

REGIONAL TRAINING COURSE ON METHODS AND TOOLS TO IDENTIFY SOURCES OF AIR POLLUTION

IAEA RER 1013: Supporting Air Quality Management

Source apportionment by Positive Matrix Factorization

Marta Almeida Email: <u>smarta@ctn.ist.utl.pt</u> Instituto Superior Técnico Campus Tecnológico e Nuclear Sacavém, Portugal 02 –06 June, 2014

Concept

Objective:

i

- Identify number of factors p
- The species profile of each source f
- Amount of mass contributed by each factor to each individual sample g

Object function Q

- Results are constrained so that no sample can have negative source contribution;
- PMF allows each data point to be individually weighed;
- The PMF solution minimizes the object function Q, based upon the data uncertainties (*u*).

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{x_{ij} - \sum_{k=1}^{p} g_{ik} f_{kj}}{u_{ij}} \right]^{2}$$

Getting started

Download the programme http://www.epa.gov/heasd/research/pmf.html

LEARN THE ISSUES SCIEN	CE & TECHNOLOGY	LAWS & REGULATIONS	ABOUT EPA		Advanced Search	A–Z Index SEARCH
Human Exposure ar	nd Atmospher	ic Sciences			Con	tact Us 🕑 Share
Human Exposure and Atmospheric Sciences		A Home » Exposure Rese atrix Factorization	arch » Human	Exposure and Atmosphe	ric Sciences	
Human Exposure and Atmospheric Science Staff Research Topics: • Air • Chemical Safety	EPA's Positive Ma	Matrix Factorizat	Model is one o	Model f several receptor models ort for current ambient ai	and the second sec	F model
Climate Research Ecosystems	quantifying the r	s and implementation of elative contributions that ality in a community or	various air po	ls by identifying and Ilution sources contribute	Guide Related Links	
• Health • Sustainability	more air pollutio sampling sessior	ity datasets have improv n species, stratify specie 1s. Receptor model algor se higher quality dataset	s by particle si thms have imp		 Air pollution nei highways National Ambier Standards 	
	uncertainties wh profiles, relative in the PMF mode		culate the num e-series of com l contributions			esearch
	generation, evalu	oftware uses graphical u ation and exporting of r a license or other softwa	esults. The mo	that ease data input, del is free of charge, and		
	Windows Vista. 7	A's Positive Matrix Facto		works on Windows XP ar GHz processor, 1 GB of	nd	
	Support Materia The EPA Positive	Is Matrix Factorization (PM	F) 3.0 Fundam	entals & User Guide		

rouidar references and datails on how to use DM

Getting started

run as administrator

Order of the operations

		Base Model	Bootstrap Model	Fpeak Model
Input/Output files	Analyze Input Data	Results	Results	Results
- Concentration file - Input file - Output file - Configuration file	 Concentration/ Uncertainty Concentration Scatter plot Concentration Time Series Data exceptions 	- Residual Analysis - O/P Scatter Plot - O/P Time Series - Profiles/ Contributions - Aggregate Contributions - G-Space Plot - Factor Pie Chart - Diagnostics	- Box Plots - Summary	- Profiles/ Contributions - G-Space - Diagnostics

Input/Output Files

EPA PMF v3.0.2.2						
File View Action	Help					
Input/Output Files Analyz	ze Input Data	a Model Execution	Base Model Results	Bootstrap Model Result	s Fpeak Model Results	
Input Files						
			(.csv), or Excel workbo	ok (xls) format. Species na	ames in first row, units in seco	nd
row (optional), and date/tir	mes in first c	olumn (optional).				
Concentration Data File:	C:\PMF we	orkshop\DatabaseCVDus	t xlsx			Browse
				row. Optionally, the second	d row may contain units and	
	the first co	olumn may contain date/ti	me.			
Uncertainty Data File:	C:\PMF wo	orkshop\DatabaseCVDus	t xlsx			Browse
	Observati	on-based or equation-bas	ed uncertainty values for	or each sample. Must mate	ch concentration data format.	
Missing Value Indicator:	-999	Exclude Entire Sam	ple 🔘 Replace Miss	ing Values with Species Me	edian	
Output Files						
Output Folder:	C:\PMF wo	orkshop				Browse
	Specify a	destination folder for all m	odel run output files.			
Output Ele Turnes	T-h Da	imited Test (*hd) 💿 C	amma Dalimitad Taut (*	csv) 🔘 Excel Workbool	(* 14a)	
Output File Type.	 Tab-De 		omma-Delimited Text (K (JUS)	
Program Configuration:						
Configuration File:	C:\PMF wo	orkshop\EPAPMF.cfg				Browse
	Enter or b	rowse to a configuration f	ile.		Load Configuration Sav	ve Configuration
						o configuration
						🔕 Exit
HAVE Concentration	Data	HAVE Uncertaint	y Data	NEED Base Results	NEED Bootstra	ap Results

Input files

- 1. Concentration of chemical species
- 2. Uncertainties

Accepted formats

- 1. Tab-delimited (.txt)
- 2. Comma-separated value (.csv)
- 3. MS Excel (.xls)

Blank cells are not accepted

Samples

Factor analysis technique provides a robust solution when the number of samples minus the number of variable is at least 30 (Henry, 1991)

<i>←</i>	ie F ton centration centration c29	.\Q	— Para	ameters	ſ	→ TÉCNICO LISBOA
		FILE	Formulas Da	ta Review Vi	ew	Di
	i stio	Page Layout	Formulas Da		Wrap Text	Number
	-nti-					
	.mat Painter	B <i>I</i> <u>U</u> -	- <u>*</u> • <u>A</u> •		Merge & Cen	ter • 🦉 • % •
co'	200ard 🕞	Font	- Gi	Align	iment	Number
	C29	- (* f _* (*	.000338651626977	082		
	А	В	С	D	E	F
1	SAMPLE	AI	As	Br	Ce	Cr Cl
2	09-01-2011 12:00	6.4608686	0.0007851	0.0107995	0.0084138	0.0059733
3	12-01-2011 12:25	7.0841526	0.0008773	0.0092972	0.0123250	0.0076864
4	14-01-2011 12:45	3.3487461	0.0004447	0.0053121	0.0044104	0.0027498
5	18-01-2011 13:45	12.2641534	0.0016797	0.0087070	0.0165186	0.0097598
6	24-01-2011 12:40	0.1984172	0.0010497	0.0028407	0.0014837	0.0000040
7	26-01-2011 13:20	0.2612301	0.0003027	0.0023261	0.0008012	0.0000040
8	31-01-2011 13:25	0.8072121	0.0001354	0.0068794	0.0019740	0.0000040
9	02-02-2011 13:40	3.7180185	0.0005623	0.0187804	0.0035270	0.0060591
10	03-02-2011 14:00	33.9842892	0.0034903	0.0281858	0.0321722	0.0213273
11	04-02-2011 14:00	54.0052522	0.0032138	0.0287018	0.0358654	0.0271958
12	05-02-2011 12:00	56.6012609	0.0046405	0.0209047	0.0256021	0.0216202
13	05-02-2011 19:10	33.6179915	0.0030329	0.0169174	0.0230384	0.0171064
14	06-02-2011 12:00	52.0479121	0.0034749	0.0221730	0.0245887	0.0161911
15	07-02-2011 09:25	32.7112158	0.0028426	0.0152159	0.0195285	0.0124952
16	08-02-2011 08:45	10.7573965	0.0010036	0.0064979	0.0090763	0.0050988
17	09-02-2011 08:30	3.3180070	0.0005160	0.0101554	0.0033347	0.0031442
18	11-02-2011 08:20	1.9854946	0.0001963	0.0103436	0.0015092	0.0000076
19	13-02-2011 12:45	2.4681021	0.0005101	0.0197646	0.0011780	0.0007477
20	15-02-2011 13:00	0.5497766	0.0005101	0.0084447	0.0005602	0.0000040
21	17-02-2011 13:20	1.2933946	0.0005101	0.0095033	0.0006169	0.0000153
22	19-02-2011 13:35	1.4006697	0.0001313	0.0119213	0.0012829	0.0004312
23	21-02-2011 13:50	3.7123976	0.0003954	0.0116682	0.0033004	0.0020265
24	23-02-2011 14:10	7.3253142	0.0007366	0.0141350	0.0057125	0.0034139
25	24-02-2011 14:30	15.5569509	0.0009783	0.0146358	0.0098247	0.0065134
26	27-02-2011 18:15	52.9080878	0.0033424	0.0229199	0.0328968	0.0252674
27	28-02-2011 08:35	27.8334643	0.0021360	0.0138742	0.0215295	0.0151400
28	28-02-2011 18:50	14.0098193	0.0010812	0.0121890	0.0108934	0.0066902
29	01-03-2011 14:30	3.7418556	0.0003387	0.0131845	0.0019734	0.0015361
30	03-03-2011 14:50	1.2940722	0.0005101	0.0074997	0.0004380	0.0000047
31	08-03-2011 08:10	0.7963118	0.0005101	0.0044267	0.0014140	0.0000040
32	13-03-2011 11:45	0.4869752	0.0001125	0.0059196	0.0004656	0.0002421
33	16-03-2011 13:00	1.6784129	0.0005101	0.0137418	0.0010122	0.0004989
34	18-03-2011 13:10	1.6455298	0.0005101	0.0075600	0.0004380	0.0014823
35	21-03-2011 14:00	0.8301145	0.0005101	0.0091647	0.0004380	0.0005765
36	23-03-2011 14:30	4.8377170	0.0007050	0.0118048	0.0041565	0.0039638
37	28-03-2011 09:00	4.4095921	0.0003631	0.0104453	0.0000915	0.0035963
38	30-03-2011 13:30	1.5942125	0.0003941	0.0099768	0.0000770	0.0016625
39	02-04-2011 17:20	1.6785513	0.0003725	0.0121507	0.0001575	0.0014170
14	DE DA DOAL AALAE	1 0001055	0.0005101	0.0100705	0.0004300	0.0014016

Input/Output Files

Types of Uncertainties files

- Sample specific Uncertainty file provides na estimate of the uncertainty for each sample of each species;
- 2. Equation-based file provides species-specific parameters that PMF uses to calculate uncertainties for each sample.

Fa	Breitainty ample specific ample sinty Uncertainty (2-01-2011 12:00 (2-01-2011 12:25	, n	* 😐 *	<mark></mark>	= =
	_ specifi	e	Font	G	
	ole ity"	C	f _x		
	ant sin	В	С	D	E
<u>ر</u> ^		Al	As	Br	Ce
ંપ્ર	1-2011 12:00	0.323043	0.000384	0.000841	0.0006
	12-01-2011 12:25	0.354208	0.000135	0.000894	0.0005
	14-01-2011 12:45	0.167437	7.82E-05	0.000426	0.0001
5	18-01-2011 13:45	0.613208	0.000504	0.001086	0.0022
6	24-01-2011 12:40	0.009921	7.17E-05	0.000431	0.0002
7	26-01-2011 13:20	0.013062	0.00013	0.000223	7.85E-(
8	31-01-2011 13:25	0.040361	5.12E-05	0.000494	0.003
9	02-02-2011 13:40	0.185901	0.000125	0.001243	0.0058
10	03-02-2011 14:00	1.699214	0.000395	0.004335	0.0063
11	04-02-2011 14:00	2.700263	0.000274	0.002741	0.0121

If concentration \leq Detection limit => $Unc = \frac{5}{6} \times MDL$

If concentration \leq Detection limit => $Unc = \sqrt{((Error Fraction \times concentration)^2 + (MDL)^2)}$

Input/Output Files

Missing values in the data base

	Concentration	Uncertainty
Concentration < MDL	1/2 MDL	5/6 MDL
Missing values	Geometric Mean	4 × Geometric Mean

	Output Files
*_diag	Contains a record of the user inputs and model diagnostic information
*_contrib	Contains the contributions for each base run
*_profile	Contains the profiles for each base run
*_resid	Contains the residuals for each base run
*_strength	Contains the factor strength for each nase run
*_profile_boot	Contains the number of bootstrap runs mapped to each base run, each bootstrap profile that was mapped to the base profile and all bootstrap statistics
*_fpeak	Contains the profiles and contributions of each fpeak run

Order of the operations

Input/Output files	Analyze Input Data	Base Model Results	Bootstrap Model Results	Fpeak Model Results
- Concentration	- Concentration/	- Residual	- Box Plots	- Profiles/
file	Uncertainty	Analysis	- Summary	Contributions
- Input file	- Concentration	- O/P Scatter Plot		- G-Space
-Output file	Scatter plot	- O/P Time Series		- Diagnostics
- Configuration file	 Concentration Time Series Data exceptions 	 Profiles/ Contributions Aggregate Contributions G-Space Plot Factor Pie Chart Diagnostics 		
		-		
-	Time Series	Contributions - Aggregate Contributions - G-Space Plot - Factor Pie Chart		

Objective:

- To analyze the concentration and uncertainty data before running the model;
- Help the user decide whether certain species should be excluded or down-weighted;
- Help the user decide whether certain samples should be excluded.

	: Files Ar on/Uncertair			on Scatter F	Execution Plot Co		Nodel Results	1. E	Bootstrap Mod Data Excepti		Fpeak Model		1								
Input Data		~~	_					-jr			rtainty Scatter Plot	ot			_		_				
Species	Cat	S/N	Min	25th	50th	75th	Max						_						_		-
AI	Strong	19.00000	0.19842	0.93539	1.94685	6.95566	56.60126		4						AI						_
As	Strong	1.00742	0.00008	0.00035	0.00051	0.00073	0.00464		4												
Br	Strong	9.10807	0.00233	0.00533	0.00832	0.01284	0.02870		4	11											
Ce	Strong	3.45073	-		-		0.03950	V	4	Ē											
Cr	Strong	13.23532					0.02720	-	4												
Cu	Strong	7.77419					0.02268		1	10 =											
Fe	Strong	19.00000		0.56717			21.31048		4	Ē											
K Mn	Strong	19.00000	0.09440	-			9.57567		4	9											
Mn	Strong	19.00000				-	0.38098		4 '	9 E											
Sb	Strong	0.90472					0.00090		4	Ē											
Sc	Strong	17.32560					0.00669		1	8 =											
Si	Strong									Ē											
Sm	Strong	5.13488					0.00458	-		7											
т	Strong	19.00000	0.02507	0.07148	0.12687	0.36226	2.21899		4 '	Ē											
v	Strong	1.41197	0.00016	0.00068	0.00171	0.00394	0.03740	-													
Pb	Strong	2.69152	0.00023	0.00115	0.00227	0.00450	0.01888	-	tai	6											
Zn	Strong	18.31574	-		-	-	0.09795	-	Uncertainty	Ē										•	
EC	Strong						1.17147			Ē									° °	2	
oc	Strong	2.36842					7.06092		4 '	5											
C032-	Strong	10.32465					16.34493		4								0				
CI-	Strong	1.95466					25.85301		4	4											
NO3- SO42-	Strong	2.15544	0.02647				8.08499	-	4	Ē						۰					
S042- Na+	Strong	1.95263		3.23067			22.00773		4	Ē					•	ø					
NH4+	Strong	3.25142	-		-		3.47000		:	3				°	,						
K+	Strong	2.58007				-	1.93068	Verener	4	Ē				° °							
Kns	Strong	11.51661				1.15711	7.64499		4	2											
Mg2+	Strong	1.96898	0.05518	0.31656	0.42432	0.50460	2.18620			Ē		00 0 0	ం								
Ca2+	Strong	4.61841	0.06420	0.35009	0.69719	1.47788	13.75932		4	Ē	o and	0 ⁰									
PM10	Strong	20.77101	10.32941	30.82500	48.25807	103.19485	504.15779		4	1	2000 0 GO										
										0	5 10	<u></u>	20	25 Conc	30 30	35 n	40	45	<u></u> 50	55	

Concentration/Uncertainty

The following statistics are calculated for each species:

• Signal-to-noise ratio (S/N)

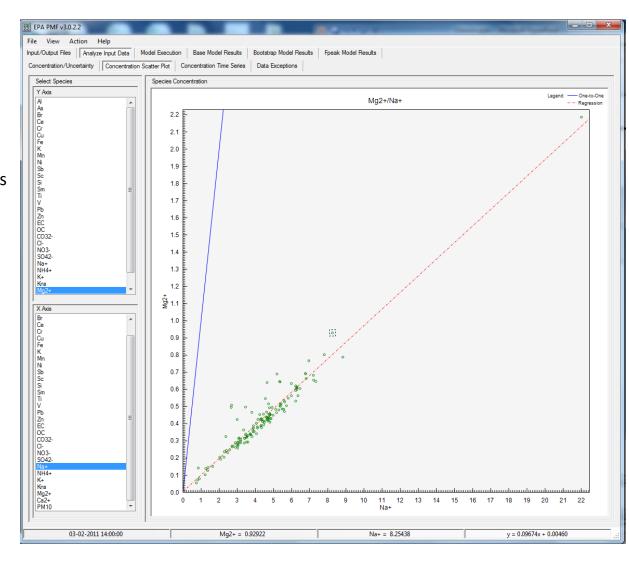
$$\left(\frac{S}{N}\right)_{j} = \sqrt{\frac{\sum_{i=1}^{n} (x_{ij} - s_{ij})^{2}}{\sum_{i=1}^{n} s_{ij}^{2}}}$$

- Minimum concentration value
- 25th percentile
- Median
- 75th percentile
- Maximum concentration value

💯 EPA PMF v	/3.0.2.2			-											-	_ D _ X
File View	Action	Help			_	_										
Input/Output F	Files A	nalyze Inpu	ut Data	Model E	xecution	Base M	odel Results	В	ootstrap Model Results	Fpeak Model Result	ts					
Concentration	n/Uncertai	nty Cor	ncentratio	n Scatter	Plot Co	oncentratio	n Time Series	Ľ	Data Exceptions		1					
Input Data	Statistics							-	Concentration/Uncerta	ainty Scatter Plot						
Species	Cat	S/N	Min	25th	50th	75th	Max									
Al	Strong	19.00000	0.19842	0.93539	1.94685	6.95566	56.60126					AI				
As	Strong	1.00742	0.00008	0.00035	0.00051	0.00073	0.00464		E							
Br	Strong	9.10807	0.00233	0.00533	0.00832	0.01284	0.02870		E							
Ce	Strong	3.45073	0.00003	0.00044	0.00142	0.00539	0.03950		11 -							
Cr	Strong	13.23532	0.00000	0.00054	0.00167	0.00548	0.02720		E							
Cu	Strong	7.77419	0.00022	0.00120	0.00226	0.00467	0.02268		10							
Fe	Strong	19.00000	0.16331	0.56717	1.07687	3.68554	21.31048		I E							
к	Strong	19.00000		0.27501	0.50184	1.41916	9.57567		E							
Mn	Strong	19.00000	0.00300	0.00968	0.01795	0.05778	0.38098		9 Ē							
Ni	Strong	12.49923	0.00000	0.00126	0.00210	0.00489	0.01624		E							
Sb	Strong	0.90472	0.00000	0.00010	0.00015	0.00021	0.00090		E							
Sc	Strong	17.32560	0.00000	0.00001	0.00020	0.00093	0.00669		8 -							
Si	Strong	19.00000	0.42347	1.71587	3.52333	12.29377	93.20046		E							
Sm	Strong	5.13488	0.00000	0.00013	0.00020	0.00059	0.00458		_ E							
п	Strong	19.00000	0.02507	0.07148	0.12687	0.36226	2.21899		7							
v	Strong	1.41197	0.00016	0.00068	0.00171	0.00394	0.03740									
РЬ	Strong	2.69152	0.00023	0.00115	0.00227	0.00450	0.01888		Uncertainty 9							
Zn	Strong	18.31574	0.00634	0.01432	0.02040	0.02905	0.09795		Cert .							•
EC	Strong	19.10386	0.00013	0.07299	0.13384	0.22167	1.17147		5						° °	>
ос	Strong	2.36842	0.07023	0.63298	0.85498	1.45942	7.06092		5						0	
C032-	Strong	10.32465	0.01035	0.07882	0.30473	1.70088	16.34493		E							
CI-	Strong	1.95466	1.01682	4.34511	5.68136	7.08989	25.85301		E					0		
NO3-	Strong	2.15544	0.02647	0.90707	1.26071	1.68218	8.08499		4 =				0			
SO42-	Strong	2.23684	0.21579	1.40819	1.93633	2.71214	13.82402		E							
Na+	Strong	1.95263	0.74091	3.23067	4.36213	5.32823	22.00773		L L				° °			
NH4+	Strong	3.25142	0.00013	0.09805	0.18476	0.27613	3.47000		3			° °				
К+	Strong	2.58007	0.00634	0.15590	0.19481	0.26405	1.93068		Ē			。 ° °				
Kns	Strong	11.51661	0.00062	0.11539	0.30036	1.15711	7.64499		2 E							
Mg2+	Strong	1.96898	0.05518	0.31656	0.42432	0.50460	2.18620		Ē		້					
Ca2+	Strong	4.61841	0.06420	0.35009	0.69719	1.47788	13.75932		E	00 ⁰						
PM10	Strong	20.77101	10.32941	30.82500	48.25807	103.19485	504.15779		1	10000 0 500 00 00						
								******	0							
								*****	0	5 10 15	20	25 30 Concentrat		40 45	50	55
Strong	W	eak	Bad	Tot	al Variat	ole (Defa	ults to Weak)					Extra Model	ling Uncertain	ty (0 - 25%):	5 %
	Strong	g Species:	31				Weak Spe	cies	s: 0	В	ad Species:	0		Samples	Excluded: 0	%

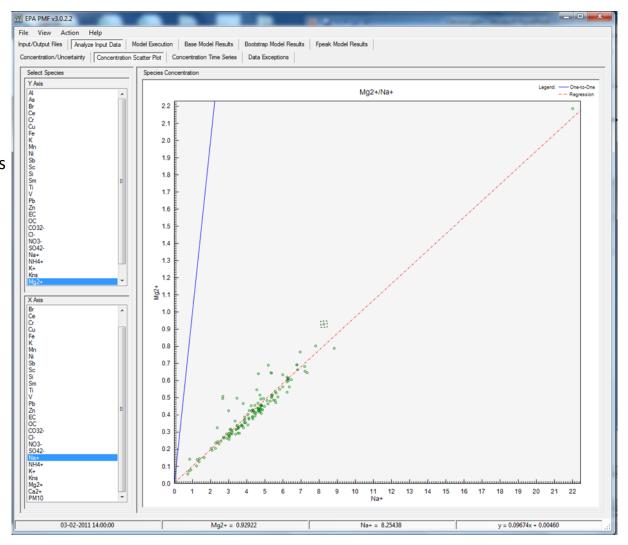
Concentration/Uncertainty

Based on these statistics + knowledge of the data set the user can categorise a specie as:


S/N>2	STRONG	-
0.2 <s n<2<="" th=""><th>WEEK</th><th>uncertainty is tripled</th></s>	WEEK	uncertainty is tripled
S/N<0.2	BAD	Specie is excluded

EPA PMF v3	.0.2.2							I							_			_		-
File View	Action	Help																		
put/Output File	es An	alyze Input	Data	Model Ex	ecution	Base M	odel Results	В	ootstrap Mode	Results	Fpeak	Model Re	esults							
Concentration/	Uncertain	ty Con	centration	n Scatter F	Plot Co	oncentratio	n Time Series		Data Exception	ns										
Input Data St	atistics							T I	Concentrati	on/Uncer	tainty Scatt	ter Plot								
Species	Cat	S/N	Min	25th	50th	75th	Max	1												
AI	Strong	19.00000	0.19842	0.93539	1.94685	6.95566	56.60126								PM10					
As	Weak	1.00742	0.00008	0.00035	0.00051	0.00073	0.00464		140	Ē										1
Br	Weak	9.10807	0.00233	0.00533	0.00832	0.01284	0.02870			Ē										
Ce	Strong	3.45073	0.00003	0.00044	0.00142	0.00539	0.03950		130	E.										
Cr	Strong	13.23532	0.00000	0.00054	0.00167	0.00548	0.02720			Ē										
Cu	Weak	7.77419	0.00022	0.00120	0.00226	0.00467	0.02268		120	Ē										
Fe	Strong	19.00000	0.16331	0.56717	1.07687	3.68554	21.31048		120	E										
к	Bad	19.00000	0.09440	0.27501	0.50184	1.41916	9.57567			E										
Mn	Strong	19.00000	0.00300	0.00968	0.01795	0.05778	0.38098		110	Ē										
Ni	Weak	12.49923	0.00000	0.00126	0.00210	0.00489	0.01624			Ē										
Sb	Weak	0.90472	0.00000	0.00010	0.00015	0.00021	0.00090		100	Ē										
So	Bad	17.32560	0.00000	0.00001	0.00020	0.00093	0.00669			Ē										
Si	Strong	19.00000	0.42347	1.71587	3.52333	12.29377	93.20046		90	E.										
Sm	Strong	5.13488	0.00000	0.00013	0.00020	0.00059	0.00458			Ē										
т	Strong	19.00000	0.02507	0.07148	0.12687	0.36226	2.21899		80	Ē										
v	Weak	1.41197	0.00016	0.00068	0.00171	0.00394	0.03740			E										
РЬ	Weak	2.69152	0.00023	0.00115	0.00227	0.00450	0.01888		Uncertainty	E										
Zn	Weak	18.31574	0.00634	0.01432	0.02040	0.02905	0.09795		1 10 70	Ē										
EC	Strong	19.10386	0.00013	0.07299	0.13384	0.22167	1.17147		5	Ē										
ос	Weak	2.36842	0.07023	0.63298	0.85498	1.45942	7.06092		60	E							•			
CO32-	Weak	10.32465	0.01035	0.07882	0.30473	1.70088	16.34493			Ē										
CI-	Weak	1.95466	1.01682	4.34511	5.68136	7.08989	25.85301		50	Ē.		0		0		0				
NO3-	Strong	2.15544	0.02647	0.90707	1.26071	1.68218	8.08499			Ē			0							
SO42-	Strong	2.23684	0.21579	1.40819	1.93633	2.71214	13.82402		40	E o										
Na+	Weak	1.95263	0.74091	3.23067	4.36213	5.32823	22.00773		40	E				•	_					
NH4+	Weak	3.25142	0.00013	0.09805	0.18476	0.27613	3.47000			Ē			•		0				0	
К+	Strong	2.58007	0.00634	0.15590	0.19481	0.26405	1.93068		30	Ē	•	0					•			
Kns	Strong	11.51661	0.00062	0.11539	0.30036	1.15711	7.64499			E •	_ 0		•		° •	5	0			
Mg2+	Strong	1.96898	0.05518	0.31656	0.42432	0.50460	2.18620		20	- 🔐	. °	°. e	0	_ 0		•				
Ca2+	Strong	4.61841	0.06420	0.35009	0.69719	1.47788	13.75932			Ë 🔗	÷",	. <u>.</u>	•	0 0						
PM10	Weak	20.77101	10.32941	30.82500	48.25807	103.19485	504.15779		10		°68 a ∂ 38° d									
													0.0							
										. 5						L .				
										0	50	100	150	200	250 300 Concentration	350	400	450	500	
																			_	
Strong	We		Bad	Tot	al Variab	le (Defa	ults to Weal								Extra	Modeling I	-	/ (0 - 25%) :		5
	Strong	Species:	15				Weak Spe	cies	: 14		1		Bad Sp	ecies: 2			Samples	Excluded: ()%	

Scatter plots


- Useful pre-PMF analysis tool;
- The user should examine scatter plots to look for expected relations

Scatter plots

- Useful pre-PMF analysis tool;
- The user should examine scatter plots to look for expected relations

Concentration Time Series

- Useful to detect unusual events;
- Help to exclude extreme events from the model.

Output File Analyze trpu Date Model Execution Reset Model Results Execution Model Results Execution State PRI Internation Model Analyze trpu Date Analyze trpu Date Residence Concentration Species Concentrations Internation Model Analyze trpu Date Residence Internation Model Analyze trpu Date Residence Internation Model Analyze trpu Date Residence Species Concentrations Internation Model Analyze trpu Date Residence Species Concentrations Internation Model Analyze trpu Date Residence Internation Internation Residence Internatin Int	EPA PMF v3.0.2.2	Concept Conception	- 0 - X
entration/Uncertainty Concentration Time Sees Data Exceptions entration/Uncertainty Concentration Time Sees Data Exceptions entration/Uncertainty Concentration Species Concentrations Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sec Sm Th V P P No Solution Sm Th V P P No Solution Sec Sm Th V P Sm Sm Th V P Sm Sm Th V P Sm Sm Sm Sm Sm Sm Sm	le View Action Help	odal Even tion Dasa Model Danits Doubtron Model Danits Coast Model Danits	
Species Species Concentration A A B A C C C C C C C 0 Secies 0			
Ar Constrained by Con	Select Species		
Br → A1 → 51 CC 00 100 FE 100 SS 90 Sm 100 T 75 FC 70 Sm 75 FC 70 SS 65 Sm 100 SM 100 SS 100 SM 100 SS 100 SS 100 SM 100 SS 100	A As		
C C 100 Gu 95 Fe 95 Mn 90 Ss 85 Ss 75 C0022 65 C024 65 C025 60 NH+ 955 NSS 95 NH 95 Ss 95	Br	←→ Al ←→ Si	
Fe 95 Mn 90 Sh 90 Sh 80 T 75 PD 75 CO 70 CO 70 CO 65 NO3- 60 SO42- 70 NH4+ 100 Kwa 100 A0 40 A1 40 A2 45 A0 45 A0 40 A1 40 A2 45 A0 40 A2 40 A3 40 A2 40 A3 40 A2 40 A3 40 A3 40 A3 40 A3 40 A3 40 A3 40 A4 40 A3 40 A4 40 A4 40 A4 40 A4 40 A4 40 A5 40 A4 40 A5 40 A4 40 <td< td=""><td>C C</td><td>100 -</td><td>- 100</td></td<>	C C	100 -	- 100
Mn 90 80 <	Fe	95	- 95
So 85 So 85 So 80 So 80 Th 75 Zh 70 CC 70 OC 65 CO 65 So 60 So	Mn	90	90
Sm 80 T 75 Y 75 Zh 70 CC 70 GC 65 CA 65 SO42- 60 Na+ 90 M2+ 60 M2+ 64 M2+ 64 M3- 64 M3- 65 M3- 65 M3- 64 M3- 65 M3- 66 M40 75<	E Sb		185
Th V PB 75 75 76 70 70 70 70 70 70 70 70 70 70 70 70 70	V S		1
Pb 70 70 70 EC 70 65 70 OC 65 60 60 N03- 60 60 60 N4+ 0 55 60 K* 00 45 90 M02+ 00 45 90 M02+ 00 45 90 M02+ 00 45 90 M02- 40 35 90 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	TI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	80	1
EC 0022- C 0032- C - N03- S042- NH4+ K*s Kas 200- PM10 C2+ PM10 C2+ PM10 C2+ PM10 C2+ PM10 C2+ PM10 C2+ PM10 C2+ PM10 C0 C2+ PM10 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C	Pb	75	- 75
CO32- C- NO3- SO42- N*+ NH4+ K* Krs Mg2+ Ca2+ PM10	FC EC	70 E	- 70
N03- S042- NH+ NH+ K+ Kns Mg2+ Ca2+ PM10 40 40 40 40 45 45 20 45 45 40 40 40 45 45 45 40 40 40 45 45 45 45 45 45 45 45 45 45 45 45 45	C032-	65 -	= 65
5042- NH* NH4* K* Kra Mg2+ PM10 40 45 45 45 40 45 40 45 40 45 40 45 40 45 40 40	NO3-	60	1 = 60
45 PMT0 40 35 30 25 20 20 45 40 40 40 40 40 40 40 40 40 40 40 40 40	Na+	E I I I I I I I I I I I I I I I I I I I	
45 PMT0 40 35 30 25 20 20 45 40 40 40 40 40 40 40 40 40 40 40 40 40	🕅 K+		1 oncer
45 PMT0 40 35 30 25 20 20 45 40 40 40 40 40 40 40 40 40 40 40 40 40	Mg2+	8 ⁵⁰ E	1 50 tratio
40 35 30 25 20 20	Ca2+ PM10	45	45
30 25 20 20		40 -	40
30 25 20 20		35	35
			t+ 13
		JU	30
		25	- 25
		20 =	20
		15 - 1	15
			10
1 M LAKA AAN ALAMAN LAND		I What has a showing that	N E
0 24-02-2011 11-04-2011 27-05-2011 12-07-2011 27-08-2011 12-10-2011 27-11-2011			
Clear Selections Exclude Samples Restore Samples	Clear Selections	Exclude Sample	Restore Samples

Order of the operations

Input/Output files	Analyze Input Data	Base Model Results	Bootstrap Model Results	Fpeak Model Results
- Concentration file - Input file - Output file - Configuration file	 Concentration/ Uncertainty Concentration Scatter plot Concentration Time Series Data exceptions 	 Residual Analysis O/P Scatter Plot O/P Time Series O/P Time Series Profiles/ Contributions Aggregate Contributions G-Space Plot Factor Pie Chart Diagnostics 	- Summary	- Profiles/ Contributions - G-Space - Diagnostics
	Model E	xecution		

Model execution

Run Number Q (Robust) Q (Tue) Converged 1 8155.5 9462.5 Yee 3 8151.5 947.2 Yee 5 8137.1 9487.4 No 6 9150.5 9462.7 Yee 7 8151.4 9467.3 Yee 9 8152.6 947.3 Yee 10 847.15 917.3 Yee 11 8639.7 947.3 Yee 13 8150.4 9462.5 Yee 11 8639.7 947.3 Yee 13 8150.4 9461.2 Yee 14 8156.8 9462.5 Yee 15 81558 9462.7 Yee 16 8350.4 947.3 Yee 17 88355 9462.7 Yee 18 8150.4 947.3 Yee 19 8155.8 9463.1 Yee 18 8150.4 947.3 Yee 19 8155.8 947.3 Yee 20		Analyze Input Data Mod	lel Execution E	ase Model Results	
1 1955 9425 Yes 3 1955 9424 Yes 4 2077 93454 Yes 5 1957 9474 No 6 1956 94624 Yes 7 19514 9472 Yes 9 9152 94734 Yes 9 9152 94734 Yes 11 85897 93797 Yes 13 91502 94734 Yes 14 154.6 94625 Yes 15 9153.0 94624 Yes 14 9463.0 Yes Yes 15 9153.0 94625 Yes 16 9353.0 9463.1 No 17 95895 93731 Yes 9 9152.5 9473.4 Yes 9 9152.5 9473.4 Yes 9 9152.5 9473.4 Yes 9 9152.5 9473.4 Yes 9 9152.5 9473.3 Yes		-	0 (Teve)	Comment	Base Model Runs
2 8154.8 9462.2 Yes 3 8151.5 947.2 Yes 4 5287.7 933.4 Yes 5 8155.0 9462.1 Yes 7 8151.4 947.0 Yes 8 9625.4 9668.9 Yes 9 8152.6 947.4 Yes 10 847.15 947.3 Yes 11 8582.7 Yes Noted Runs 06 Bock Size 11 8582.6 947.3 Yes Noted Runs 06 Bock Size 12 8154.4 9463.2 Yes Stength of Fpeak 1: 02 Biock Size 14 8154.8 9463.2 Yes Stength of Fpeak 2: 0.6 Bock Size 15 8155.8 9462.6 Yes Stength of Fpeak 2: 0.4 Biock Size 16 8155.8 9463.4 Yes Stength of Fpeak 2: 0.4 Stength of Fpeak 3: 0.2 Stength of Fpeak 3: 0.2 Stength of Fpeak 3: 0.2 Stength of Fpeak 5: 6 Fin <t< td=""><td></td><td></td><td></td><td>-</td><td>Number of Huns: 20 Seed: 4</td></t<>				-	Number of Huns: 20 Seed: 4
3 91515 947.2 Yet 4 80277 93345 Yet 5 91371 9497.4 No 6 91550 9492.1 Yet 7 8151.4 947.3 Yet 9 9452.6 947.4 Yet 10 947.5 945.5 No 11 959.7 927.7 Yet 12 9152.6 947.3 Yet 13 9150.4 9451.9 No 14 9154.5 9462.5 Yet 15 9152.6 9462.5 Yet 16 9333.0 9463.3 No 17 6939.5 947.3 Yet 18 910.4 947.3 Yet 19 9155.5 946.3 Yet 19 9155.8 946.3 Yet 19 9152.8 947.3 Yet 19 9152.8 947.3 Yet 19 9152.8 947.3 Yet 10 Strength of Fpeak 3:					Number of Factors: 5
4 0207.7 933.45 Yes 5 017.7 9451.4 9473.0 Yes 7 0151.4 9473.0 Yes Selected Base Run: 12 Seed: 25 9 0125.6 9473.4 Yes Yes 10 Outring Model Runs 10 Suggest Block Size 10 0471.5 9153.8 No No 10 Suggest Block Size 11 0593.9 937.7 Yes Yes 10 Suggest Block Size 11 0593.9 937.7 Yes 10 Suggest Block Size 12 8185.4 9462.5 Yes Selected flass Run:: Selected Flass Run::<					
5 8137.1 9487.4 No 7 8157.4 948.21 Yes 9 8152.6 947.30 Yes 9 8152.6 947.34 Yes 10 8477.5 9515.8 No 11 8593.7 937.9.7 Yes 12 8153.6 946.9 Yes 13 8154.6 946.2.5 Yes 15 8155.8 9462.5 Yes 16 8253.6 946.3.4 Yes 17 8269.5 946.3.4 Yes 18 8150.4 947.3.0 Yes 19 8150.5 946.3.4 Yes 20 8152.5 947.3.3 Yes 20 8152.5 947.3.4 Yes 9 8152.6 947.3.4 Yes 18 8160.4 947.3.4 Yes 20 8152.5 947.3.4 Yes 9 Strength of Fpeak 5. 0.6 Image Parength of Speak 5. 0.6 Image Image					
6 8155.0 9462.1 Yes 8 8675.4 9568.9 Yes 9 9152.6 957.7 Yes 10 8471.5 9915.8 No 11 8589.7 Yes No 12 8150.4 948.32 Yes 13 8150.4 948.32 Yes 15 8155.8 9462.5 Yes 15 8155.4 9462.5 Yes 17 8589.5 9373.1 Yes 18 8150.4 9463.4 Yes 19 8155.8 9463.4 Yes 9 8152.5 9473.3 Yes 9 8152.6 16 Image 9 8152.5 9473.3 Yes 9 8152.6					Bootstrap Model Runs
7 8151.4 9473.0 Yes 9 8152.6 9668.9 Yes 10 8471.5 9815.8 No 11 6808.7 937.7 Yes 12 8138.4 9483.2 Yes 14 8154.8 9462.5 Yes 15 8155.8 9462.5 Yes 16 8333.0 9485.3 No 18 8150.4 9473.3 Yes 20 8152.5 9473.3 Yes 20 8152.5 9473.3 Yes 20 8152.5 9473.3 Yes 9 9152.5 9473.3 Yes 9 Stength of Epeak 5: 0.6 Base 18 8150.4 9473.3 Yes 20 8152.5 9473.3 Yes 9 Stength of Epeak 5: 0.6 Image: Paint of Epeak 5: 0.6 Image: Paint of Epeak 5: 0.6 Image: Paint of Epeak 5: 0.6 Image: Paint of Epeak 5: 0.6 Paint Paint Opeak 5: 0.6 Image: Pain					
9 8152.6 9473.4 Yes 10 9471.5 9515.8 No 11 8593.7 9375.7 Yes 12 8128.4 945.3 No 13 8100.4 945.3 No 14 9155.8 9462.5 Yes 16 9333.0 9465.3 No 17 8599.5 9379.1 Yes 18 8150.4 947.3 Yes 19 8155.8 9462.9 Yes 20 8152.5 947.3 Yes 20 8152.5 947.3 Yes 9 Stength of Fpeak Runs: Selected 20 8152.5 947.3 Yes 20 8152.5 947.3 Yes 9 Stength of Fpeak 5 0.6 Image 9 Stength of Fpeak 5 0.6 Image <td></td> <td></td> <td></td> <td></td> <td>Selected Base Run: 12 Seed: 25</td>					Selected Base Run: 12 Seed: 25
3 012.5 347.5 198 No 11 3593.7 3373.7 Yes 1	8	8625.4	9668.9	Yes	Number of Departments 100
11 88987 9378.7 Yes 12 8136.4 9463.2 Yes 13 8150.4 9462.5 Yes 15 8155.8 9462.5 Yes 16 8353.0 9453.3 No 17 86985 9373.1 Yes 18 8150.4 9473.0 Yes 19 8155.8 9463.4 Yes 20 8152.5 9473.3 Yes 9 81eded Fpeak Aus: Selected 20 8152.5 9473.3 Yes 20 8152.5 9473.3 Yes 9 81egd of Fpeak 3: 0.2 2 21 Strength of Fpeak 4: 0.4 2 21 9173.3 Yes 5 0.5 Enn Pan Progress 2 Strength of Fpeak 5: 0.5 Enn Part Progress Strength of Fpeak 5: 0.5 Enn 18 8160.4 9473.0 Yes Strength of Fpeak 5: 0.5 Enn 9 Strength of Fpeak 5:	9	8152.6	9473.4	Yes	Number of Bootstraps: 100 Suggest block Size
12 8138.4 9483.2 Yes 13 8150.4 9461.9 No 14 8156.8 9462.5 Yes 15 8155.8 9462.4 Yes 18 8150.4 9473.0 Yes 20 8152.5 9473.3 Yes 9 Stendth of Epeak.4 0.4 19 20 8152.5 9473.3 Yes 9 Stendth of Epeak.5 0.6 10 19 8152.5 9473.3 Yes 9 Stendth of Epeak.5 0.6 10 19 8152.5 9473.3 Yes 9 Stendth of Epeak.5 0.6 10 Pun Progress 10 10 10 10 19 10 10 10 10 10 10 10 10					Minimum Correlation R-Value: 0.6 Block Size: 7
13 9150.4 9461.9 No 14 8154.8 9462.5 Yes 15 8155.8 9462.3 No 16 6333.0 9482.5 No 17 8589.5 9373.1 Yes 18 8150.4 9473.3 Yes 20 8155.8 9473.3 Yes 20 8152.5 9473.3 Yes 9 8152.6 9473.8 Yes 9 8152.6 9473.8 Yes 9 8152.6 9473.8 Yes 9 8152.6					
14 8154.8 9462.5 Yes 15 8155.8 9462.3 No 16 6333.0 9485.3 No 17 8589.5 9373.1 Yes 19 8155.8 9463.4 Yes 20 8152.5 9473.3 Yes 9 8152.5 9473.3 Yes 9 8152.5 9473.3 Yes 9 8152.5 9473.3 Yes 9 8152.6 9473.3 Yes 9 8152.6 9473.3 Yes 9 8152.6 9473.3 Yes 9 Strength of Fpeak 5: 0.6 Enn Run Progress © Strength of Fpeak 5: 0.6 Enn exek Model Run Summary Exek Model Run Summary Strength of Fpeak 5: 0.6 Enn					Run .
In Older S Order S					Enask Model Dune
16 8353.0 9485.3 No 17 8585.5 9379.1 Yes 18 8150.4 9473.3 Yes 20 8152.5 9473.3 Yes 20 Strength of Epeak 5: 0.6 Imm Run Progress Imm Imm Imm Progress Imm Imm Imm Resk Model Run Summary Imm Imm Imm					
17 85893 5 9379.1 Yes 18 8150.4 9473.0 Yes 20 8152.5 9473.3 Yes 20 8152.5 9473.3 Yes Wester Wordel Run Summary Puice Run Summary Puice Run Summary					Page Page
10 0.003.0 0.073.1 Yes 19 8155.8 9463.4 Yes 20 8152.5 9473.3 Yes 20 8152.5 9473.3 Yes With the set of th					Strength of Fpeak 1: -0.2 Run: 12
19 8155.8 9463.4 Yes 20 8152.5 9473.3 Yes Image: Strength of Epeak 4: 0.4 Image: Strength of Epeak 5: 0.6 Image: Strength of Epeak 5: 0.6 Image: Strength of Epeak 5: 0.6 Run Progress Image: Strength of Epeak 5: 0.6 Image: Strength of Epeak 5: 0.6 Peeak Model Run Summary Image: Strength of Epeak 5: 0.6 Image: Strength of Epeak 5: 0.6					
20 8152.5 9473.3 Yes Strength of Fpeak 3 0.2 Strength of Fpeak 4: 0.4 Strength of Fpeak 5: 0.6 Run Progress Stop					
Image: Strength of Epeak 4: 0.4 Image: Strength of Epeak 5: 0.6 Run Progress Image: Strength of Epeak 5: Image: Strength of Epeak 5: 0.6 Image: Strengt of Epeak 5: 0.6					✓ Strength of Fpeak 3: 0.2
eak Model Run Summary	20	0132.3	3473.3	105	Strength of Enable 4: 0.4
Run Progress					
eeak Model Run Summary					✓ Strength of Fpeak 5: 0.6
eeak Model Run Summary					
Peak Model Run Summary					Hun Progress
Peak Model Run Summary					Stop.
		ummary			
Strengtn ou(Hobust) u (Hobust) u (Hule) Converged	eak Model Run Su	-	0(T-w)	Comment	
		au(Robust) U (Robust)	Q (True)	Converged	

Model execution

Base run summary

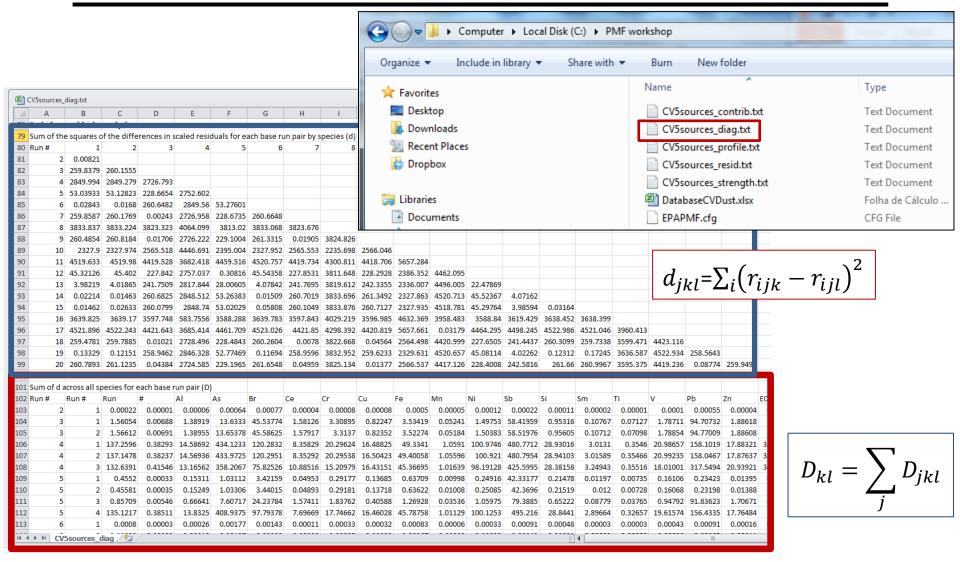
<u>Q values - assessment of how well the model fit the input data</u>

- Q (robust) calculated excluding outliers
- Q (true) calculated including all points
- Theoretical $Q \approx nm-p(n+m)$ (n no. of species; m no. of samples; p no. of factors)
- ✓ Q (true)>1.5 Q (robust) => indicate that peak events may be disproportionately influencing the model ;
- ✓ Theoretical $Q \approx Q(true)$ and Q (robust)

Only converged solutions should be investigated further (Causes for non-convergence - Uncertainties too low, specified incorrectly or inappropriate input parameters)

Order of the operations

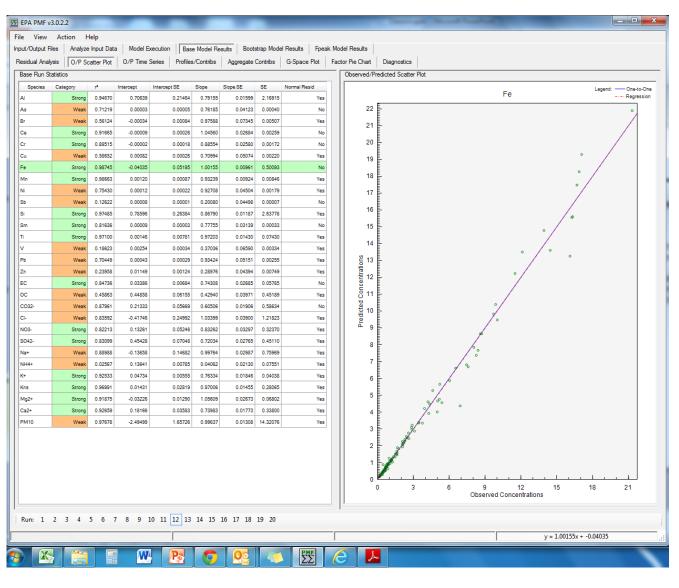
Input/Output files	Analyze Input	Base Model	Bootstrap Model	Fpeak Model
	Data	Results	Results	Results
- Concentration file - Input file - Output file - Configuration file	 Concentration/ Uncertainty Concentration Scatter plot Concentration Time Series Data exceptions 	- Residual Analysis - O/P Scatter Plot - O/P Time Series - Profiles/ Contributions - Aggregate Contributions - G-Space Plot - Factor Pie Chart - Diagnostics	- Box Plots - Summary	- Profiles/ Contributions - G-Space - Diagnostics


Output Files Analyze Input Dat dual Analysis 0/P Scatter Plot	a Model Execution Base Mod O/P Time Series Profiles/Cont		odel Results ctor Pie Chart Diagnostics	- Autor	cale Histogram	
	100	AI		1000	by Species 🔘 Specie	s by Dates
	E				Scaled Residual Greater	
	95			Species	Date/Time	Residuals
	en F			A	12-01-2011 12:25:00	-3.79700
	90 -			A	06-02-2011 12:00:00	4.01400
	85			A	07-02-2011 09:25:00	3.40400
	Ē			A	17-02-2011 13:20:00	3.27800
	80 -			A	24-02-2011 14:30:00	3.28500
	E			A	01-03-2011 14:30:00	3.46200
	75 -			A	25-09-2011 12:15:00	3.58000
2-	70			A	30-09-2011 13:55:00	3,13200
2.	Ĕ			A	26-10-2011 12:31:00	6.03800
	65 -			A	13-11-2011 16:55:00	5.23800
•	Ę			A	05-12-2011 15:20:00	-3.2950
	60 -			A	30-12-2011 10:50:00	-3.86100
0				As	24-01-2011 12:40:00	3.63700
ulated Sum of All Species	55 -			Br	24-08-2011 11:21:00	3.55300
	FILE SOLUTION			Br	10-10-2011 15:15:00	-4.7010
	e			Br	22-10-2011 16:40:00	3.07400
	45 -			Ce	24-01-2011 12:40:00	3.0300
	E			Ce	26-01-2011 13:20:00	3.35300
	40 E			Ce	12-04-2011 13:45:00	-5.95200
	35			Ce	14-04-2011 14:35:00	-7.81900
	Ē			Ce	22-04-2011 15:15:00	3.65900
	30 -			Ce	08-05-2011 09:40:00	-3.57500
	Ē			Ce	11-07-2011 14:30:00	5.12400
	25 E			Ce	14-07-2011 15:25:00	3.74600
	20			Ce	30-07-2011 17:05:00	3.86100
	20 -			Ce	09-08-2011 14:02:00	3.68300
	15 E			Ce	18-08-2011 15:30:00	3.25800
	E			Ce	15-09-2011 16:30:00	-3.27900
	10 -			Ce	25-09-2011 12:15:00	-3.93300
	Ē			Ce	15-10-2011 13:50:00	-3.89900
	5			Ce	20-10-2011 15:50:00	-3.24300
				Ce	26-10-2011 12:31:00	-3.24900
	-4 -3 -2	-1 0 1 2 3	4 5 6 7	Ce	10-11-2011 15:35:00	-9.89700
		Scaled Residuals				0.05000

Residuals

Objective:

- To determine how well the model fit each species
- Poor fit when:
 - large residuals (|r|>3)
 - Non-normal curve



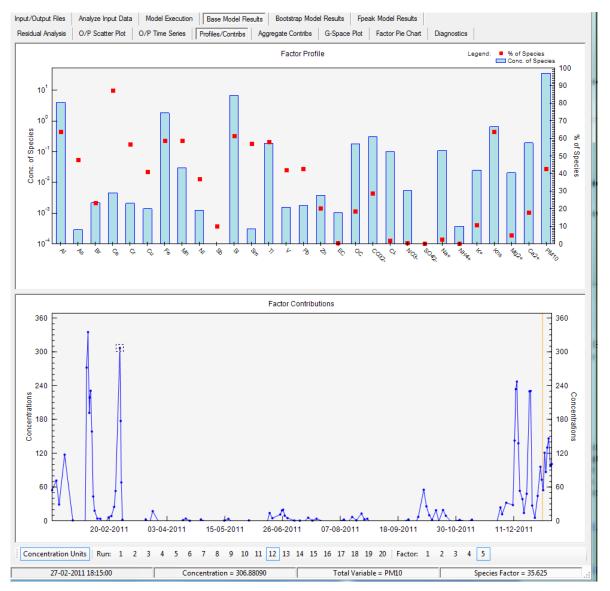
put/Output Files A	nalyze Input Data	Model Execution	Base Model Resu	ilts Fpeak Model	Results Bootst	rap Model Results		
Residual Analysis 0	I/P Scatter Plot 0.	/P Time Series	Profiles/Contribs	Aggregate Contribs	G-Space Plot	Factor Pie Char	Diagnostics	[
ase run summary table	ĸ							~
lun #	Q(Robust) 25620.3 2561 9.9 26467.3	Q(True) 30712.3 30709.2 32448.2	Converged Yes Yes Yes	# Steps 1431 1327 821				
	25620.3 25620.1	30710.3 30709.3	Yes Yes	2195 1860				
caled residual analysis	K							
um of the sum of the s un #	quares of the scaled re 1 3.37280	esiduals for all spec 2	ies 3	4				
	15982.80917 1.05858 2.60058	15951.67926 0.76646 0.06986	15965.96734 15955.59931	0.39663				
um of the squares of th un # Bun #	he scaled residuals for Mass		n Arsenic	Barium	Bromine	Calcium	Chromium	C
1 1 2 1	0.00001 0.01463 0.01460 0.00001 0.00000	Ammonium Ior 1.69390 2612.85460 2610.69087 0.55809 0.31271	0.00731 62.70325 62.90646 0.00254 0.00153	0.00517 93.91410 93.96395 0.00760 0.00304	0.00509 38.93613 38.85690 0.00193 0.00122	0.02168 466.78244 465.79330 0.00952 0.00593	0.00617 101.19067 101.11192 0.00205 0.00147	Copper 0.02436 515.0581 517.0898 0.00874 0.00669
2 3 1 2 3 4	0.01460 0.00001 0.00000 0.01460 0.00000	2609.60936 1.33802 0.02195 2610.85831 0.17097	62.76013 0.00590 0.00022 62.84247 0.00084	93.86382 0.00749 0.00113 93.91661 0.00082	39.90212 0.00394 0.00021 38.86575 0.00065	466.60525 0.01480 0.00196 465.93276 0.00269	101.14724 0.00478 0.00021 101.13653 0.00080	515.9578 0.01979 0.00088 516.7463 0.00337
** Factor Analysis of B	ase Bun #1 ****							
egression diagnostics:								
Decies ass	Intropt 2.74	Slope 0.84	SE 4.01	r^2 0.82	KS Test Stat 0.20	KS Test P Value 0.00		
ass nmonium Ion senic arium	0.03 0.00 0.01	0.94 0.98 0.18 0.02	0.19 0.00 0.01	0.99 0.09 0.09	0.20 0.04 0.22 0.19	0.00 0.21 0.00 0.00		

Observed/Predicted scatter plot

Objective:

- To determine how well the model fit each species

 Evaluate if a species should be down weighted or excluded from the model


EPA PMF v3.0.2	.2				_	Canada Maria	- A hard at		• X
File View Ad									
Input/Output Files	1	Model Execution		Bootstrap Model Results					
Residual Analysis	O/P Scatter Plot		Profiles/Contribs Aggre	egate Contribs G-Space	Plot Factor Pie Chart	Diagnostics			
Select Species		Observed	Predicted Time Series			Fe			
Al As Br Ce Cr Cu			Observed Co	oncentration			icted Concentration		
Ce Cr		24							24
Cu Fe Mn		23						-	23
Ni		22	T T					-	22
Si		2.						-	21
Ti		20						-	20
Pb		19							19
EC		18							18
Sb Sm Ti V Pb EC OC C032- Ci N03- S042-		17							17
NO3- SO42-		10						11	
Na+ NH4+									
K+ Kns Mg2+ Ca2+ PM10		15							10
Mg2+ Ca2+		14							
PMIU		Lafe							13 8
		1: 12 0 0 0 1- 0 1-							13 Concentration 12 11 11
		រី 1 [.]							11 🖣
		10							10
		9							9
		8							8
									7
									6
									5
								.∧ 	L.
							1.	<u> </u>	4
				N 1			/// //		3
		2	▝▐゛ヽŢヽ゚ヺ			AA	, / · \/		2
					A Marsh	V ~ ~ ~	Mart		1
			19-02-201	1 01-04-2011	12-05-2011 22-	06-2011 02-08-201	1 12-09-2011 23-10	-2011 03-12-2011	0
			13 02-20		.2 33 2011 22-	02 00-201		2011 00 12 2011	
Run: 1 2	3 4 5 6 7	8 9 10 11	12 13 14 15 16 17	18 19 20					
	02-01-2012 1	12:00:00		Observe	d Concentration = 9.72	i15	Predicted C	Concentration = 9.82101	
		W.							

Observed/Predicted time series

Objective:

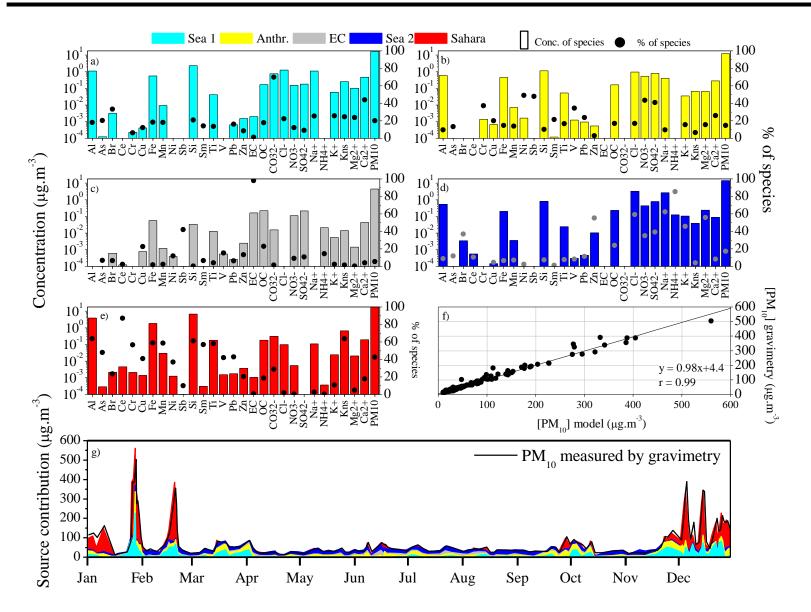
- To determine how well the model fit each species
- Evaluate if a species should be down weighted or excluded from the model

Profiles/Contribs

Objective:

- Display the factors resolved by PMF;
- Two graphs are displayed:
 - Profile graph
 - Mass of each species apportioned to the factor
 - Percent of each species apportionned to the factor
 - Contribution of the factor to the total mass by sample

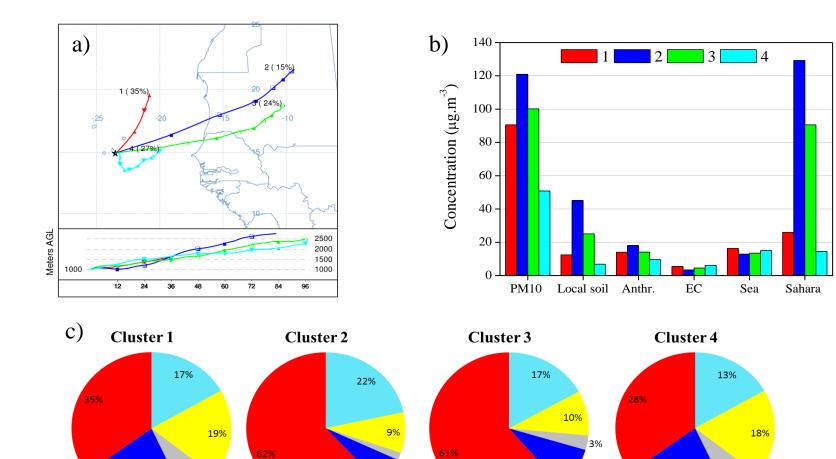
-	Name	Туре
	CV5sources_contrib.txt	Text Document
=	CV5sources_diag.txt	Text Document
	CV5sources profile.txt	Text Document
	CV5sources_resid.txt	Text Document
	CV5sources_strength.txt	Text Document
	🔄 DatabaseCVDust.xlsx	Folha de Cálculo
	EPAPMF.cfg	CFG File



	А	В	С	D	E	F	G	Н	
991	11	Ca2+	6.08E+01	1.95E+01	2.44E+00	1.50E+01	2.35E+00		
992	11	PM10	3.77E+01	1.46E+01	2.95E+00	1.83E+01	2.65E+01		
993									
994	Factor Pro	files (% of	species to	tal) from B	ase Run #1	2 (Converg	gent Run)		
995									
996	12	Al	18.00	9.70	0.00	8.61	63.70		
997	12	As	20.28	13.23	6.85	11.80	47.84		
998	12	Br	33.22	0.00	6.51	36.94	23.32		= 4
999	12	Ce	0.00	0.00	2.36	10.49	87.14		F1
1000	12	Cr	6.14	37.14	0.00	0.00	56.71		
1001	12	Cu	12.17	19.97	22.59	4.37	40.89		ГЭ
1002	12	Fe	18.31	14.57	1.82	6.56	58.74		F2
1003	12	Mn	18.05	13.92	2.33	7.07	58.62		
1004	12	Ni	0.00	48.96	11.70	2.34	37.00		
1005	12	Sb	0.00	48.00	42.04	0.00	9.95		
1006	12	Si	20.83	10.27	0.30	7.37	61.23		F3
1007	12	Sm	13.95	21.37	6.61	1.10	56.97		г5
1008	12	Ti	13.44	16.74	4.04	7.70	58.08		
1009	12	v	0.00	34.39	15.30	8.30	42.01		
1010	12	Pb	16.17	23.60	6.29	11.24	42.70		-
1011		Zn	8.35	2.93	13.25	55.23	20.25		F4
1012		EC	1.21	0.00	98.16	0.00	0.63		14
1013	12	ос	17.76	16.96	22.71	23.98	18.60		
1014		CO32-	69.72	0.00	1.42	0.00	28.86		
1015		CI-	22.22	17.02	0.00	59.02	1.74		
1016		NO3-	12.18	43.44	8.96	34.99	0.42		
1017	12	SO42-	9.14	40.80	10.77	39.29	0.00		-
1018		Na+	25.46	9.63	0.00	62.36	2.54		F5
1019		NH4+	0.00	0.00	14.49	85.26	0.26		15
1020		K+	25.64	15.47	2.37	45.75	10.78		
1021		Kns	24.45	6.55	1.36	3.84	63.80		
1022		Mg2+	23.64	15.54	0.34	55.68	4.80		
1023		Ca2+	44.01	25.95	4.02	8.22	17.81		
1024		PM10	20.10	14.78	5.29	17.27	42.56		
1025			20.10	2	5.25	/	.2.50		
	Factor Pro	files (% of	species to	tal) from B	ase Run #1	3 (Non-Co	nvergent R	un)	-
1020			species to		LUC HUITIT	- (
1027	12	AI	1 79E+01	9 43E+00	0.00E+00	8 74F+00	6 40E+01		
1028		As		1.31E+01	6.87E+00	1.18E+01			
1023	13	~	2.020101	1.510101	0.072100	1.100.001	4.002101		

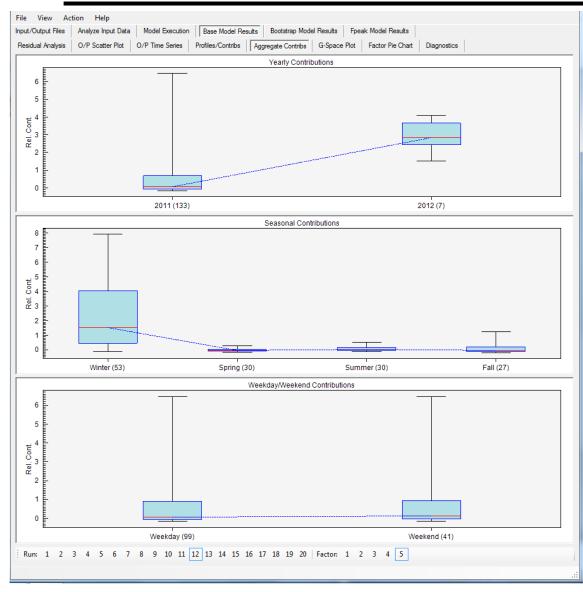
Identifications of sources

	Species	Source
F1	Br, CO ₃ ²⁻ , Ca ²⁺	Local soil
F2	Cr, Ni, Sb, V, NO ₃ ⁻ , SO ₄ ²⁻	Anthropogenic source
F3	Sb, EC	Anthropogenic source
F4	Br, Zn, Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺	Sea
F5	Al, As, Ce, Cr, Cu, Fe, Mn, Mi, Si, Sm, Ti, V, Pb, Kns	Sahara dust



7%

22%


6% 1%

9%

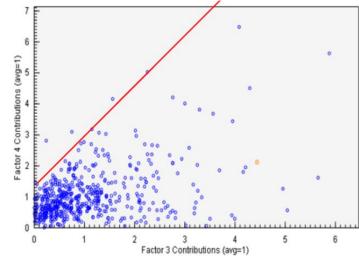
12%

29%

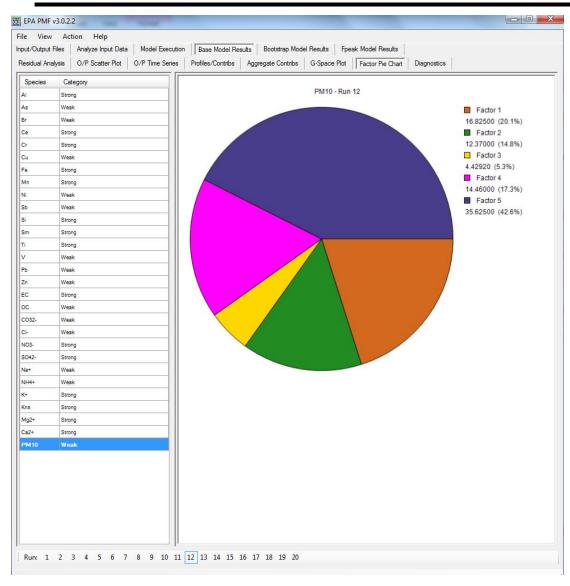
Aggregate Contribs

Objective:

- Display the factors contribution discriminated:
 - by year;
 - season;
 - weekday/wekeend


55 EPA PMF v3.0.2.2		x
File View Action Help		
Input/Output Files Analyze Input Data		
Residual Analysis O/P Scatter Plot		
Select Factors	G-Space Plot	
Factor 1	G-Space Plot - Run 12	
Factor 2 Factor 3		
Factor 4 Factor 5		
	101	
	9	
	8	
	•	
	7	
	E 6 €	
	s s	
	<pre></pre>	
X Axis		
Factor 1 Factor 2		
Factor 3 Factor 4		
Factor 5		
	• •	
	3 =	
	• ••	
	-0.2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 Factor 4 Contributions (avg=1)	
Run: 1 2 3 4 5 6 7	7 8 9 10 11 12 13 14 15 16 17 18 19 20	
04-02-2011 14:00:0	100 Factor 5 = 9.40300 Factor 4 = 0.78192	

G-Space plot


Objective:

- Display 1 factor contribution versus the other;
- Determine if the solution

 has filled the solution space –
 edge of the scatter plot will
 correspond to the axis
 2 has some rotational
 ambiguity appears na oblique
 edge on a space plot

Factor Pie Chart

Objective:

Display the distribution of each species among the factors resolved by PMF

Order of the operations

Input/Output file	Analyze Input s Data	Base Model Results	Bootstrap Model Results	Fpeak Model Results
- Input fi -Output fi - Configuratic	e Uncertainty e - Concentration Scatter plot - Concentration	Analysis - O/P Scatter Plot - O/P Time Series - Profiles/ Contributions	- Box Plots - Summary	- Profiles/ Contributions - G-Space - Diagnostics

Bootstrap runs

Objective: Estimate the stability and uncertainty of the solution

How?

1 – Randomly selects non-overlapping blocks of samples and creats a new input data file of the selected samples;

2 - PMF is run on the new data set and each bootstrap factor is mapped to a base run factor with which the bootstrap factor has the highest correlation, above a user-specific threshold;

3 – If no base factors have a correlation above the thresholdfor a given bootstrap factor , the factor is considered unmapped;

Bootstrap runs

t/Output Files	Analyze Input Data	Model Execution	Base Model Results	Bootstrap Model Result	s Fpe	ak Model I	Results	
ase Model Run Su	mmary	1		Base Model Runs				
Run Number	Q (Robust)	Q (True)	Converged	Number of Runs:	20		Seed:	4
1	8155.9	9462.5	-					
2	8154.8	9462.2		Number of Factors:	5			
3	8151.5	9472.9		Output File Prefix:	CV/Fearing			→ Rur
4	8287.7	9334.5	Yes	Output File Frenk.	CV0s0ur	ces		
5	8137.1	9487.4	No	Bootstrap Model Run	s			
6	8155.0	9462.1	Yes		-			
7	8151.4	9473.0	Yes	Selected Ba	se Run:	12	Seed:	4
8	8625.4	9668.9						
9	8152.6	9473.4		Number of Boo	otstraps:	100	Suggest E	lock Size
10	8471.5	9815.8		Minimum Correlation F	R-Value:	0.6	Block Size:	7
11	8589.7	9379.7			r valao.	0.0	DIODIC OILO.	· ·
12	8138.4	9483.2						Rur
13	8150.4	9461.9	No					
14	8154.8	9462.5	Yes	Fpeak Model Runs				
15	8155.8	9462.9	Yes	Selected Fpeak Runs			Selected	
16	8353.0	9485.3	No	Strength of F	eak 1	-0.2	Base	10
17	8589.5	9379.1	Yes	ing outright of the	Jourt 1.	0.2	Run:	12
18	8150.4	9473.0	Yes	Strength of Fi	beak 2:	-0.4		
19	8155.8	9463.4	Yes	Cimenti of F	and 2	0.2		
20	8152.5	9473.3	Yes	Strength of F	beak 3:	0.2		
				Strength of F	beak 4:	0.4		
				Strength of F	beak 5:	0.6		Rur
				Run Progress				
								STOP Stop

Selected base run – the base run to be used to map each bootstrap run

Number of bootstraps – It is recommended at least 100 bootstrap runs to ensure the robustness of the statistics

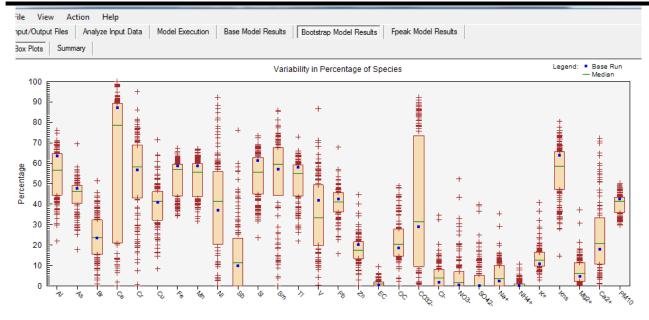
Minimum Correlation R-Values – the minimum Pearson correlation coefficient that will be used in the assignement of a bootstrap run factor to a base run factor. Default value 0.6 (can decrease if a large number of factors are unmapped)

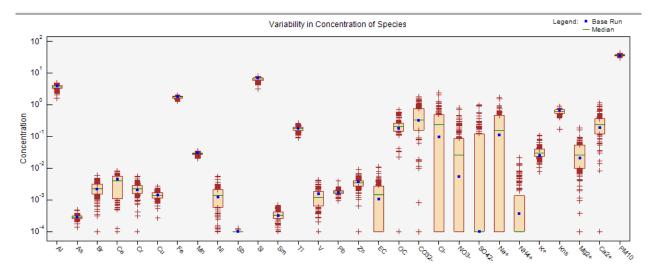
Seed – similar to base runs, starting point for iterations

Block size – the number of samples that will be selected in each step for resampling

Order of the operations

- Concentration file- Concentration/ Uncertainty- Residual Analysis- Box Plots - Summary- Input file- Concentration Scatter plot- O/P Scatter Plot - O/P Time Series- Summary- Configuration file- Concentration Time Series- Profiles/ Contributions- Profiles/ Contributions	
- Input file - Concentration - O/P Scatter Plot -Output file - Concentration - O/P Time Series - Concentration - Configuration Time Series - Profiles/	- Profiles/
-Output file - Concentration - Configuration - Concentration - Concentration - Profiles/	Contributions
-Output file - O/P Time Series - Concentration - Configuration Time Series - Profiles/	- G-Space
- Configuration Time Series - Profiles/	- Diagnostics
- Data exceptions - Data exceptions - Aggregate Contributions - G-Space Plot - Factor Pie Chart - Diagnostics	




File View Input/Outpu Box Plots		elp Input Data Mod		odel Results Bootstra	p Model Results Fpe	eak Model Results			
Number (Bootstra Min. Con Number (Extra mo	del run number of bootstrap : ap random see rrelation R-V. of factors: odeling uncer of bootstrap	runs: 10 d: 4 alue: 0. 5	6						many strap
Boot Fac Boot Fac Boot Fac Boot Fac Boot Fac	ctor 1 ctor 2 ctor 3 ctor 4	Factor 1 Ba 68 1 0 1 0	ase Factor 2 Ba 3 74 2 0 0 0	se Factor 3 Bas 1 98 1 0	e Factor 4 Base 0 2 0 87 0	E Factor 5 19 8 0 0 100	Unmapped 9 1 4 0 11 0	facto mato	brs we ched to base
Q(Robust Min 5907	t) Percentile 25th 7236	Me	dian 75 71 79					facto	or
Variabi: Factor 1 2 3 4 5	-	strengths ba 5.7463E-00 6.3419E-00 4.0350E-00 8.6227E-00 6.9957E-00	01 8.5119E-00 01 6.2090E-00 01 1.0000E+00	Median L 1.0000E+000 L 1.0000E+000 L 8.2684E-001 D 1.0820E+000	75th 1.3257E+000 1.1734E+000 1.0599E+000 1.2304E+000 1.3955E+000	95th 2.1277E+00 1.8602E+00 1.6719E+00 1.5025E+00 2.0887E+00	0		
Bootstra	ap run uncert	ainty statist:	.cs:						
Factor 3	-	Base Run ies Profile Al 1.1210E+00 As 1.2307E-00 Br 3.0919E-00 Ce 0.0000E+00 Cr 2.2490E-00 Cu 4.1299E-00	IQR Me 00 Yes 1. 04 Yes 1. 03 Yes 2. 00 Yes 6. 04 Yes 3.	L502E+000 3.6 2296E-004 2.4 5537E-003 1.0 5996E-004 1.1 5007E-004 2.9	260E-005 7.50 271E-003 7.15 220E-003 0.00 129E-004 0.00	587E-001 9. 845E-005 1. 530E-004 2. 000E+000 0. 000E+000 1.	th 54602-001 07792-004 00632-003 00002+000 41062-004 88682-004	Median 1.1411E+000 1.2200E-004 2.5502E-003 2.6660E-005 3.1875E-004 3.8194E-004	75th 1.397: 1.3931 3.1831 1.089: 4.7731 4.679:

EPA PMF v3.0.2.2		and been		-				
File View Acti	ion Help							
nput/Output Files	Analyze Input D	lata Model Exec	ution Base Mo	del Results 🛛 🛛 E	Bootstrap Model Results	Fpeak Model Res	ults	
Base model run Number of boot Bootstrap rand Min. Correlati Number of fact Extra modeling	strap runs: om seed: on R-Value: ors:	12 100 4 0.6 5 y (%): 5						
Mapping of boo Boot Factor 1 Boot Factor 2 Boot Factor 3 Boot Factor 4 Boot Factor 5	tstrap facto Base Facto 68 1 0 1 0	or 1 – Base Fa 8		= Factor 3 1 98 1 0	Base Factor 4 2 0 87 0	Base Factor 5 19 8 0 0 100	Unmapped 9 14 0 11 0	How many bootstrap facto were matched each base fact
Q(Robust) Perc	entile Repor	rt:						
	25th 7236	Median 7571	75t] 795:		Max 8596			
5907	7236	7571	795:	1				
S907 Variability in Factor Mean 1 1.11177 2 1.0659 3 8.8245 4 1.1183	7236 factor stre 51 E+000 5 E+000 6 E-001 4 E+000 8	7571	795:	1	75th 2+000 1.3257 2+000 1.1734 2-001 1.0599 2+000 1.23043	2+000 1.860 2+000 1.671 2+000 1.502	7E+000 2E+000 9E+000 5E+000 7E+000	
S907 Variability in Factor Mean 1 1.1117 2 1.0659 3 8.8245 4 1.1183 5 1.2804	7236 factor stre 51 E+000 5 E+000 6 E-001 4 E+000 8 E+000 6	7571 engths based of th .7463E-001 .3419E-001 .0350E-001 .6227E-001 .9957E-001	795: on bootstrapp: 25th 7.8261E-001 8.5119E-001 6.2090E-001 1.0000E+000	Median 1.0000 1.0000 8.2684 1.0820	75th 2+000 1.3257 2+000 1.1734 2-001 1.0599 2+000 1.23043	\$+000 2.127 \$+000 1.860 \$+000 1.671 \$+000 1.502	2E+000 9E+000 5E+000	
2 1.0659 3 8.8245 4 1.1183	7236 factor stre 51 E+000 5. E+000 6. E+000 8. E+000 8. E+000 6. uncertainty Species P1 Al 1. As 1. Br 3. Ce 0.	7571 engths based of th .7463E-001 .3419E-001 .0350E-001 .6227E-001 .9957E-001 statistics: ase Run	7955 25th 7.8261E-001 8.5119E-001 6.2090E-001 1.0000E+000 9.4554E-001 Within Boor IQR Mean Yes 1.11 Yes 1.21 Yes 2.65 Yes 6.65	Median 1.0000 1.0000 8.2684 1.0820 1.1886 1.1886	75th 2+000 1.32573 2+000 1.17343 2-001 1.05993 2+000 1.23043 2+000 1.39553	\$+000 2.127 \$+000 1.860 \$+000 1.671 \$+000 1.502	2E+000 9E+000 5E+000	Median 75 1.1411E+000 1.3 1.2200E-004 1.3 2.5502E-003 3.3 2.6660E-005 1.1 3.1875E-004 4.7

Base run profile 25th-75th percentile of bootstrap runs Median of bootstrap runs Values beyond 25th and 75th percentiles

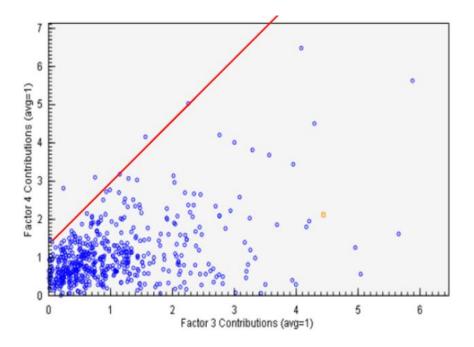
Uncertainty of the solution

- Go to output file "*_diag.txt".
- In "Bootstrap run uncertainty statistics - Variability in concentration of species" we find output of the bootstrap factor by factor.
- The uncertainty is the absolute difference between the 75th and 25th percentiles divided by two.

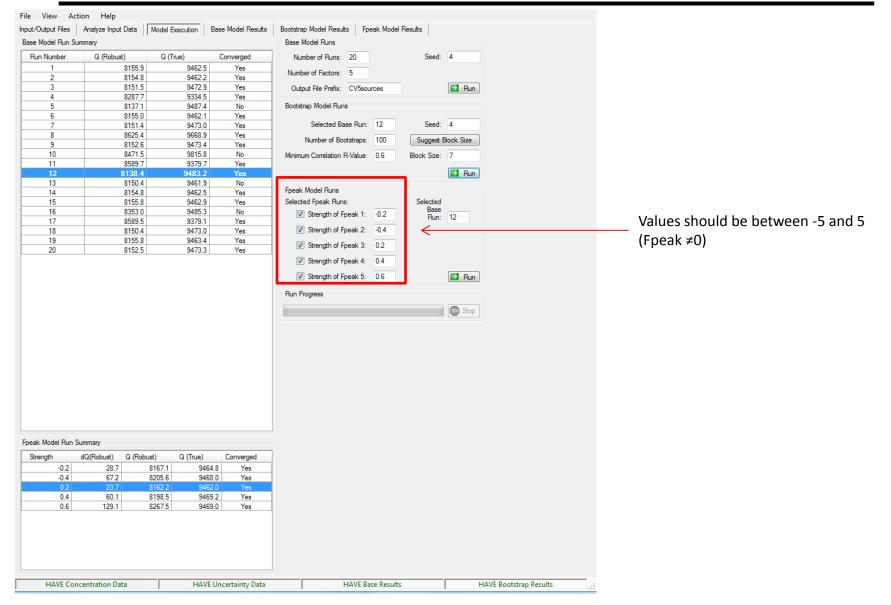
	А	В	С	D	E	F	G	Н	I.	J	К
430	Bootstrap	run uncer	tainty stati	istics							
431											
432	Variability	in concer	tration of	species:							
433											
434	Factor 1										
435		Base Run	Within	Bootstrap	Runs:						Uncertainty
436	Species	Profile	IQR	Mean	Std. Dev.	5th	25th	Median	75th	95th	(75th-25th)/2
437	AI	1.12E+00	Yes	1.15E+00	3.69E-01	4.26E-01	9.55E-01	1.14E+00	1.40E+00	1.78E+00	2.21E-01
438	As	1.23E-04	Yes	1.23E-04	2.43E-05	7.58E-05	1.08E-04	1.22E-04	1.39E-04	1.60E-04	1.58E-05
439	Br	3.09E-03	Yes	2.55E-03	1.03E-03	7.15E-04	2.01E-03	2.55E-03	3.18E-03	4.14E-03	5.89E-04
440	Ce	0.00E+00	Yes	6.70E-04	1.12E-03	0.00E+00	0.00E+00	2.67E-05	1.09E-03		5.45E-04
441	Cr	2.25E-04	Yes	3.50E-04	2.91E-04	0.00E+00	1.41E-04	3.19E-04	4.77E-04	1.01E-03	1.68E-04
442	Cu	4.13E-04	Yes	3.77E-04	1.77E-04	0.00E+00	2.89E-04	3.82E-04	4.68E-04	7.22E-04	8.96E-05
443	Fe	5.67E-01	Yes	5.74E-01	1.27E-01	3.31E-01	5.05E-01	5.79E-01	6.60E-01	7.67E-01	7.77E-02
444	Mn	9.22E-03	Yes	9.46E-03	2.26E-03	5.03E-03	8.06E-03	9.71E-03	1.08E-02	1.34E-02	1.36E-03
445	Ni	0.00E+00	Yes	8.07E-05	2.19E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.62E-04	0.00E+00
446	Sb	0.00E+00	Yes	8.63E-06	1.52E-05	0.00E+00	0.00E+00	0.00E+00	1.26E-05	4.54E-05	6.31E-06
447	Si	2.31E+00	Yes	2.29E+00	6.26E-01	8.78E-01	2.01E+00	2.27E+00	2.72E+00	3.38E+00	3.56E-01
448	Sm	7.67E-05	Yes	9.22E-05	4.70E-05	1.43E-05	7.25E-05	9.00E-05	1.11E-04	1.98E-04	1.90E-05
449	Ti	4.25E-02	Yes	4.67E-02	1.35E-02	2.36E-02	3.78E-02	4.75E-02	5.34E-02	7.44E-02	7.78E-03
450	V	0.00E+00	Yes	2.63E-04	3.64E-04	0.00E+00			4.89E-04	1.16E-03	2.45E-04
451	Pb	6.59E-04	Yes	6.76E-04	1.79E-04	3.11E-04	5.87E-04	6.81E-04	7.82E-04	9.71E-04	9.72E-05
452	Zn	1.55E-03	Yes	1.96E-03	1.56E-03	0.00E+00	1.12E-03	1.80E-03	2.42E-03	4.08E-03	6.51E-04
453	EC	2.01E-03	No	1.40E-03	2.68E-03	0.00E+00	0.00E+00	4.46E-04	1.65E-03	6.74E-03	8.26E-04
454	OC	1.72E-01	Yes	1.70E-01	6.42E-02	6.05E-02	1.32E-01	1.69E-01	2.02E-01	2.83E-01	3.51E-02
455	CO32-	7.58E-01	Yes	5.76E-01	2.57E-01	1.13E-01	4.40E-01	6.06E-01	7.63E-01	9.84E-01	1.62E-01
456	CI-	1.25E+00	Yes	1.26E+00	6.14E-01	3.20E-01	8.65E-01	1.24E+00	1.53E+00	2.44E+00	3.32E-01
457	NO3-	1.54E-01	Yes	1.97E-01	1.45E-01	0.00E+00	7.29E-02	1.86E-01	2.87E-01	5.08E-01	1.07E-01
458	SO42-	1.83E-01	Yes	3.38E-01	2.27E-01	0.00E+00	1.81E-01	3.16E-01	4.59E-01	8.31E-01	1.39E-01
	Na+	1.09E+00	Yes	1.00E+00	4.85E-01	2.85E-01	7.06E-01				2.59E-01
460	NH4+	0.00E+00	Yes	8.92E-04	2.83E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.00E-03	0.00E+00
461	K+	5.85E-02		5.72E-02	2.02E-02	2.04E-02					1.06E-02
462	Kns	2.52E-01	Yes	2.34E-01	7.30E-02	6.78E-02	2.00E-01	2.35E-01	2.86E-01	3.42E-01	4.27E-02
463	Mg2+	1.00E-01	Yes	9.78E-02	4.20E-02	3.42E-02	7.13E-02	9.54E-02	1.18E-01	1.72E-01	2.31E-02
464	Ca2+	4.77E-01	Yes	4.25E-01	1.42E-01	1.39E-01	3.50E-01	4.37E-01	5.24E-01	6.36E-01	8.72E-02
465	PM10	1.68E+01	Yes	1.69E+01	6.40E-01	1.60E+01	1.66E+01	1.69E+01	1.73E+01	1.83E+01	3.47E-01
466											
467	Factor 2										

Order of the operations

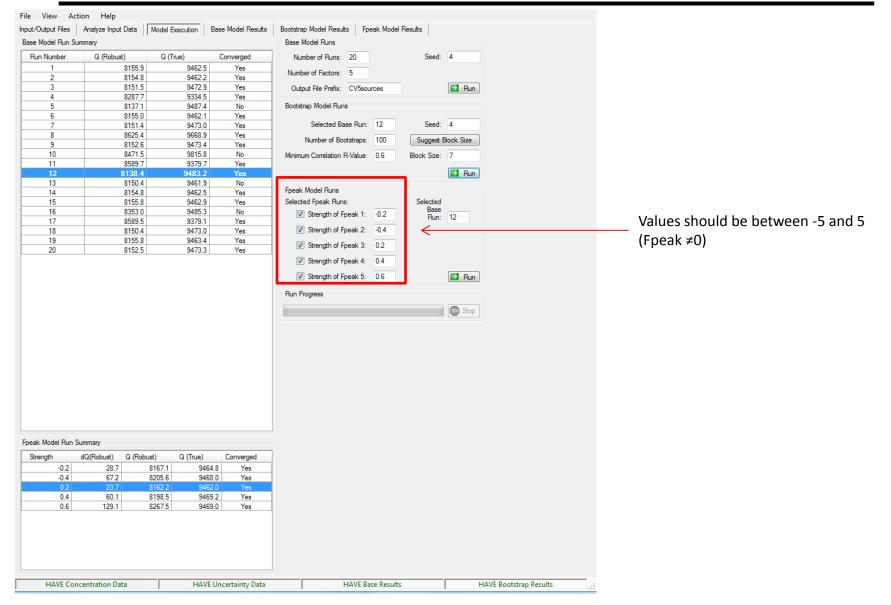
Input/Output files	Analyze Input Data	Base Model Results	Bootstrap Model Results	Fpeak Model Results
- Concentration file - Input file - Output file - Configuration file	 Concentration/ Uncertainty Concentration Scatter plot Concentration Time Series Data exceptions 	- Residual Analysis - O/P Scatter Plot - O/P Time Series - Profiles/ Contributions - Aggregate Contributions - G-Space Plot - Factor Pie Chart - Diagnostics	- Box Plots - Summary	- Profiles/ Contributions - G-Space - Diagnostics


Fpeak runs

Rotation ambiguity


- The user should inspect the G-space plots for each pair of factors in the original solution to determine if an incorrect rotation has occured .

- In this case the solution must to be rotated to the real solution using **Fpeak**

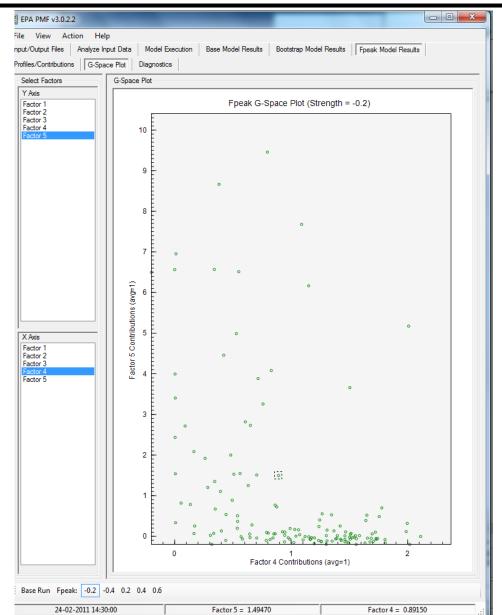


Fpeak runs

Fpeak runs

Order of the operations

				Fpeak Model
Input/Output files	Analyze Input Data	Base Model Results	Bootstrap Model Results	Results
- Concentration file	 Concentration/ Uncertainty 	- Residual Analysis	- Box Plots	- Profiles/
			- Summary	Contributions
- Input file	- Concentration Scatter plot	- O/P Scatter Plot		- G-Space
-Output file		- O/P Time Series		- Diagnostics
- Configuration	- Concentration Time Series	- Profiles/		
file	- Data exceptions	Contributions		
		- Aggregate		
		Contributions		
		- G-Space Plot		
		- Factor Pie Chart		/
		- Diagnostics		



Fpeak model results

Fpeak model results

Thank you for your attention