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For the usual small volumes of control rooms, standing waves 
arise at audible frequencies well below the Schroeder frequency

Extended modal decay times
Non-uniformity of the frequency response 

IN THE LOW-FREQUENCY RANGE, RESPONSIVE

CONTROL ROOM RESONANCES SHOULD BE AVOIDED

Room acoustical response and  
T30 at the listening position
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CURRENT TECHNIQUES FOR LOW-FREQUENCY DESIGN

- Choice of room shape and dimensions

- Choice of loudspeaker and listener locations

- Panel absorbers

- Helmholtz bass-trapping resonators

WHY NOT USE OPTIMIZED MULTI-MODAL BASS-
TRAPPING RESONATORS ?

Design of duct cross sectional areas in bass-trapping 
resonators for control rooms
Inácio, Henrique & Antunes

Noise Control Engineering Journal 55 (2007) 172-182.
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OPTIMAL SHAPES TO PRODUCE A GIVEN TARGET SET OF MODAL 
FREQUENCIES FOR THE ACOUSTICAL RESONATOR
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However, modal frequencies are only part of the problem:
(Morse & Ingard, 1968 ; Fahy & Schofield, 1980)

Damping phenomena
Acoustical room & resonator modeshapes

Resonator locations

Room/resonator(s) coupling efficiency
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THE RESONATOR OPTIMIZATION PROBLEM SHOULD BE SOLVED 
FOR THE ROOM/RESONATOR(S) COUPLED SYSTEM

Computer-intensive methods (FEM, BEM) , with thousands of 
DOFs, are not ideally suited for the coupled room/resonator 
computations needed during the optimization procedure.

Sub-structure / component-mode-synthesis techniques are much 
more economical, but they have been used more for structural than 
acoustical problems.

Furthermore, if the modal basis are well chosen, only the sub-system 
modes of component(s) to be shape-optimized are recomputed at 
each optimization iteration, while those of the room are computed only 
once.

In 2007 (ISRA 2007 Sevilla) a sub-structure computational approach to the 
coupled problem was presented:

Antunes & Inácio (2007) - A Theoretical Analysis of Multi-Modal 
Bass-Trapping Resonators Coupled to Control-Room Acoustics.
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OPTIMIZATION PROCEDURE

Global optimization method used:      Simulated Annealing 

Calculate isolated room 
acoustical response at 
resonator, source and 
listener locations (FEM)

Calculate isolated 
resonator acoustical 
response (FEM)

Calculate the coupled 
acoustics using the sub-
structure method If εi < εoptim

accept solution

Establish error function ε to optimize

Change optimization 
parameters: 

resonator shape, 
location and 

damping.

Diminish range of 
acceptable 
solutions 

(T=T-ΔT)

If εi > εoptim
change solution

T = Tmin?

No

Yes

Optimal shape, 
location and 

damping found.

For i=1 to N

Difference between 
min and max of 

source to listener 
Transfer Function
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CONSERVATIVE MODEL FOR COUPLED ROOM / RESONATORS 

Room pressure field

Resonator(s) pressure field
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EQUIVALENT PENALTY FORMULATION 
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MODAL FORMULATION 

The sub-system modal basis are those of the 
room and resonator(s) closed at the interfaces
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DISSIPATIVE PROBLEM

(a) Damping coefficients           and             in the modal equations :ζ ( )r
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(b) At the room/resonator interface(s) (viscous phenomena, use of 
damping porous materials) with “acoustic resistance” R .
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A SIMPLE EXAMPLE OF THE SUB-STRUCTURE METHOD

“SHOE-BOX” ROOM & 2 CYLNDRICAL RESONATORS

Room modal basis:

π π πφ

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠ =⎣ ⎦⎨
⎪

=⎪
⎪⎩

1/ 222 2
( ) 0

( )

2 ;  ( , , 0,1,2,...)

( , , ) cos cos cos

r
ijk

x y z

r
ijk

x y z

c i j kf
L L L i j k

i x j y k zx y z
L L L

Resonator modal basis:
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Modal frequencies of the isolated closed sub-systems (L=3 m , D=0.5 m)

0.0   57.17   114.3Resonators

0.0   19.06   34.30   38.11   39.24   42.88   46.92   51.27   54.91   57.17   57.36   58.12   66.67Room

1       2          3          4          5          6          7 8          9         10        11        12       13 Mode

Modal frequencies of the coupled system (L=3 m , D=0.5 m)
About 200 modes used

0.0      18.83      26.62      27.07      34.43      38.28 39.39      42.92      46.97      51.31FEM

0.0      18.87      29.26      29.72      34.50      38.34 39.44      42.92      46.97      51.31Present 
approach

1           2             3             4             5         6             7             8             9            10 Mode

COMPARISON BETWEEN PRESENT METHOD AND FEM COMPUTATIONS

- A few hundred modes against 105 FEM dofs

- Good precision results using 300 modes

- Three orders of magnitude faster than FEM
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FORCED RESPONSES TO A VOLUME VELOCITY SOURCE
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Coupled system
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EFFECT OF THE ROOM/RESONATOR(S) INTERFACE DAMPING

0=R

4.5 mL = 0.5 mD = Room Reso 0.1%ζ ζ= =

325 Ns/m=R
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OPTIMIZATION PROCEDURE CALCULATIONS
5 m; 9 m; 4 mx y zL L L= = = Room Reso0.5%;       2.5%ζ ζ= =

Objective:

Using two resonators applied at the Sx surface 

find the shape, location and interface resistivity to minimize

Max(TF) – Min (TF) between 15 Hz to 150 Hz.

xSyS

zS
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OPTIMIZATION PROCEDURE CALCULATIONS
5 m; 9 m; 4 mx y zL L L= = = Room Reso0.5%;       2.5%ζ ζ= =

Optimal resonator shapes found

Cosine functions Chebyshev polynomials
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OPTIMIZATION PROCEDURE CALCULATIONS
5 m; 9 m; 4 mx y zL L L= = = Room Reso0.5%;       2.5%ζ ζ= =

Optimal transfer functions found

Chebyshev polynomials

27 dB 
decrease
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OPTIMIZATION PROCEDURE CALCULATIONS
5 m; 9 m; 4 mx y zL L L= = = Room Reso0.5%;       2.5%ζ ζ= =

Optimal transfer functions found

Cosine functions

32 dB 
decrease
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C O N C L U S I O N S

1) We have addressed the problem of optimizing the shape, 
locations and interface damping of bass-trapping resonators 
coupled to the acoustical response of a room.

2) The acoustical component mode synthesis method (developed 
in previous work) was implemented with a Simulated 
Annealing global optimization procedure.

3) Different solutions were found using different geometrical 
function that determine the resonator shape. 

4) Results show that using two optimized multi-mode resonators
at one of the room surfaces, the difference between maximum 
and minimum of the source to listener transfer function can be 
reduced by 30 dB.


