shows that there is a clear seasonal variation in O3 concentrations,

which is certainly expected. Less obvious is whether there is a trend.

Even though it is known there is a seasonal signal in the data, we will first of all

ignore it and build a simple model that only has a trend component (model M0).
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acf(residuals(M0))
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F C. ACF for the residuals of model M0.

M0 <- gam(o3 ~ s(trend), data = monthly)

summary(M0)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## o3 ~ s(trend)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 71.34 0.62 115 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(trend) 1 1 6.96 0.0088 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.0212 Deviance explained = 2.48%

## GCV score = 106.82 Scale est. = 106.04 n = 276

This model only explains about 2% of the variation as shown by the adjusted

r2. More of a problem however is that no account has been taken of the seasonal

variation. An easy way of seeing the effect of this omission is to plot the autocor-

relation function (ACF) of the residuals, shown in Figure C.2. This Figure clearly

shows the residuals have a strong seasonal pattern. C (2004) provides lots

of useful information on time series modelling.

A refined model should therefore take account of the seasonal variation in O3

concentrations. Therefore, we add a term taking account of the seasonal variation.

Note also that we choose a cyclic spline for the monthly component (bs = "cc"),

which joins the first and last points i.e. January and December.
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plot.gam(M1, select = 1, shade = TRUE)
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F C. The trend component of model M1.

M1 <- gam(o3 ~ s(trend) + s(month, bs = "cc"), data = monthly)

summary(M1)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## o3 ~ s(trend) + s(month, bs = "cc")

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 71.343 0.374 191 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(trend) 1.22 1.4 15.8 1.7e-05 ***

## s(month) 6.11 8.0 59.4 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.644 Deviance explained = 65.4%

## GCV score = 39.766 Scale est. = 38.566 n = 276

Now we have a model that explains much more of the variation with an r2 of

0.65. Also, the p-values for the trend and seasonal components are both highly

statistically significant. Let’s have a look at the separate components for trend and

seasonal variation:

The seasonal component shown in Figure C.4 clearly shows the strong seasonal

effect on O3 at this site (peaking in April). The trend component is actually linear

in this case and could be modelled as such. This model looks much better, but as

is often the case autocorrelation could remain important. The ACF is shown in

Figure C.5 and shows there is still some short-term correlation in the residuals.

Note also that there are other diagnostic tests one should consider when compar-

ing these models that are not shown here e.g. such as considering the normality

of the residuals. Indeed a consideration of the residuals shows that the model
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plot.gam(M1, select = 2, shade = TRUE)
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F C. The seasonal component of model M1.
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F C. ACF for the residuals of model M1.

fails to some extent in explaining the very low values of O3, which can be seen in

Figure C.1. These few points (which skew the residuals) may well be associated

with air masses from the polluted regions of Europe. Better and more useful models

would likely be possible if the data were split my airmass origin, which is something

that will be returned to when openair includes a consideration of back trajectories.
Further tests, also considering the partial autocorrelation function (PACF) suggest

that an AR1 model is suitable for modelling this short-term autocorrelation. This is

where modelling using a GAMM (Generalized Additive Mixed Model) comes in

because it is possible to model the short-term autocorrelation using a linear mixed

model. The gamm function uses the package nlme and the Generalized Linear

Mixed Model (GLMM) fitting routine. In the M2 model below the correlation

structure is considered explicitly.
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acf(residuals(M2$lme, type = "normalized"))
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F C. ACF for the residuals of model M2.

M2 <- gamm(o3 ~ s(month, bs = "cc") + s(trend), data = monthly,

correlation = corAR1(form = ~ month | year))

summary(M2$gam)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## o3 ~ s(month, bs = "cc") + s(trend)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 71.316 0.493 145 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(month) 6.91 8 42.2 < 2e-16 ***

## s(trend) 1.00 1 15.1 0.00013 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.643 Scale est. = 38.863 n = 276

The ACF plot is shown in Figure C.6 and shows that the autocorrelation has

been dealt with and we can be rather more confident about the trend component

(not plotted). Note that in this case we need to use the normalized residuals to get

residuals that take account of the fitted correlation structure.

Note that model M2 assumes that the trend and seasonal terms vary independ-

ently of one another. However, if the seasonal amplitude and/or phase change

over time then a model that accounts for the interaction between the two may be

better. Indeed, this does seem to be the case here, as shown by the improved fit

of the model below. This model uses a tensor product smooth (te) and the reason

for doing this and not using an isotropic smooth (s) is that the trend and seasonal

components are essentially on different scales. We would not necessarily want to

283



C A closer look at trends

apply the same level of smoothness to both components. An example of covariates

on the same scale would be latitude and longitude.

M3 <- gamm(o3 ~ s(month, bs = "cc") + te(trend, month), data = monthly,

correlation = corAR1(form = ~ month | year))

summary(M3$gam)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## o3 ~ s(month, bs = "cc") + te(trend, month)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 71.321 0.458 156 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(month) 6.89 8.00 22.21 < 2e-16 ***

## te(trend,month) 4.16 4.16 5.77 0.00015 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.667 Scale est. = 36.121 n = 276

It becomes a bit more difficult to plot the two-way interaction between the trend

and the month, but it is possible with a surface as shown in Figure C.7. This

plot shows for example that during summertime the trends component varies little.

However for the autumn and winter months there has been a much greater increase

in the trend compnent for O3.

While there have been many steps involved in this short analysis, the data at

Mace Head are not typical of most air quality data observed, say in urban areas.

Much of the data considered in these areas does not appear to have significant

autocorrelation in the residuals once the seasonal variation has been accounted for,

therefore avoiding the complexities of taking account of the correlation structure of

the data. It may be for example that sites like Mace Head and a pollutant such as

O3 are much more prone to larger scale atmospheric processes that are not captured

by these models.
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plot(M3$gam, select = 2, pers = TRUE, theta = 225, phi = 10,ticktype = "detailed")

trend
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F C. Plot showing the two-way interaction between the trend and seasonal com-

ponents.

D Production of HYSPLIT trajectory files

As discussed in Section 26, openair can import pre-calculated trajectory data for

specified locations. The data are stored on a King’s College London webserver to

make it easy to import 96-hour back trajectory data. Several users have requested

how they can run HYSPLIT themselves e.g. for different trajectory start heights or

for many locations. This section provides the code necessary to run the HYSPLIT

model.

To run back trajectories it is necessary to download the meteorological data files.

These files can be downloaded from HYSPLIT itself. Start HYSPLIT, choose the

meteorology menu, then ARL Data FTP, then Reanalysis. A single month of data

can be downloaded in this way, which means it will be time consuming to download

several years of data. A better alternative is to obtain the data from the ftp site:

ftp://arlftp.arlhq.noaa.gov and navigate to pub/archives/reanalysis using an

FTP program such as Filezilla (https://filezilla-project.org/). The FTP

option works very well.

The meteorological files should be stored in a directory somewhere of your choos-

ing. Three functions need to be loaded as shown below. To make the trajectory

files:

for (i in 2010:2011) {

procTraj(lat = 36.134, lon = -5.347, year = i,

name = "gibraltar", hours = 96,

met = "e:/TrajData/", out = "e:/TrajProc/")

}

In this example, 2010 and 2011 will be run. The latitude (lat) and longitude
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(lon) are provided in decimal form (the above is for Gibraltar). The processed files

will be given a name determined by the name option in the form name_Year.RData

automatically. The hours option is for the length of the back trajectories, so 96 is

for 4 days. It can be longer or shorter — but more days will take more time to run

and generate bigger files. Note however if longer periods of time are run e.g. 10

days, openair can easily subset the data for shorter periods. The met option gives
the full directory path to where the meteorological data you downloaded are stored.

The out option gives the full directory path where the processed output is stored.

This is what openair reads and is the type of file that is put on a server for remote

reading. There is also a height option which is 10 m by default which controls the

start height of the back trajectories.

HYSPLIT itself runs in c:/hysplit4 which is the default install location. The

code below assumes this to be the case. The code would need to be modified if

HYSPLIT was installed elsewhere — but this would not be difficult, as you will

see from the code.

Once the met files are downloaded it should all run easily. Typically it takes

about 1 to 2 hours to run a year.

It will then be necessary to store the RData files somewhere convenient. openair
can use importTraj to read a local file rather than from the King’s College web

server. There is a local option that should be the full directory path to where the

processed trajectory files are stored.

read.files <- function(hours = 96) {

## find tdump files

files <- Sys.glob("tdump*")

output <- file('Rcombined.txt', 'w')

## read through them all, ignoring 1st 7 lines

for (i in files){

input <- readLines(i)

input <- input[-c(1:7)] # delete header

writeLines(input, output)

}

close(output)

## read the combined txt file

traj <- read.table("c:/hysplit4/working/Rcombined.txt", header = FALSE)

traj <- subset(traj, select = -c(V2, V7, V8))

traj <- rename(traj, c(V1 = "receptor", V3 = "year", V4 = "month", V5 = "day",

V6 = "hour", V9 = "hour.inc", V10 = "lat", V11 = "lon",

V12 = "height", V13 = "pressure"))

## hysplit uses 2-digit years ...

year <- traj$year[1]

if (year < 50) traj$year <- traj$year + 2000 else traj$year <- traj$year + 1900

traj$date2 <- with(traj, ISOdatetime(year, month, day, hour, min = 0, sec = 0,

tz = "GMT"))

## arrival time repeated hours + 1 times

traj$date <- rep(traj$date2[traj$hour.inc == 0], each = hours + 1)

traj

}
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add.met <- function(month, Year) {

## if month is one, need previous year and month = 12

if (month == 0) {

month <- 12

Year <- as.numeric(Year) - 1

}

if (month < 10) month <- paste("0", month, sep = "")

## add first line

write.table(paste("echo", met, " >>CONTROL"),

bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- paste("echo RP", Year, month, ".gbl >>CONTROL", sep = "")

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

}
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procTraj <- function(lat = 51.5, lon = -0.1, year = 2010, name = "london",

met = "e:/TrajData/", out = "e:/TrajProc/", hours = 96, height = 10) {

## hours is the back trajectory time e.g. 96 = 4-day back trajectory

## height is start height (m)

lapply(c("openair", "plyr", "reshape2"), require, character.only = TRUE)

## function to run 12 months of trajectories

## assumes 96 hour back trajectories, 1 receptor

setwd("c:/hysplit4/working/")

## remove existing "tdump" files

path.files <- "c:/hysplit4/working/"

bat.file <- "c:/hysplit4/working/test.bat" ## name of BAT file to add to/run

files <- list.files(path = path.files, pattern = "tdump")

lapply(files, function(x) file.remove(x))

start <- paste(year, "-01-01", sep = "")

end <- paste(year, "-12-31 18:00", sep = "")

dates <- seq(as.POSIXct(start, "GMT"), as.POSIXct(end, "GMT"), by = "3 hour")

for (i in 1:length(dates)) {

year <- format(dates[i], "%y")

Year <- format(dates[i], "%Y") # long format

month <- format(dates[i], "%m")

day <- format(dates[i], "%d")

hour <- format(dates[i], "%H")

x <- paste("echo", year, month, day, hour, " >CONTROL")

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE)

x <- "echo 1 >>CONTROL"

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- paste("echo", lat, lon, height, " >>CONTROL")

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- paste("echo ", "-", hours, " >>CONTROL", sep = "")

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- "echo 0 >>CONTROL

echo 10000.0 >>CONTROL

echo 3 >>CONTROL"

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

## processing always assumes 3 months of met for consistent tdump files

months <- as.numeric(unique(format(dates[i], "%m")))

months <- c(months, months + 1:2)

months <- months - 1 ## to make sure we get the start of the previ-

ous year

months <- months[months <= 12]

if (length(months) == 2) months <- c(min(months) - 1, months)

for (i in 1:3)

add.met(months[i], Year)

x <- "echo ./ >>CONTROL"

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- paste("echo tdump", year, month, day, hour, " >>CONTROL", sep = "")

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

x <- "\\hysplit4\\exec\\hyts_std"

write.table(x, bat.file, col.names = FALSE,

row.names = FALSE, quote = FALSE, append = TRUE)

## run the file

system('c:/hysplit4/working/test.bat')

}

## combine files and make data frame

traj <- read.files(hours)

## write R object to file

file.name <- paste(out, name, Year, ".RData", sep = "")

save(traj, file = file.name)

}
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