ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 89 (2003) 948 -963

Optimal Design and Physical Modelling of Mallet
Percussion Instruments

Luis L. Henrique
Instituto Politécnico do Porto, Escola Superior de Musica e Artes do Espectaculo IPP/ESMAE, Rua da Alegria,
4000 Porto, Portugal

José Antunes
Instituto Tecnoldgico e Nuclear, Applied Dynamics Laboratory ITN/ADL, Estrada Nacional 10, 2685 Sacavém,
Portugal

Summary

At the present time, instruments are mostly designed by trial and error procedures, which are inefficient and
costly. In the first part of this paper we present an approach, based on finite-element eigen-analysis coupled with
optimization procedures, which enable the computation of optimal instrument shapes in order to obtain a target
set of modal frequencies. We briefly discuss various optimization approaches, deterministic and stochastic, in
relation with computational efficiency and effectiveness. A satisfying compromise has been found by describing
the shape of the vibrating components in terms of orthogonal shape-functions, and then optimizing their am-
plitude coefficients using a deterministic optimization scheme. Beyond enabling a systematic and cost-effective
way of improving conventional instrument designs, an obvious advantage of optimization is the possibility of
developing non-conventional instruments with new sound qualities. We illustrate the various aspects discussed
by optimizing vibraphone or marimba-type bars, for several modal target sets. In the second part of this paper, we
turn towards the sound synthesis of percussion bars. Here, the nonlinear physical modelling is based on a modal
representation of the unconstrained bar. Such approach addresses the spatial aspects of the problem, being well
suited for both non-dispersive and dispersive systems — which is the case of the flexural waves of interest here.
Only the vibratory responses will be simulated, without an explicit accounting of sound radiation phenomena or
of the coupling between vibrating bars and acoustic resonators. We illustrate the computational method with nu-
merical simulations (sounds and animations) of marimba and vibraphone bars, for both classic and non-orthodox
geometries.

PACS no. 02.60.Pn, 05.45.-a, 43.40.Ga, 46.15.Cc

1. Introduction

A significant number of modes can be excited in mallet
percussion instruments. These are of paramount impor-
tance, as far as instrument intonation and timbre quality
are concerned, and every effort must be provided to reach
a successful design. At the present time, musical instru-
ments are mostly designed by trial and error procedures,
based on empirical knowledge and experimentation. In
spite of the makers’ know-how, such methods are often in-
efficient and costly. We think that many aspects of instru-
ment design can be improved using a more rigorous design
approach, by coupling optimization procedures with ade-
quate modelling techniques.

Significant developments in system modelling and op-
timization, during the last decades, are the result of a
spectacular increase in computational hardware and soft-
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ware capabilities — see, for instance, [1, 2]. Although
mainly applied in the context of industrial problems [3, 4],
there have been a number of attempts to apply opti-
mization techniques in the context of musical instruments
[5,6,7,8,9, 10, 11]. Results have been in general fruit-
ful, and efforts in this direction are still actively pursued
by the authors and others [12, 13]. Some aspects of our
own work in this area will be presented here, in order to
elucidate how the various bar shapes used in our numeri-
cal simulations were obtained. A more detailed discussion
and recent results of our work in the optimization of mallet
percussion instruments will be found elsewhere [13].

In a previous paper [10], we have developed a method
for the optimal design of percussion instrument bars, such
as found in xylophones, marimbas and vibraphones. The
aim was to compute optimal bar shapes, in order to com-
ply with a pre-defined target set of modal frequencies — in
other words, to shape the spectral content of the instrument
response — given a number of technological constraints,
which establish the acceptable ranges of the instrument
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physical and geometrical parameters, as well as other fea-
tures such as shape simplicity.

Typically, the modal frequencies of interest will display
harmonic relationships (however, one might well wish oth-
erwise, depending on the musical context). For instance,
typical values of the first and second modal frequencies
for xylophones and marimbas attempt integer relationships
of 1:3 and 1:4, respectively, with some variations on the
third flexural modal frequency, most usually between 1:9
and 1:10. To obtain adequate intonation, the bar profile is
progressively changed by trial and error, using a suitable
undercut, until the target frequencies have been reached
within the allowed tolerance [14].

In [10] we showed that the design of tuned bars can
be greatly improved and simplified by coupling finite-
element eigen-computations with a suitable optimization
procedure. Indeed, for complex and innovative modal fre-
quency relationships, such approach may prove invalu-
able. Values of the geometrical parameters — the bar pro-
file H(z), given by the height H; = H (z;) of each mesh
element — were sampled in the admissible search space.
Then, for each system configuration, an eigenvalue anal-
ysis was performed using the finite-element method. A
suitable error function, to be minimized, was then com-
puted between the eigenfrequencies obtained at each iter-
ation and the modal target set.

Many parameters are involved in the geometry op-
timization problem, with two unwanted consequences:
Firstly, the optimization becomes computationally inten-
sive, and this is further true as the number of parameters
to optimize P, (p = 1,2,...) increases. Secondly, the
error hyper-surface €(P,) where the global minimum is
searched will display in general many local minima.

In [10] we avoided converging to sub-optimal local min-
ima by using a robust (but greedy) global optimization
technique — simulated annealing [1, 2, 15]. In order to im-
prove the computational efficiency, the global optimiza-
tion algorithm was coupled with a deterministic local op-
timization technique [1, 2], to accelerate the final stage of
the convergence procedure. Very encouraging results have
been obtained, demonstrating the feasibility and robust-
ness of this approach, as well as the potential to address
other aspects of musical instrument design. However, a
negative side effect was the need for significant compu-
tation times, which seem 1ill suited to the optimization of
large-scale systems — such as, for instance, carillon bells.

More recently, we tried to alleviate this problem, by
reducing the dimension of the search space where opti-
mization is performed [11]. This can be achieved in sev-
eral ways, by describing the geometrical profiles of the vi-
brating components in terms of a limited number of pa-
rameters. Here, we chose to develop H(x) in terms of a
set of orthogonal shape functions ) (z), optimizing their
amplitude coefficients. For complex systems, described by
finite-element meshes with hundreds or thousands of el-
ements, this approach may reduce the size of the opti-
mization problem by several orders of magnitude. Then,
we have found that, most often, acceptable solutions can
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be obtained using efficient local optimization algorithms,
leading to a further reduction in computation times. Most
of the examples presented in this paper have been ob-
tained using such approach. We illustrate the various as-
pects discussed by optimizing vibraphone or marimba-
type bars, for several modal target sets. Both classic and
non-orthodox geometries are addressed.

We then turn to the physical modelling of the nonlin-
ear responses of percussion instruments. Physical mod-
elling of musical instruments is one of the most active ar-
eas in music acoustics, and very significant developments
have been achieved in recent years [16, 17, 18]. Among
these, string and wind instruments have been addressed in
many significant papers. However, in spite of the relevant
work offered by a few authors, idiophones — which typ-
ically display strongly dispersive waves — have received
much less attention. Rossing [19] has put much effort in
understanding the fascinating dynamics of many percus-
sion instruments. Among authors interested in the physical
modelling of idiophones, Chaigne and his co-workers have
been particularly active in this field — see, for instance,
[20, 21, 22, 23, 24].

Our interest in the physical modelling of impacted bars
was motivated by the need to assert the timbral qualities of
different designs, without the need for costly and lengthy
prototype machining of each and every computed opti-
mized bar profile H(z). Hence, we will address here a
sound synthesis problem already approached by Chaigne
and Doutaut using a spatial discretization in terms of finite
differences [20]. However, we will develop a completely
different approach, based on the modal representation of
unconstrained bars, to address the spatial aspect of the dy-
namical problem. Such approach is well adapted to nonlin-
ear problems involving both non-dispersive and dispersive
systems — and, as such, suited to the flexural waves excited
in idiophones, as we have shown recently [25, 26].

Only the vibratory aspects will be simulated here, with-
out an explicit accounting of the sound radiation phenom-
ena or of the coupling between vibrating bars and acoustic
resonators — see [21, 27, 28, 29]. We also assume that all
nonlinear effects stem from the mallet/bar interaction, with
no material or large-displacement nonlinearities — such as
unmistakably found in thin-walled plates, shells, cymbals
and gongs [24, 30, 31, 32, 33]. From our nonlinear nu-
merical simulations, we have obtained bar-animations and
sounds, for marimba and vibraphone bars, using both con-
ventional and innovative designs.

2. Optimization procedures

We will start by briefly describing the computational ap-
proach used here to obtain the bar eigenvalues. These are
needed in the error function to be minimized, and we dis-
cuss the structure of such error function. We then recall
the deterministic and stochastic optimization algorithms
used in the present work, as well as the relevant con-
straints which must apply. To conclude this section, we
propose a computationally efficient approach, using or-
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thogonal shape-functions to describe the system geometry,
and develop the modified constraints which apply to such
formulation.

2.1. Computational approach

The cross-section dimensions of bars used in marimba-like
instruments are not usually small compared to their length.
Indeed, as modal frequencies increase, the Bernoulli-Euler
slender beam model becomes progressively inadequate.
Therefore, flexural modes are here modelled in terms of
the Timoshenko thick-beam model, which corrects for the
effects of rotary inertia and shear deformation [34].

We will assume that only bending modes are of interest
here. Obviously, for eccentric blows, torsion modes will
be excited [14, 35]. On the other hand, as shown by Bork
et al. [35], modal displacements are three-dimensional at
higher frequencies and the beam approximation becomes
then clearly abusive. However, we will only consider beam
modes here, for simplicity. For the same reason, we will
neglect the influence of material anisotropy and inhomo-
geneities, which are significant when dealing with wood
bars [35, 36]. However, note that the overall optimization
approach of the present work might be equally applied ac-
counting for the preceding effects, as well as for any ma-
terial anisotropy (wood or composite bars), by refining the
finite element computational model. Obviously, such real-
istic results would be produced at the expense of compu-
tational overhead. For the present demonstrative computa-
tions, simplicity prevails, and we will assume that materi-
als are isotropic. Thus, for small vibratory motions, the
transverse displacement y(z,¢) and slope ¢(z,t) of the
free conservative system are formulated as:

2 06 o2
pA(x)a—tg +kGA(x)(8—;b - ag;z) =0, ()
826 826
CKGA) <¢ _ %) 0, ©

where the local bar cross-section area and moment of
inertia are respectively A(z) = BH(z) and I(z) =
BH(x)3/12 (with the bar width B), p is the specific
mass of the bar material, £ is the Young modulus, G =
2/[2(1 + v)] is the shear modulus and % is a geometric
factor for the shear energy (equal to 5/6 for rectangular
cross-sections). Inertial and stiffness terms can be easily
recognized in equations (1) and (2).

Finite element discretization of the preceding formula-
tion leads to a linear system of equations in the classic
form:

[M]{Y} + [K]{Y} = {o}, (3)

where [M] and [ K] are the inertia and stiffness operators,
respectively (the later incorporating any boundary condi-
tions), and {Y'} is the vector of physical displacements.
In the case of bars with arbitrary height profile H(z), we
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discretize the system using ./ elements of identical length
l=1LJJ.

From (3), the system modal frequencies w,, and cor-
responding modeshapes {,, } are computed in the usual
manner, assuming harmonic solutions:

{Y(f)} = {(pm} eXp(iwmt), (4)
and we obtain the classic eigenvalue formulation:
[[K] - w2, [M]|{¢n} = {0}, 5)

from which the modes are computed, for each bar geome-
try of interest.

2.2. Error function

In what follows we postulate that the material properties p,
FE and @ are known and constant. Hence, we wish to de-
termine the optimal bar height profile " and total length
L* that lead to a given set of modal frequencies of interest
wref,

Let us assume we have a bar with height profile I; and
length L, leading to the modal frequencies wy,, (H;, L). An
obvious term in the error function must concern deviations
from the computed eigenvalues and the reference target set

ref.
wret:

ei(H, L) = me[wm(ﬂj,L)—w:gf]Hr . ©)
where W,, are weighting factors for the modal errors
and L, is a suitable norm, computed over the m =
1,2,..., Mt modal frequencies of the target set. Specifi-

cally, we tested the following norms:

Mr Mr )
Ll = Z |Am| L2 = Z |Am| s
m=1 m=1
Lo = max|An,
m=1

with A, = Wy (H, L) — wie. In most cases we did not
find significant differences between results — therefore, the
quadratic norm L, is consistently used in the following
illustrative computations.

To the basic error term (6), one may wish to add other
terms, in order to penalize non-desirable effects, for in-
stance excessively non-smooth (and difficult to machine)
geometry profiles H ;. We did so for the optimizations pre-
sented here, by introducing an additional penalty term for
the profile curvature:

EQ(H]‘,L):Haij/amz‘ L @)
so that our final error function reads:
e=(1—-a)ei(H;, L)+ aex(H;, L), (8)

where 0 < a < 1 is a weighting factor of the geometrical
complexity penalization — when a = 0 only frequency de-
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viations are accounted; if @ = 1 only geometrical smooth-
ness would be of interest.

2.3. Deterministic optimization

Basically, the optimization problem may be stated as find-
ing the J element heights of 4} and the length L™ leading
to a set of A7 modal frequencies w;, which will mini-
mize (8). This is a problem of constrained optimization,
as typically H; and L will be limited by some admissi-
ble values, due to technological or other reasons. Then,
defining a global vector {Z} = (H;, L)T of the J + 1
unknowns, our optimization problem will fit the follow-
ing general framework: Find the optimal solution {Z*}
which minimises ({Z}) while complying with a set of
constraints G.({Z}) < 0,withe=1,2,...,C.

In our problem, the error function £({Z}) defined by
(6)—(8) depends nonlinearly on the geometrical unknowns
{Z}, through the eigenvalue computations. However, the
constraints G.({Z}) are here simply stated as

{Zmin} <{Z} <{Zmax}- )

Another common form of G.({Z}), most useful in the
context of §4.4, is the following matrix inequality — which
generalises condition (9):

[A]{Z} < {B}. (10)

Basically, local optimization algorithms search for a de-
crease in the gradient of the error function Ve({Z}) -
that is why they are prone to being trapped in local min-
ima. Such basic approach is inefficient, and more powerful
methods rely on additional devices to improve the conver-
gence speed. Newton and quasi-Newton schemes use (or
build up) second-order local information on the error sur-
face, and use curvature data — the local Hessian matrix —
to improve convergence.

Constraints are imposed through penalty terms affecting
the active constraints (using Lagrange multipliers), which
force the solution to lay on the admissible workspace. The
necessary conditions for optimality in a constrained prob-
lem are given by the Kuhn-Tucker equations [2, 37]:

Active

VE{Z D+ Y NVG({Zh =0,
AT >0, ’

The main equation states that, at the optimal point, the
gradients of the original error function and of the active
constraints (weighted by Lagrange multipliers) must can-
cel. Obviously, the optimality condition for unconstrained
problems would be:

Ve({Z*)) = 0. (12)

Many nonlinear programming algorithms have been devel-
oped to solve for the A in equations (11). In the present
work we used the so-called Sequential Quadratic Program-
ming (SQP), which is an efficient quasi-Newton scheme.
Further details may be found in references [2, 38].

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 89 (2003)

2.4. Stochastic optimization

Many of the available algorithms for global optimization
are inspired by the ways nature works, and are based
on stochastic procedures. Typical examples include ge-
netic methods and simulated annealing (SA) [2, 3, 4]. The
method used in the present work, simulated annealing, is
a powerful stochastic approach originally developed by
Metropolis et al. [39] as a Monte Carlo sampling technique
for modelling the evolution of a solid at a given tempera-
ture. Later, Kirkpatrick er al. [40] generalized this tech-
nique, which was then applied as a global optimization
procedure. We will review here briefly the main aspects
of SA.

Minimizing the error function £({Z*}) is seen as being
analogous to the decrease of the energy state of a molten
metal during cooling. At high temperature energy is high,
as particles move freely everywhere. But, as temperature
decreases, motions are progressively restricted and energy
lowers. If the cooling schedule is sufficiently slow, par-
ticles will settle into a very ordered state, and the sys-
tem will reach a global (or near-global) energy minimum.
However, if cooling is enforced at a very fast rate, then
particles will “freeze” in a disordered state (quenching),
far from the energy minimum.

The SA analogy proceeds as a sequence of solution
configurations {Z;}, each one randomly sampled within
a certain vicinity of the last accepted iteration {Z;_1},
while a control parameter 7' (analogue to the cooling tem-
perature) decreases at a sufficiently smooth rate. A very
important aspect is that, when iteration moves induce an
increase of the error function £({Z}), such iterations may
still be accepted — with a probability which depends on 7"

P=exp| - (s({Z:}) —=({Zia})))/T]. (13)

This essential feature enables the algorithm not being

trapped in local minima. Additionally, the radius of the

hyper-sphere centred in { Z;_; } — where the next iteration

{Z;} will be randomly sampled — may also decrease with

T.

In short: the solution space is initially explored at high
“temperatures”, when many error-increasing moves are
accepted, allowing the algorithm to find the region where
the global minimum lays. Later, at lower “temperatures”,
almost only smaller, error-decreasing moves are accepted,
refining the solution.

The general SA implementation procedure is as follows:
1. Start from an initial “temperature” T and configura-

tion { Z 0 } .

2. From the last accepted configuration, generate a new
candidate solution {Z;}, randomly sampled within a
certain vicinity of {Z;_1}.

3. Compute the error e({Z;})
e{Zi1}):

(a) Ife({Z;}) < e({Z;—1}) accept the move;

) If e({Z;}) > e({Z;_1}) accept (or refuse) the
move with probability PP — see equation (13).

Then go to step 2.

and compare it with
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4. Repeat steps 2 and 3 for a number of N cycles. Then
decrease the temperature according to a given schedule
T,+1 = F(1}) and continue from step 2.

5. When £({Z;}) becomes less than the allowable value
ETol, Stop the computation.

For further information on cooling strategies and other al-

gorithm details, see for instance references [1, 2, 41, 42,

43].

When the global minimum “valley” has been found,
convergence can be somewhat improved by coupling the
global optimization algorithm with an efficient determin-
ist approach, such as described before. As stated before,
this has been done in the present computations.

2.5. Shape-function approach

In order to reduce significantly the size of the optimization
problem, we suggest developing the height profile in terms
of a set of orthogonal functions (plus a mean value):

S

H(z) = Ao+ Y _ Ats(2). (14)
s=1

Obvious suitable basis functions include Fourier series
and Chebyshev polynomials. Here we will illustrate the
method using simple trigonometric series.

The optimization is now performed in terms of S ampli-
tude coefficients A of the shape functions, either simulta-
neously or in successive approximations, by progressively
increasing the number of shape functions. Note that, for
complex geometries, we have S < J and the dimension
of the optimization problem may become orders of mag-
nitude lower than using the physical mesh coordinates, as
previously described. Then, the smoothness of the system
shape will be mostly governed by the truncation order S of
the spatial series. However, if the penalty term (7) is still
used, then low-order spatial terms will be favoured in the
optimization process.

We conjecture that the reduced order of the search
space {W} = (A, L)T may lead to a “filtered” error
surface £({W'}) with greater regularity than the origi-
nal error function ({Z}). Hence, if deterministic opti-
mization strategies are attempted from scratch, they stand
lower chances of being trapped in local minima. Obvi-
ously, global optimization methods can also be used to
minimize e({W}).

Using the approach suggested here, we have to adapt the
physical search-domain constraints (9) in order to accom-
modate the new variables A;. This can be easily achieved
using the matrix formulation (10), as follows. The original
constraints are:

Hmin S Hj S Hmax: (15)
Lmin S L S Lmax: (16)

and, from (14) and (15), we obtain:

S
Hyin < Z As¢s($_j) < Hpax, 17)

s=1
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or, in matrix form:

—[¥]{A} < ~{Huin},  [$]{A} < {Huax}, (18)

and, assembling conditions (16) and (18), we obtain the
full matrix constraint:

o] pean ) e
0 -1 { L }5 I (19)
(0) 1 Limax

3. Illustrative results

The previous remarks will now be illustrated on marimba-
type bars. We will only address here systems symmetric
with respect to their middle point. Therefore, optimization
is performed only on half of the element heights H; used
in the finite element mesh, so that .J = 32. Concerning the
shape function approach, we used either

VS (x) = cos(2smx/L) (20)
or  ¢Y(z) = sin(2s7z/L) 1)
in the first half of the bar length, with symmetry beyond.
A maximum value of S = 10 was used — however, for the
present bar optimizations, convergence was often achieved
using less orthogonal functions. In our first example we
kept the bar length L as a variable to be also optimized,
however it was enforced as a constant parameter in all
other computations, for an easy comparison of the opti-
mized height profiles.

The following fixed parameters were used for the modal
computations: . = 350mm (when imposed), B =
40mm, p = 2840kg/m® and E = 6.726 - 10'° N/m?2. The
valid search ranges imposed for the bar height and total
length are: 5 < H; < 30mm and 100 < L < 500 mm
(when “free”). Most of the computed bars have a fun-
damental frequency of 440 Hz (except those in Figure 1,
which are tuned to 880Hz). In all the optimizations per-
formed we used unit weight factors W,,, for the modal er-
rors. The value adopted for the penalty coefficient on the
non-smoothness of H () was most often @ = 0.2 (except
in the examples of Figure 1, where o = 0.3).

In Figure 1 we show two optimized bars with frequency
relationships 1:4:10 of the tuned modes (commonly found
in concert marimbas). Result (a) was obtained performing
a stochastic optimization on the physical heights H;, while
result (b) pertains to a deterministic optimization per-
formed on the shape-function amplitudes 4,. Both com-
puted shapes are perfectly tuned for the imposed frequency
relationships. However, beyond 8800 Hz, their modal fre-
quencies will obviously be different from each other.

Notice that both optimization schemes automatically
produced designs with central undercuts, as found in com-
mercial marimba bars. Ten shape functions 1 () were
used for the second optimization, but three are enough to
converge in such a simple problem. The important point
here is that, even for this simple system, the computation
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Figure 1. Two optimization results for vibraphone bars with fundamental frequency 880 Hz and common frequency relationships 1:4:10
of the tuned modes (bar length not imposed; smoothness parameter « = 0.3): (a) Stochastic optimization using SA, performed on the
physical element heights; (b) Deterministic optimization using SQP, performed on the amplitudes of 10 cosinusoidal shape-functions.
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Figure 2. Deterministic optimization process of a vibraphone bar with fundamental frequency 440 Hz and frequency relationships
1:2:4:8:16 of the tuned modes (bar length imposed L = 0.35 m; smoothness parameter v = 0.2): Convergence while increasing the
number of shape-functions.

time using approach (b) is typically two orders of mag- mization method described in §4.4 will be used in most of
nitude lower than using approach (a). Therefore, the opti- the following illustrations (except in Figure 3).
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Figure 3. Stochastic optimization of a vibraphone bar with fun-
damental frequency 440 Hz and frequency relationships 1:4:10
(bar length imposed L = 0.35m): Results as a function of the
smoothness parameter c.

Figure 2 shows successive stages of the deterministic
optimization approach, as the number of shape functions
increases. Six terms are needed to tune five modes of a
bar, on the unusual frequency relationships 1:2:4:8:16. No-
tice that, as the number of orthogonal functions is incre-
mented, tuning progresses from the lower modes towards
the higher modes. This is easily explained, as higher fre-
quencies are related to shorter wave-lengths. Tuning of
higher-frequency modes usually ask for the contribution
of higher-order shape functions.

We have found that computations performed by opti-
mizing simultaneously all the amplitude coefficients of the
shape-function usually lead to results of comparable qual-
ity.

The influence of the smoothness parameter « is shown
in Figure 3. Here, stochastic optimization was performed
on the geometrical variables H;. The progressive smooth-
ing effect, when « increases, is obvious. However, if the
smoothness penalty is excessively emphasised, tuning may
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Figure 4. Deterministic optimization of three vibraphone bars
with fundamental frequency 440 Hz (bar length imposed L =
0.35 m; smoothness parameter o = 0.2): Results using 10 cosi-
nusoidal or sinusoidal shape-functions.

become unfeasible — such was the case when a = 0.8 was
imposed.

Figure 4 shows three different examples, where deter-
ministic optimization was achieved using either /¢ (z) or
1Y (x) as shape functions. We consistently obtained ade-
quate results, irrespective of the shape function set used.
Often, both sets produced rather similar optimal shapes.

Finally, several examples of optimized bars are shown
in Figure 5, corresponding to quite un-orthodox frequency
relationships. This illustrates the power of an optimization
approach to generate new instruments, when suitable de-
sign criteria can be established.
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Figure 5. Deterministic optimization of several non-orthodox vibraphone bars with fundamental frequency 440 Hz (bar length imposed
L = 0.35 m; smoothness parameter o« = 0.2; 10 cosinusoidal shape-functions).

4. Nonlinear dynamical modelling
The computational method used here is described next:

(1) From the optimized bar profile H(x) and the physi-
cal properties of the bar, we compute the planar flexural
vibration modes of the unconstrained system in the audi-
ble frequency range. At this stage, as in section 2, we use
the finite-element method with computations based on the
Timoshenko beam model. The boundary conditions used
are those of a free-free bar, which imply the existence of
two rigid-body zero-frequency planar modes (translation

and rotation), as well as the modes with elastic deforma-
tion.

Again, as in section 2, we will ignore here for simplicity
the torsion modes and high-frequency 3-D effects. How-
ever, the use of a more accurate modal basis, computed
from an extensive 3-D mesh of massive elements, would
not change in any way the numerical approach used here
for the time-domain simulations. Indeed, the use of modes
based on such a refined model would further highlight
the computational efficiency of the modal approach, when
compared for instance with time-domain finite-element
computations.
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(2) When performing the dynamical computations, the
modal damping values used clearly affect the bar dy-
namics, as well as the subjective perception of the sim-
ulated sounds. Due to the nature of the various dissipa-
tive phenomena, damping values are usually frequency-
dependent, as discussed in [22, 23, 36, 44, 45]. This phe-
nomenon occurs in greater or lesser extent for all mate-
rials, particularly for wooden bars, and it will obviously
influence the perception of synthesised sounds. Although
this is a subtle aspect, we used — again for simplicity —
constant values for all modes in our computations. Note,
however, that the modal model can accommodate most
easily any frequency-dependency of the damping coeffi-
cients. The average values used in the present computa-
tions were based on experimental identifications. Obvi-
ously, these values are very different for wood and for alu-
minium bars.

(3) The vibrating bars are assumed supported at two loca-
tions x4 and x4 through flexible dissipative fixtures. The
stiffness constant K, and damping constant C; used in the
computations are based on experimental results.

(4) We assume that the bar is impacted by a point mass
M with initial velocity V. at the nominal contact location
z.. As other authors, we will use a simple Hertz model, to
relate the nonlinear contact force (at the nominal contact
point) to the relative bar/mallet motion after impact [20].
This interaction point-model is a very convenient approx-
imation. A more accurate contact model might be easily
implemented in our computations, by including the elastic
modes of the mallet as well as by using a time-dependent
contact length, as a function of the mallet geometry and
of the bar/mallet elastic interpenetration. Also, dissipa-
tive contact phenomena could easily be incorporated in
the model. However, if the parameters used in Hertz-type
models are well chosen, quite realistic results can be ob-
tained even with this simple contact model. The mallet
physical parameters (inertia and stiffness) and the impact
velocity used in our computations are based in experimen-
tal data by Bork [46].

(5) At each time-step n, we compute by modal superpo-
sition the physical vibratory responses at locations x4,
zg2 and x.. This enables the computation of the interac-
tion forces between the bar and the two elastic supports,
Fy (1) and Fio(t), as well as the contact force between
the bar and the mallet, F..(¢). These interaction forces are
then projected on the modal basis, and the dynamic modal
equations are integrated one step ahead using an explicit
algorithm. This scheme is pursued for the full duration 7'
of the simulation.

4.1. Bar dynamics

We will now formulate the equations used in our computa-
tional scheme. Let us then consider a bar of length L, con-
stant width B and variable height profile H (). In terms
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of the chosen modal representation, the system dynamics
are governed by

[(M]{Q} + [c{Q} + [K]{Q} = {7} (22)
Here the modal matrixes are given as

[M] = Diag(ml,mg. e ,mM),

[C] = Diag(cl,CQ,...,cM), (23)
[’C] = Diag(kl,k2....,k/\,f),

with
2

L
my, = / m(T) [(pm(x)] dz,
J0

Cm = 2'rn'rn,(-")mCm: km - mmw?n: (24)

where w,,, and (,, stand, obviously, for the modal (circu-
lar) frequencies and damping values, and ¢,,(x) are the
bar modeshapes.

The modal masses depend on the modeshapes, as well
as on the bar profile through the mass per unit length
m(x) = pA(x) = pBH(z). As stated before, for each
bar geometry, all modal parameters are computed, once
and for all, using a finite-element model based on equa-
tions (1) and (2).

The vectors of modal responses and modal forces are
given as

{Q} = <q1(t)7QQ(t)a'-'7q1\/f(t)>a
{T} = <f1(t)7.f2(t):"-7.f1\/f(t)>: (25)

and, at any location x, the physical response y(x,t) can
be simply computed from the modal amplitudes g, (%)
through modal superposition:

M
y(@, 1) = > om(@)gm (), (26)

and similarly concerning the velocities and accelerations.

The modal forces are obtained through modal projection
of all the external forces. For this system, these are the
two support reactions and the mallet/bar interaction force.
Hence:

L
flt) = /0 [Fa(03(z — 2) + Fa0)3(z - 7.0)

+ F.(1)0(x — z¢) | pm(z) dz 27
= Fs ()om(2s1) + Fo2 () om (z52) + Fe(t)pm(c),
where §(x) is the Dirac distribution.

4.2. Mallet dynamics

In our model, the mallet is modelled simply as a point mass
M. with initial velocity V., interacting with the bar at lo-
cation z.. If z(¢) is the motion of the impactor, then the
mallet dynamics will be governed by

M3 = Fu(t) — Mg, (28)

where g is the acceleration due to gravity.
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4.3. Impact force

The Hertz model used here leads to the following nonlin-
ear contact force:

{ 0 if 2(2) — ye(t) > 0,
. (29)
—K [2(t) = y.(1)]

if 2(1) = ye(t) <0,
where y.(t) = y(z.,t) and s = 1.5. The contact parame-
ter K. is a “pseudo-stiffness” constant, with units N/m'-?
(as stems from equation 29). Also note that equation (27)
insures that only modes such that |, (z.)| # 0 will be
excited by the mallet.

Fe(t) =

4.4. Support forces

The bar supports, modelled as linear flexible-dissipative
fixtures, lead to the following reaction forces:

FSj (t) = _Ksysj (t) - Csysj (t): Jj=1,2, (30)

where ys;(t) = y(xs;,t). Again from equation (27), we
note that only modes such that |, (z,;)| # 0 will be af-
fected by the supports. If — as is usual practice — the sup-
porting fixtures are located at the nodes of the first mode,
then only higher-order modes will suffer additional damp-
ing from the supports.

4.5. Time-step integration

There are many integration algorithms that might be used
to integrate equations (22) — Runge-Kutta, Verlet, among
others. We used the Euler-Richardson scheme, which is
of the explicit type [1]. In this algorithm, an estimate of
the acceleration vector is performed at the next half-step
tny1/2 = tn + At/2, using the information at time 2,:

{Qu} +{Qn} 3
{Qu} +{Qn}8 | 1 G

tn + &t

{Qn+1/2} = [M]_l F

which is then used to update displacements and velocities
at time £y, 41:

(@} = (@} + (100} + {Gurn 2} 5) AL 2
{Qnir} = {Qn} + {Qny1 oA (33)

5. Numerical simulations

We will present now some sample computations, using
several optimized bar geometries computed as shown in
sections 2 and 3. Apart from the “static” plots presented
here, we also have generated animations of the bar re-
sponses and the corresponding sound files. Parametric
computations have been performed, to illustrate the influ-
ence of:

e the impact location,

e the bar material,

e the mallet stiffness,

e the bar modal frequency ratios.
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Parameters kept constant in our computations are the
mallet mass M. = 20g and impact velocity V. = 1m/s,
as well as the support stiffness Ky = 10* N/m and dissi-
pation C's = 20 Ns/m. For all the geometries computed we
postulated that supports are located at the nodes of the first
elastic mode of the unconstrained bar. The first modal fre-
quency is 440 Hz, for all the computed bars, irrespectively
of their shape or material. As stated before, besides the
first tuned modes of the optimized bars, all modes in the
range 0 to 20 kHz were used in the numerical simulations.

The numerical simulations presented here extend for 5
seconds — which is enough to highlight both the initial
transient and the subsequent decay. Sound files have been
generated at the usual sampling rate of fs = 44.1kHz.
Computational speed was not an important issue for the
numerical simulations presented here, therefore a very
comfortable time-step of At = 2.3 -107% s was used.

5.1. Results

As a first example, Figure 6a-c shows several aspects of
the vibratory response of a vibraphone bar, when impacted
at location x. — 0. For this aluminium bar, which has
a typical undercut, we postulated modal frequency ratios
of 1:4:9 for the tuned modes. A modal damping value of

m = 0.02% has been assumed for all modes, as explained
before. A contact stiffness value of X, = 108 N/m'-> be-
tween the mallet tip and the bar — see equation (29) — has
been used.

The time history trace in Figure 6a shows the initial
transient after the mallet impact, followed by the slow de-
cay of the first elastic mode. The first zoomed trace in
Figure 6b highlights how, during the initial transient, the
low-frequency support-dependent rigid-body modes are
excited, as well as the higher frequency elastic modes.
The second zoomed trace shows that the decay response is
dominated by the lightly damped first elastic mode. These
effects are confirmed by the corresponding response spec-
tra shown in Figure 6c¢.

The spectrogram of the bar response velocity at loca-
tion z. = 0 is illustrated in Figure 7. It is clear that the
higher frequency modes only vibrate significantly during
a few tenths of a second — which are however crucial for
the timbre recognition.

To properly assert how realistic are these numerical sim-
ulations, the present computational model still lacks the
vibro-acoustic coupling with a resonator, as well as mod-
elling sound radiation to the far field (see [23]). Indeed, at
the present time, only a crude approximation of the per-
ceived sounds may be inferred directly from the bar re-
sponse dynamics. In a pragmatic way, we tentatively chose
to use the velocity responses at a bar end, for our subjective
timbre comparisons. Such approach obviously neglects the
complexity of the surrounding acoustic field, which can
only be accounted for through adequate modelling. Even
so, we feel that the perceived “sounds” from our simula-
tions are, overall, quite realistic.

In Figure 8 we display the time-averaged values of the
relative energies E,,, / Er of the system modes (notice that
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(a) Time-history of the velocity response at the bar end x = 0; (b) Detail of the velocity response during the initial transient and the
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Figure 7. Typical response of a 1.4:9 vibraphone bar impacted at
the bar end . = 0 using a mallet with contact stiffness K, =
108 N/m*-5: Time-history of the velocity response at the impact
location and the corresponding spectrogram.

the scale is logarithmic), where the total system energy is
given as

M
Er =Y Enm. (34)
m=1
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The first two columns in this plot pertain to the rigid-body
modes. Their frequencies are governed by the stiffness /s
of the bar supports and by the bar mass (for the translation
mode at f7* = 22 Hz) and moment of inertia (for the rock-
ing mode at f3* = 34 Hz). Their motions are damped by
dissipation in the bar support fixture.

Clearly, most of the impact energy goes to the first
elastic mode (at f; = 440Hz, corresponding to the
third column in this plot). The energies of the higher fre-
quency elastic modes decrease fast, as the modal frequen-
cies increase (these frequencies are fo = 1760Hz and
f3 = 3960Hz, for the tuned modes, and range from
fi = 6412Hz to fs = 19334 Hz, for the further non-
tuned modes used in this computation). Notice that the two
rigid-body modes vibrate significantly. However, radiation
of these low-frequency modes can be neglected.

5.2. Impact location

We will now discuss, through parametric computations,
several aspects which are particularly significant for the vi-
bratory responses of this system. Figure 9 shows the time-
responses and corresponding spectrograms of the same
1:4:9 vibraphone bar, as a function of the impact location
z., when a mallet with contact stiffness K, = 108 N/m'-®
is used. The corresponding sound files show clear differ-
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Figure 8. Typical response of a 1:4:9 vibraphone bar impacted
at location z. = 0 using a mallet with contact stiffness K. =
10% N/m?*-5: Relative modal energies.

ences in the perceived sounds. The sounds obtained at
z. = L/10 and z. = L/3 are rich and well balanced (the
typical “vibraphone-sound” one usually hears). However,
because the nodes of the fundamental mode are located
near z. = L/5, striking the bar near the supports will in-
duce a “thin” sound, rich at higher frequencies but poor as
far as the fundamental is concerned. On the other hand,
when the mallet strikes the middle of the bar, only the
symmetric modes are excited. The corresponding sound
is comparatively dull.

5.3. Contact stiffness

Figure 10 shows the time-responses and corresponding
spectrograms of the same 1:4:9 vibraphone bar, as a func-
tion of the contact stiffness K., when the mallet strikes at
location zz, = L/10 (the influence of the bar material is
also shown here and will be discussed in next). The ex-
treme values of the contact stiffness used in these sim-
ulations, 107 and 10° N/m!-?, represent respectively soft
and hard mallets. When using soft mallets, the sounds pro-
duced are smooth, as most of the energy is excited at lower
frequencies. Conversely, the much brighter sounds excited
by hard mallets are attested by the significant excitation of
the higher frequency modes.

5.4. Bar material

Figure 10 also shows how significant the bar material is,
for the instrument timbre. Here, the last two time-plots and
spectrograms display the responses of a typical marimba
bar, with the same fundamental frequency. Obviously,
wood has a lower density than aluminium (about one
third). However, the main effect of the material is, with-
out doubt, the much higher dissipation of wooden bars.
Here, we recall that modal damping values of {,,, = 0.02%
and (,, = 0.5% were used (for all modes), respectively in
the case of aluminium and wood bars. The consequences
of this simple parameter change, when the subjective tim-
bral qualities are concerned, go much beyond the mere de-
crease in response duration shown in Figure 10. Indeed,
simulations using the lower damping value sound as im-
pacted metal, while those using the higher damping value
sound as impacted wood.
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Figure 9. Vibratory responses (at location x, = L) of a 1:4:9
vibraphone bar as a function of the impact location . (contact
stiffness K. = 10% N/m"%).

5.5. Bar shape: conventional designs

Figure 11 shows the time-responses and corresponding
spectrograms of several “conventional” bars, with fre-
quency ratios that might be found in xylophones, marim-
bas and vibraphones. Common variations include the sec-
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Figure 10. Vibratory responses (at location z, = L) of a 1:4:9 Figure 11. Vibratory responses (at location z, = L) of four

vibraphone bar as a function of the contact stiffness K. and also
of the bar material (impact location z. = L/10).

ond partial, at either 1:3 (one octave + one fifth) or 1:4
(two octaves), as well as the third partial, at either 1:9
(three octaves + one minor third) or 1:10 (three octaves
+ one major third). All these cases are illustrated in the
figure, based in the optimized shapes obtained as shown
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near- conventional vibraphone bars (contact stiffness K. =
108 N/m*-5, impact location z, = L/10).

in sections 2 and 3. The corresponding sounds show that
influence of the second partial frequency is very easily per-
ceived. However, for the untrained ear, the influence of the
third partial is more subtle.
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Figure 12. Vibratory responses (at location x, = L) of four non-
orthodox vibraphone bars (contact stiffness K. = 10% N/m!-®,
impact location z. = L/10).

5.6. Bar shape: non-orthodox designs

We conclude by illustrating in Figure 12 the time-re-
sponses and corresponding spectrograms of the four un-
conventional bars optimized in section 3. Here, one should
bear in mind that the perceived sounds depend, not only
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on the tuned modes, but also on other higher frequency
modes which are outside the optimized frequency range
(and therefore “uncontrolled”). Here, we chose the modal
relationships of 1:2:3, 1.3:6:12, 1:2:4:8:16 and 1:5:10:15,
not on the ground of their particular “musical” qualities,
but only because such modal tunings lead to very different
bar geometries, as well as response spectra. And, indeed,
the sounds obtained are different, as can be inferred from
the spectrograms in Figure 12.

The case 1:2:3 deserves a short comment, because it led
to a somewhat unexpected sound. Indeed, from such fre-
quency combination, one might naively expect a “sweet”
sound, but what we obtained sounds harsh, almost as
sounds issued from some gamelan instruments, for in-
stance. What happens here is that the non-optimized forth
and upper partials present frequencies which are relatively
low. These are significantly excited and severely inhar-
monic. If we assume that such effect is undesirable, there
is a lesson to extract from this example: sometimes, one
should design the optimization procedure not only on the
basis of what is wanted, but also on the basis what is
not wanted. This can be achieved easily: in the first case,
penalty terms in the error-function should tax divergence
between the computed modal frequencies and the target
set. In the second case, penalties should tax proximity of
the computed modal frequencies to any undesirable fre-
quency range. Both aspects can be easily combined in the
optimization procedure.

6. Conclusion

Two important aspects of the design of percussion instru-
ments have been addressed in this paper: (1) Geometry
optimization of the vibrating component, and (2) Sound
synthesis through nonlinear physical modelling. The fea-
sibility of these two complementary approaches has been
demonstrated.

Beyond enabling a systematic and cost-effective way
of improving conventional instrument designs, an obvious
advantage of optimization approaches is the possibility of
developing non-conventional instruments with new sound
qualities. We illustrated the various aspects discussed by
optimizing and dynamically simulating several vibraphone
and marimba bars. Bar/resonator vibro-acoustic coupling
and radiation effects have not been yet incorporated in our
computational model. Even so, the subjective quality of
the simulated sounds was found quite satisfactory.

We intend to extend the present work in several direc-
tions. Concerning optimization, these include:

e applying the optimization approach to a refined finite-
element model of the bar, using massive elements, in
order to improve the realism of the modal basis used
in the dynamical computations, which should include
torsion and high-frequency three-dimensional effects
(also, provision for material anisotropy should be in-
cluded in the computational model, when dealing with
wood instruments);

961



ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 89 (2003)

e optimization of resonator geometries, to control other
acoustic modes beyond the first, in connection with the
bar vibratory modes;

e optimization with respect to other aspects beyond
modal frequencies, for instance the system mode-
shapes, in order to better control the radiated spectra;

e optimization of more complex problems, ranging from
soundboard geometries (and bridge placement) to the
design of optimized carillon bells.

Turning towards dynamical simulations, it will be in-
teresting to further include in our simulations at least the
lower-frequency torsion modes of the bar, which are ex-
cited by eccentric blows, and assert the significance of
these modes on the perceived sounds. Obviously, the fre-
quencies of such torsion modes can also be tuned through
the bar shape optimization.

However, the most urgent aspects to include in our ap-
proach are the bar/resonator vibro-acoustic coupling and
radiation. On the other hand, as stated before, includ-
ing frequency-dependent damping effects can be easily
achieved using the modal approach.

Some of the previously mentioned aspects are currently
being addressed by the authors, as well as extensive exper-
iments to confront with our optimization results and nu-
merical simulations.

Finally, even if such is not the aim of the present pa-
per, we should mention that a most important aspect re-
lated to this work concerns the musical consequences of
different overtone tunings. Indeed, as stated, some uncom-
monly tuned bar shapes may become the basis for new in-
strument designs. Considering the subjectivity of the eval-
uation of timbre quality, one may obviously rely on mere
“ear-work” to state what is “pleasant” or “unpleasant”, but
such approach is of limited interest. This is a difficult sub-
ject that goes much beyond physics, involving musical fea-
tures — dealing with psychophysics and cultural aspects —
which demand a thorough effort.
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