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ABSTRACT 

Following the theoretical work and experimental strategy 

devised by Axisa (2010) in the companion paper, a test rig was 

designed and built in order to validate the analytical analysis of 

Part 1. Two configurations of partly immersed articulated 

pipes were tested, both for normal (expelling) and for reversed 

(aspirating) flows. The low-pressure water-loop enabled 

velocities up to 3 m/s  in both normal and reversed flows, with 

no cavitation arising in the test section. The experimental 

results presented pertain to the following pipe configurations: 

(a) One articulated pipe, with either a common protruding or a 

rounded baffled free end; and (b) Two articulated pipes with 

equal lengths. For all flow velocities modal identifications 

were performed from the measured system responses. 

The results obtained under normal expelling flow are in 

good agreement with the theoretical model originally 

developed by Benjamin (1961), which is also reviewed in Part 

1. For the single articulated pipe, the Coriolis force term leads 

to a steady increase of damping with the flow velocity, modal 

frequency being significantly affected only near critical 

damping, as expected. For the two articulated pipes 

configuration, both the Coriolis and centrifugal flow terms are 

significant, leading to large changes in both modal frequencies 

and damping, which follow the predictions from the classical 

model. 

The most interesting results from our experiments 

obviously concern the reversed aspirating flows. Following the 

discussion of Part 1, it was found that the one-pipe 

configuration is nearly insensitive to aspirating flows, 

irrespectively of the pipe termination geometry, showing that 

the Coriolis force term is canceled exactly by the term arising 

from the change in momentum of the flow entering the pipe at 

the free end. The experimental results from the two-pipes 

configuration are sensitive to the aspirating flow velocity. 

Among the various inflow models explored in Part 1, the one 

which assumes an inflow velocity directed along the tube axis, 

but without the tangential component of the pipe motion, 

proved to capture many of the features displayed by the 

experimental results. Actually, as the aspirating velocity 

increases, both identified modal frequencies of the two-pipes 

system, as well as the modal damping of the first mode, closely 

follow the theoretical predictions from such basic inflow 

model. However, a discrepancy was observed, concerning the 

modal damping trend of the second mode, which decreases 

slowly but steadily in our tests as the velocity increases, while 

the basic inlet flow model predicts a nearly constant damping 

value. Nevertheless, such subtle but significant behavior of the 

system damping can be related to small variations of the basic 

parameters which describe the inlet flow field. 

 

1 INTRODUCTION 

Most of the available experimental work on the dynamics 

of structures subjected to reverse flows addresses the reverse 

sprinkler problem, popularized by Feynman (1985), which 

triggered a significant number of publications – see Hsu 

(1988), Berg & Collier (1989), Lindgren (1990), Collier et al. 

(1991) , as well as the recent experiments by Païdoussis & 

Tétreault-Friend (2009). The reverse sprinkler problem is 
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discussed in detail by Axisa (2010) in the companion paper, 

who also reports our own experimental efforts related with this 

topic, therefore the above-mentioned papers are barely recalled 

here.  

Concerning pipes subjected to reverse internal flows, the 

currently available experimental work amounts to a limited 

number of publications, namely the work by Hongwu & Junji 

(1996), the early experiments referred by Païdoussis (1998) 

and the recent work by Kuiper & Metrikine (2008), as well as 

the experiments performed at McGill by Giacobbi (2007) and 

Rinaldi (2009), which are mentioned in the paper by 

Païdoussis & Tétreault-Friend (2009). Most of these work, 

which shows that the interest of the scientific community in 

this problem is very much alive, is also discussed in the 

companion paper. 

Here, following the theoretical work and experimental 

strategy devised in Part 1, a test rig was designed and built in 

order to validate the analytical predictions. We briefly recall 

that, because the flow inlet conditions are at the heart of the 

difficulties in understanding the dynamics of aspirating pipes, 

the tested structures have been simplified as much as possible. 

Experiments using simple articulated systems of rigid pipes, 

with only one or two degrees of freedom, subjected to planar 

motions, can then be formulated in a straightforward manner, 

to highlight the relevant fluid dynamic effects of interest. This 

should enable us to supply first estimates of the crucial inflow 

parameters α , β , γ  and 
p

π , which were defined and 

discussed in Part 1. The first three free parameters refer to the 

hypothesized unknown velocity of the flow entering the pipe: 

  
out f

Z Z
V V i k k

x t
α β γ

∂ ∂
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∂ ∂
 
 
 
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 (1) 

while 
p

π  is a dimensionless pressurization coefficient. 

The articulated pipes used in our experiments are, 

basically, systems analogue to those addressed by Benjamin 

(1961a,1961b). However, he did not perform any experiments 

under aspirating flow and, to our best knowledge, no one ever 

addressed the reversed flow problem by looking at the 

dynamics of articulated pipes. Furthermore, as far as we know, 

no quantitative data exists on the changes of the modal 

properties, as a function of the flow velocity, in pipe systems 

subjected to reverse flows. Neither any such quantitative 

experimental data has been produced, we believe, when the 

tube inlet geometry is changed in order to accommodate 

different singular head-losses, as discussed y Axisa (2010). 

For the present work, two configurations of partly 

immersed articulated pipes were tested, both for normal 

(expelling) and for reversed (aspirating) flows. The low-

pressure water-loop enabled velocities up to 3 m/s  in both 

normal and reversed flows, with no cavitation arising in the 

test section. For all flow velocities modal identifications were 

performed from the measured system responses. The 

experimental results presented pertain to the following pipe 

configurations: (a) One articulated pipe, with either a common 

protruding or a rounded baffled free end; and (b) Two 

articulated pipes with equal lengths. For all flow velocities 

modal identifications were performed from the system 

responses measured using a displacement transducer and a 

laser vibrometer. These experimental results are then compared 

with the theoretical models discussed in Part 1, with an overall 

satisfactory agreement. 

 

2 EXPERIMENTAL RIG AND TEST PROCEDURES 

A general view of the experimental rig is shown in Figure 

1 (a). The tested pipes are partially immersed in a water 

reservoir with dimensions 40 40 120 cm× × . Water flow in the 

test loop is generated by three 1 kW  electrical pumps, with a 

precise velocity controller. Most of the water loop consists on 

1′′  plastic pipes, built with stiff spiral reinforcement, in order 

to avoid collapsing of the pipes subjected to suction. The flow 

rate is measured using an electronic flow meter and, overall, 

the axial flow velocity in the pipes – in the range 

3 3 m/sfV− ≤ ≤  – is estimated within 5 %±  accuracy.  

 

  
(a)                                                    (b) 

Figure 1. (a) General view of the test rig; (b) Experimental 

configuration with one articulated pipe 

 

Figure 1 (b) shows the one-pipe tested configuration, 

consisting in a single aluminum pipe with structural mass 

1 57.7 gM =  and length 1 300 mmL = , internal diameter 

int 17.3 mmD =  and external diameter ext 19.9 mmD = , 

which is suspended from a flexible "knee" allowing only 

planar motions. The lower part of the tube is immersed in the 

water tank, with an immersed height of 1
170 mmH = . Figure 
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2 displays the two-pipe configuration tested, which consists in 

two articulated pipes with equal masses 1 2
51.9 gM M= =  

and lengths 1 2 300 mmL L= = , diameters int 17.5 mmD =  

and ext 19.9 mmD = , the lower pipe height 
2 100 mmH =  

being immersed in the water tank.  

At the bottom of the water reservoir, a settling chamber 

helps to minimize the perturbations connected with the return 

flow.  Also notice, in Figure 1 (a), the immersed filtering panel 

also used to damp-out flow perturbations within the water tank. 

On the other hand, the rigid panel which covers almost the 

complete surface of the water, which can be noticed in Figure 

2, is used to avoid wave sloshing in the reservoir. 

 

 
 

Figure 2. Experimental configuration with two articulated pipes 

 

 
 

Figure 3. Detail of a pipe articulation 

Figure 3 shows in detail one of the two identical devices 

designed for articulating the pipes. These consist in two PVC 

paired fixtures, which are bolted tightly embracing the 

aluminum pipes near the pipe extremities. The PVC jaw pairs 

also assemble, along the axial direction, two symmetrical 

rectangular stainless steel blades (with a few tenth of 

millimeter thickness), which enforce the planar motion of the 

pipes, while introducing a comparatively low angular stiffness 

to the articulation. Notice, in Figure 3, the thin latex sealing 

cover, tightened to the pipes through the PVC fixtures.  

 

 
 

Figure 4. Electromagnetic lifting device (left) and eddy-current 

Kaman displacement transducer (right) 

 

 
 

Figure 5. Baffled pipe with a smooth rounded water inlet, for a low 

value of the singular pressure loss 

 

For each flow velocity, the transient free vibrations of the 

system released from a small angular displacement were 

digitized using a Siglab 4 channel acquisition system, and then 

recorded and analyzed. Figure 4 highlights the upper part of 
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the test section, showing in the left the electromechanical 

device used for the releasing initial position of the tubes. In the 

right one can see the Kaman eddy-current displacement 

transducer used to measure the response. A laser vibrometer 

was also pointed to the lower part of the mobile ensemble, as 

shown in Figure 1 (b). 

When testing the one-pipe configuration, special attention 

was paid to evaluate the possible effect of changing the head 

loss at the inlet. Therefore, two different inlet configurations 

were tested: (1) the "naked" sharp-edged pipe termination 

which can be seen in Figure 1 (b); and (2) the baffled pipe 

termination shown in Figure 5, which presents a well-rounded 

inlet, with wall radius ext 0.25r D ≈ . The corresponding 

steady-state loss coefficients, for entering flow, are 

respectively 0.5K ≈  and 0.03K ≈  – see Idel’cik (1960). 

For most tests, responses were measured at increments 

0.1 m/s
f

V∆ =  of the flow velocity. However, for the 

experiments using the smooth baffled inlet, a larger velocity 

increment was adopted. Modal identifications were performed 

from the post-release free pipe motions using our 

implementation of the Eigensystem Realization Algorithm 

(ERA), which is a powerful multi-degree of freedom 

identification algorithm in the time-domain, see Juang & 

Pappa (1985) or Juang (1994) for details. In most cases the 

modal identifications posed no particular problem, except – for 

tests under normal (expelling) flow – when reaching very high 

levels of the modal damping and very low values of the modal 

frequencies, when the time-scales of the oscillatory and 

damping components of the complex eigenvalues are of the 

same order of magnitude, and thus difficult to separate. 

 

3 MODELS OF THE TESTED PIPE CONFIGURATIONS 

Sketches of the tested one-pipe and two-pipes 

configurations are shown in Figures 6 and 7, respectively. The 

dynamics of these flow-structure coupled systems are 

described by the general formulation: 

 

[ ] { }
[ ] { }
[ ] { } { }

( )

( )

s fe fi

s fe fi f

s fe fi f

M M M

C C C V

K K K V

    + + Θ +    

    + + + Θ +    

    + + + Θ =     0

ɺɺ

ɺ  (2) 

where matrices [ ]sM ,[ ]sC and [ ]sK  stand for the inertia, 

dissipation and stiffness of the structural components, 

respectively, 
feM   , feC   and feK    stand for the added mass, 

dissipation and stiffness effects stemming from the external 

stagnant fluid, while 
fiM   , ( )fi fC V   and ( )fi fK V    stand for 

the added mass, the Coriolis and the centrifugal coupling 

effects stemming from the internal flow. For the single-degree 

of freedom one-pipe system, the generalized motion is 

{ } 1( ) ( )t tθΘ ≡ , while for the system with two articulated pipes 

{ } 1 2( ) ( ), ( )
T

t t tθ θΘ ≡ . The various terms of equation (1) 

which are non-dependent on the flow velocity 
f

V  have been 

detailed in Annex A for the single-pipe system, and in Annex B 

for the two-pipe system. 

Finally, the crucial velocity-dependent flow-coupling 

terms ( )i fC V    and ( )i fK V   , which depend on the assumed 

inflow model, are developed in the companion paper, Part 1. 

 

 
 

Figure 6. One-pipe tested configuration 

 

 
 

Figure 7. Two-pipes tested configuration 
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A) Normal, expelling flow: For our one-pipe and two-

pipes articulated systems, the Coriolis and centrifugal terms 

stemming from the classic formulation are: 

(A-1) One-pipe system, expelling flow: 

 
2

1( ) ; ( ) 0i f f f i fC V m V L K V= =  (3) 

(A-2) Two-pipes system, expelling flow: 

 

2

1 2

2

1

1 2
( )

0

1 1
( )

0 0

i f f f

i f f f

C V m V L

K V m V L

Λ
Λ

 
  =   

 
− 

  =   
 

 (4) 

where 
f f fm Sρ=  is the fluid mass per unit length, with 

fρ  

the fluid density and ( )2int 2fS Dπ=  the pipe internal 

cross-section. 

B) Reversed, aspirating flow: As amply discussed in the 

companion paper, the coupling terms ( )i fC V    and ( )i fK V    

for aspirating flows are strongly dependent on the assumed 

inlet boundary conditions, which were quantified in terms of 

parameters α , β , γ  and 
p

π . Referring to the theoretical 

analysis of Part 1, we obtain the following net Coriolis and 

centrifugal matrices (accounting for the boundary conditions), 

in connection with these modeling parameters: 

(B-1) One-pipe system, aspirating flow: 

 ( )2 2

1 1( ) ; ( ) 1i f f f i f f fC V m V L K V m V Lγ β= − = −  (5) 

(B-2) Two-pipes system, aspirating flow: 

 

( )
( )

( )

2

1 2

2

1

1
( )

1

1 1
1

0 02
( )

1 1

0

i f f f

p

i f f f

C V m V L

K V m V L

γ − γ Λ
γ Λ −γΛ

π

α β
Λ β α

− + 
  =    − 

 −   
+ +    

     =    − −  +   −  

 (6) 

where 
2 1
L LΛ = . 

As an illustration, referring to two interesting non-

reversible particular scenarios, we obtain (assuming 

2
p

π = − ): 

(B1) Inlet flow velocity along the axial direction of the 

moving pipe: 

(B1-1) One-pipe system: ( )1, 0β γ= =  

 ( ) 0 ; ( ) 0i f i fC V K V= =  (7) 

 (B1-2) Two-pipes system: ( )1, 0α β γ= = =  

 

[ ]

2

1

0
( )

0

( )

i f f f

i f

C V m V L

K V

Λ
−Λ
 

  = −   
 

  =  0

 (8) 

(B2) Inlet flow velocity along the vertical direction of the 

undeflected pipe: 

(B2-1) One-pipe system: ( )0β γ= =  

 
2

1( ) 0 ; ( )i f i f f fC V K V m V L= = −  (9) 

(B2-2) Two-pipes system: ( )1, 0α β γ= = =  

 

2

1

2

1

0
( )

0

0 1
( )

0

i f f f

i f f f

C V m V L

K V m V L

Λ
−Λ

−Λ

 
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− 
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 (10) 

As pointed in Part 1, both these scenarios lead to a 

gyroscopic coupling from the aspiring fluid, the last one also 

implying a follower force effect. These different flow models 

are easily implemented in the general formulation (2), together 

with the relevant terms pertaining to the structure and the 

external stagnant flow computed in Annexes A and B. Then, as 

a function of the flow velocity, theoretical predictions of the 

modal parameters ( )
n f
Vω  and ( )

n f
Vζ  are computed from the 

following eigen-formulation, in terms of the global matrices of 

the system: 

 [ ] { } { }2
( ) ( )

T T f T f
M i C V K Vω ω− + + Θ =         0  (11) 

which is conveniently re-written in the standard, first-order, 

state-space form. 

 

4 RESULTS FOR THE ONE-PIPE CONFIGURATION 

The relevant parameters for this test rig were given in 

Section 2, and the corresponding dynamical coefficients are 

detailed in Annex A. The stiffness and dissipation coefficients 

of the articulation, 
1K  and 

1C , are inferred from the 

identified modal frequency and damping in air, 2.1 Hzsf =  

and 4.0 %sζ = . Then, dissipation from the external fluid 

feC  is extracted from the modal parameters in stagnant water, 

1.1 Hzaf =  and 5.0 %aζ = . From these results, we may 

compute the following reduced parameters defined in Part 1, 

for this test configuration: 

( ) 1

1 1

; ;
2

as a s

a R

s a a

VM M gL M
V

K M M L

µ
µ

ω

+
Γ = = =

+
 (12) 
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where subscript s  refers to the effects stemming from all 

moving structural elements and subscript a  to those stemming 

from the interior and external fluid, under no-flow conditions. 

The values obtained are: 0.43Γ = , 0.35
a
µ =  and 

0 ~ 0.82
R

V = ± . 

( )1, 0β γ= =  

 
 

( )0β γ= =  

 

 
Figure 8. Predicted dynamics of the one-pipe configuration, for inlet 

flow scenarios B1 and B2  

 

The theoretical modal frequencies and damping values for 

our experimental rig are plotted in Figure 8, as a function of 

the flow velocity, for the two previously sketched scenarios. 

For expelling flow ( 0)
f

V > , the dramatic damping effect of 

the Coriolis coupling force is obvious. For aspirating flow 

( 0)
f

V < , as predicted from theory, model B1 is totally 

insensitive to the reverse flow, while model B2 produces a 

severe decrease in frequency and ultimately a divergence 

instability. 

 

 
Figure 9. Experimental results of the one-pipe tested configuration 

and theoretical predictions from scenario B1 ( 1β =  and 0γ = ) 

 

The experimental results obtained are shown in Figure 9, 

and they clearly tend to follow scenario B1, where 1β =  and 

0γ = , at least to first order. Therefore, such theoretical model 

was the one chosen to be superimposed to the experimental 

data, with quite satisfactory results. One may notice, for the 

normal expelling flow, that the modal damping increases as 

predicted, up to magnitudes such that the modal identification 

techniques become unreliable. For aspirating flows, although 

the “big picture” clearly follows the predictions of the inlet 

scenario B1, one may notice a slight progressive decrease of 

the modal frequencies as the suction velocity increases. Also 

notice that, although essentially flow-independent, the 

damping values are also slightly lower under suction than at 

zero flow velocity.  

These observations may stem from some sensitivity of the 

pipe articulation and delicate seal to the flow conditions. 

However, they may also be due to small departures of the inlet 

flow field from the modeling scenario B1, which was assumed 

for the theoretical predictions in Figure 9. Actually, as 

discussed in Part 1 and further substantiated in the following 
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section, such variations may be accommodated by small 

adjustments in the inlet flow modeling parameters. 

We noted earlier that, when testing the one-pipe 

configuration, special attention was paid to check that the head 

loss at the aspirating inlet has no effect on the pipe response. 

Indeed, as expected, a similar insensitivity to the aspirating 

flow was displayed by the baffled with a rounded inlet shown 

in Figure 5.  

 

5 RESULTS FOR THE TWO-PIPES CONFIGURATION 

We now turn to the two-pipe configuration, for which the 

dynamical coefficients are detailed in Annex B. Again, the 

stiffness and dissipation coefficients of the articulations, 
1K , 

2K , 
1C  and 

2C , are inferred from the identified modal 

frequencies and damping in air, 
1 0.90 Hzsf = , 

2 2.3 Hzsf = , 
1 0.7 %sζ =  and 

2 3.0 %sζ = . Then, the 

dissipation matrix from the external fluid 
feC    was 

empirically adjusted in order to reproduce the modal 

parameters in stagnant water, which were 
1 0.67 Hzaf = , 

2 1.7 Hzaf = , 
1 2.9 %aζ =  and 

2 2.2 %aζ = .   

The theoretical modal frequencies and damping values of 

our experimental rig are plotted in Figure 10, as a function of 

the flow velocity, for the two previously described inlet flow 

scenarios, B1 ( )1, 0α β γ= = =  and B2 ( )1, 0α β γ= = = . 

Comparison of these predictions with the experimentally 

identified modes shows that the modeling hypothesis B1 is 

overall much better suited. Therefore, Figure 11 displays the 

experimental results obtained from the two-pipes experiments. 

These are, again, superimposed with the theoretical predictions 

using the flow inlet conditions of scenario B1 

( )1, 0α β γ= = = . Under normal outflow conditions, the 

theoretical model copes with the experimental results in a 

satisfactory manner, as expected. Under aspirating flow, the 

agreement between the experimental and predicted modal 

frequencies is remarkable, for both modes.  

Concerning damping, values for the first mode remain 

almost insensitive to the reverse flow, and this behavior seems 

to be well captured by this theoretical model. However, as 

highlighted in Figure 12, for the higher-frequency mode, 

experimental results display a slow but clear decrease of 

damping as the suction velocity increases. This progressive 

lowering of the second mode damping is not displayed by the 

inlet parameters of the basic scenario B1, which also predicts 

little sensitivity of damping to the inflow velocity. 

At this level of subtlety in the behavior of the system 

damping, the freedom allowed by the general formulation (6) 

becomes quite valuable. Indeed, taking scenario B1 as the 

basic framework, small changes in the model parameters α , 

β  and γ  barely affect the analytically predicted modal 

frequencies, however they have a definite influence on the 

system modal damping. 

This is clearly attested by comparing the modal damping 

predictions from parameters 1α β= =  and 0γ =  (the basic 

scenario B1), shown in Figure 12, with those stemming from 

the slightly modified scenario provided by parameters 1α = , 

0.95β =  and 0.02γ = , which are presented in Figure 13. As 

stated before, the modal frequencies of this modified scenario 

are virtually those pictured in Figure 11. Concerning damping, 

notice that, although still not fitting perfectly the experimental 

data, the theoretical values from the modified scenario are 

nevertheless plausible for the first mode data, while clearly 

defining the decreasing trend of the second mode data.  

 

( )1, 0α β γ= = =  

 
 

( )1, 0α β γ= = =  

 

 
Figure 10. Predicted dynamics of the one-pipe configuration, for 

inlet flow scenarios B1 and B2  
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Figure 11. Experimental results of the two-pipes tested configuration 

and theoretical predictions from scenario B1 ( 1α β= =  and 

0γ = ) 

 

6 CONCLUSION 

In the companion paper, Axisa (2010) devised a logical 

experimental set-up and testing strategy in order to highlight 

the dynamical effects of the aspirating fluid boundary 

conditions. An experimental rig was designed and built in 

order to validate the analysis of Part 1. Two configurations of 

partly immersed articulated pipes were tested, both for normal 

(expelling) and for reversed (aspirating) flows. The 

experimental results presented pertain to the following pipe 

configurations: (a) One articulated pipe, with either a common 

protruding or a rounded baffled free end; and (b) Two 

articulated pipes with equal lengths. For all flow velocities 

modal identifications were performed from the measured 

system responses. 

The results obtained under normal flow are in good 

agreement with the theoretical model originally developed by 

Benjamin (1961), which is also reviewed in Part 1. For the 

single articulated pipe, the Coriolis force term leads to a steady 

increase of damping with the flow velocity, modal frequency 

being significantly affected only near critical damping. For the 

two articulated pipes configuration, both the Coriolis and 

centrifugal flow terms are significant, leading to large changes 

in both modal frequencies and damping. Although the 

available flow velocity was insufficient to reach instability 

boundaries, the results obtained closely follow the classic 

theoretical model in the velocity range explored. 

 
Figure 12. Detail of the measured and computed damping for the 

two-pipes tested configuration using scenario B1 

( 1α β= =  and 0γ = ) 

 
Figure 13. Detail of the measured and computed damping for the 

two-pipes tested configuration using a slightly modified scenario 

from B1 ( 1α = , 0.95β =  and 0.02γ = ) 

 

The most interesting results from our experiments 

obviously concern aspirating flows. In agreement with 

previous investigations, the dynamical behavior observed 

clearly demonstrates that, for aspirating flows, the relevant 

flow/structure theoretical model must be radically different 

from the classic formulation which applies to normal flows. 

Following the discussion of the companion paper, it was found 

that one-pipe configurations are insensitive to aspirating flows, 

irrespectively of the pipe termination geometry, showing that 

the Coriolis force term is canceled exactly by the term arising 

from the change in momentum of the flow entering the pipe at 

the free end. Among the three hypothetical inflow scenarios 

suggested by Païdoussis et al (2005), the one labeled here as 

(B1), such that the inlet flow velocity lays along the axial 

direction of the moving pipe with no tangential component, 

supports most of the findings from the present experiments. 

Such modeling assumption leads to near-perfect predictions of 

the one-pipe system dynamics, which remains almost 

insensitive to the aspirating flow. Furthermore, when 

drastically changing the flow entrance head loss – by testing a 

pipe with a baffled rounded inlet – the qualitative dynamics of 

the systems were not affected whatsoever, as theoretically 

expected. 
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The experimental results from the two-pipe configuration, 

are somewhat sensitive to the aspirating flow velocity. Again, 

results show that the system dynamics are mostly controlled by 

the inflow momentum change, as already highlighted by the 

one-pipe tests. Both identified modal frequencies of the two-

pipes system and the first mode damping, as a function of the 

flow velocity, closely follow the theoretical predictions using 

this inlet scenario. However, a discrepancy was observed 

concerning the trend of the second mode damping, which 

decreases somewhat as the aspirating velocity increases, a 

result which is not explained from the basic flow assumption 

B1. Nevertheless, we show that small adjustments in the 

parameters of the inlet flow model produce significant changes 

in the computed modal damping of the system, while barely 

changing the modal frequencies. These parameters appear, 

therefore, as instrumental for understanding the subtle 

damping behavior and stability of aspirating pipe systems. 

 

NOMENCLATURE 

1 2,C C  Dissipation of the articulations [Nm s/rad] 

feC    Damping matrix from the external fluid 

( )fi fC V    Damping matrix from the internal flow  

[ ]sC  Damping matrix of the structure  

[ ] [ ]( ) ( )T f s e i fC V C C C V   = + +     

int ext,D D  Internal and external pipe diameters [m] 

g  Gravity acceleration [m/s
2
] 

1 2,H H  Immersed height of the pipes [m] 

K  Head loss coefficient at pipe inlet 

1 2,K K  Stiffness of the articulations [Nm/rad] 

feK    Stiffness matrix from the external fluid 

( )fi fK V    Stiffness matrix from the internal flow 

[ ]sK  Stiffness matrix of the structure  

[ ] [ ]( ) ( )T f s e i fK V K K K V   = + +     

1 2,L L  Pipe lengths [m] 

fm  Internal fluid mass per unit length [kg/m] 

1 2,M M  Pipe masses [kg] 

feM    Inertia matrix from the external fluid  

fiM    Inertia matrix from the internal fluid  

[ ]sM  Inertia matrix of the structure  

[ ] [ ] [ ] [ ]T s e iM M M M= + +  

r  Wall radius for the baffled pipe inlet [m] 

fS  Pipe internal cross-section [m
2
] 

T  Kinetic energy [J] 

V  Potential energy [J] 

0fV >   Expelling axial pipe velocity [m/s]  

0fV <   Aspirating axial pipe velocity [m/s] 

fρ  Fluid density [kg/m
3
] 

sρ  Structure density [kg/m
3
] 

α , β , γ  Parameters connected with the inlet velocity 

pπ  Inlet pressurization coefficient 

1 2( ) , ( )t tθ θ  Angular pipe motions [rad] 
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ANNEX A: FORMULATION FOR THE TESTED ONE-

PIPE ARTICULATED CONFIGURATION 
 

The conservative dynamical equations for the 

experimental configurations, under no flow conditions, may be 

conveniently obtained using Lagrange formulation:  

 0 ; 1,2,...
n n n

T T V
n

t θ θ θ
 ∂ ∂ ∂ ∂

− + = = ∂ ∂ ∂ ∂ ɺ
 (13) 

where T  and V  are the kinetic and potential energies of the 

system, respectively. The kinetic energy is given as a sum of 

the following terms: 

 1 a fi feT T T T T= + + +  (14) 

where 
1T  pertains to the pipe 

aT  to the articulation fixture, 

fiT  to the internal fluid and 
feT  to the external fluid. With 

respect to the system shown in Figure 6, we have: 

 ( ) ( )
1

2 2 2

1 ext int 1 1 1 1 1 1

0

1 1

2 6

L

s
T S S x dx M Lρ θ θ= − =∫ ɺ ɺ  (15) 

where the structural mass is: 

 ( )1 ext int 1s
M S S Lρ= −  (16) 

with: 

 ( ) ( )2 2

ext ext int int2 ; 2S D S Dπ π= =  (17) 

On the other hand, 70 gam =  is half the mass of the 

mobile articulation fixture tightened to the pipe, which is 

modeled as a point mass at location 
1 15 mmax = =l , hence: 

 
2

1

21

2
a a a
T m θ= ɺl  (18) 

For the internal fluid, under no flow, we have: 

 ( )
1

2
2 2

int 1 1 1 1 1

0

1 1

2 6

L

fi f iT S x dx M Lρ θ θ= =∫ ɺ ɺ  (19) 

where: 

 
int 1i fM S Lρ=  (20) 

while for the external fluid: 

 ( )
1

1 1

2
2 2 2

ext 1 1 1 1 1 1 1 1

1 1 1

2 2 3

L

fe f e

L H

T S x dx M L LH Hρ θ θ
−

 = = − + 
 ∫ ɺ ɺ  (21) 

where: 

 ext 1e fM S Hρ=  (22) 

Turning to the potential energy, we have: 

 1 1

k g g g b

a fi feV V V V V V= + + + +  (23) 

were 1

kV  stems from the articulation stiffness, 1

gV  the tube 

weight, 
g

aV  the articulation weight, 
g

fiV  the internal fluid 

weight and 
b

feV  from the external fluid buoyancy effect. 

Hence: 

 
2

1 1 1

1

2

kV K θ=  (24) 

 

2
21 1

1 1 1 1 1

1

2 2 4

g L
V gM gM L

θ
θ= =  (25) 

 
2

1

1

2

g

a a aV gm θ= l  (26) 

 
2

1 1

1

4

g

fi iV gM Lθ=  (27) 

 

2
21 1 1

ext 1 1 1 1

1

2 2 2 2

b

fe f e

H H
V g S H L gM L

θ
ρ θ   =− − =− −   

   
(28) 

From (13)-(28) we obtain, for the general equation (2), the 

following coefficients not related to the internal flow: 

 

2

1 1

2

2 2

1 1 1 1

2

1

1

3

1

3

1

3

s a a

fe e

fi i

M LM m

M M L L H H

M M L

= +

 = − + 
 

=

l

 (29) 

and: 

 

1 1 1

1
1

1

1

2

2

1
(0)

2

s a a

fe e

fi i

K K gM L gm

H
K gM L

K gM L

= + +

 = − − 
 

=

l

 (30) 
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Furthermore, we must add the empirical  dissipation terms: 

 1 ; ; (0) 0s fe fiC C C C C= = =  (31) 

were the structural coefficient 
1

C  and the external fluid 

dissipation coefficient 
fe

C  are identified from the tests in air 

and in water, with no flow, respectively. 

 

ANNEX B: FORMULATION FOR THE TESTED TWO-

PIPE ARTICULATED CONFIGURATION 

 

Proceeding as before, with respect to the configuration 

shown in Figure 7, we now have: 

 1 2 a b c fi feT T T T T T T T= + + + + + +  (32) 

were 
aT  to 

cT  relate to the identical elements of the 

articulation fixtures 
a b cm m m= = , which are attached to the 

tubes, respectively at 
1 ax = l , 

1 1 ax L= − l  and 
2 ax = l . The 

various kinetic energy terms read: 

 

3
2 2 2 2

1 2 1 1 1 1 2 2

1 1

2 3 3
T T M L

Λ
Λ θ Λ θ θ θ

  + = + + +  
  

ɺ ɺ ɺ ɺ  (33) 

were we define 2 1L LΛ = , as in Part 1. 

 ( )2 2 2 2 2 2

1 1 1 1 2 2

1 1

2 2
a b c a a b b c c c c cT T T m m mL mL mθ θθ θ+ + = + + + +ɺ ɺ ɺ ɺl l l l (34) 

 

3
2 2 2 2

1 1 1 2 2

1 1

2 3 3
fi iT M L

Λ
Λ θ Λθ θ θ

  = + + +  
  

ɺ ɺ ɺ ɺ  (35) 

 

( )

( )

2

2 2

2

1 1 2 2 2

2 2

1 1 1 1 2 1 2

2 2 2 2

1 1 2 2 2

1

2

2
1

1
2

3

L

fe f e

L H

e

T S L x dx

L L L H

M
L L H H

ρ θ θ

θ θ θ

θ

−

= +

 + Λ − +
 =   + Λ −Λ +    

∫ ɺ ɺ

ɺ

ɺ

 (36) 

where: 

 
ext 2e fM S Hρ=  (37) 

For the potential energy, we have: 

 
1 2 1 2

k k g g g g g g b

a b c fi feV V V V V V V V V V= + + + + + + + +  (38) 

with: 

 ( ) 2 2

1 2 1 2 1 2 1 2 2 2

1 1

2 2

k kV V K K K Kθ θ θ θ+ = + − +  (39) 

 ( ) 2 2 2

1 2 1 1 1 2

1
1 2

4

g gV V gM L Λ θ Λθ + = + +   (40) 

 ( ) 2 2

1 1 2

1 1

2 2

g g g

a b c a a b b c c cV V V g m m m L gmθ θ+ + = + + +l l l (41) 

 ( ) 2 2 2

1 1 2

1
1 2

4

g

fi iV gM L Λ θ Λθ = + +   (42) 

 
2 22

1 1 1 2

1

2 2

b

fe e

H
V gM L Lθ Λ θ

  =− + −  
  

 (43) 

Then, from (13) and (32)-(43) we obtain the following 

coefficient matrices: 

[ ]

2

2 2 2

2 1 1

1 1 22
3 1

2

1 1 1 2

2 2 2

1 1 2 1 1 2 2

2

2

1 2
3

3
1 3

1 2

3 3

2

1

2

1 1

2 3

3
1 3

1 2

3 3

2

a a b b c c c

s

c c c c

fe e

fi i

m m mL mL
M ML

mL m

L L L H

M M

L L H L LH H

M ML

Λ
Λ

Λ
Λ

Λ

Λ Λ Λ

Λ
Λ

Λ
Λ

 
+   + +

 = + 
   
  

  −  
    =    − − +  

  

 
+ 

   =   
  

l l l

l l

 (44) 

and: 

 

[ ] 1 2 2

1 1 2

2 2

1

1

2
1

1 2

1 2 01

02

0

0

0

0
2

1 2 01
(0)

02

s

a a b b c

c c

fe e

fi i

K K K
K gM L

K K

m m mL
g

m

L

K gM H
L

K gM L

Λ
Λ

Λ

Λ
Λ

+ − +   
= + +   −   

+ + 
+  
 

 
   =−   −
 

+ 
  =   

 

l l

l

 (45) 

and again, we must add the dissipation matrices: 

 
[ ]

[ ]

1 2 2 11 12

2 2 12 22

;

(0)

s fe

fi

C C C C C
C C

C C C C

C

+ −   
 = =    −   

  =  0

 (46) 

were the structural coefficients 
1

C  and 
2

C  are identified from 

the tests in air, while the external fluid dissipation 
fe

C    is 
adjusted from the modal parameters identified in stagnant 

water. 

 


