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a b s t r a c t

In this paper, we develop a theoretical model to predict the nonlinear fluid–structure interaction forces

and the dynamics of parallel vibrating plates subjected to an axial gap flow. The gap is assumed small,

when compared to the plate dimensions, the plate width being much larger than the length, so that the

simplifying assumptions of 1D bulk-flow models are adequate. We thus develop a simplified theoretical

squeeze-film formulation, which includes both the distributed and singular dissipative flow terms. This

model is suitable for performing effective time-domain numerical simulations of vibrating systems

which are coupled by the nonlinear unsteady flow forces, for instance the vibro-impact dynamics of

plates with fluid gap interfaces. A linearized version of the flow model is also presented and discussed,

which is appropriate for studying the complex modes and linear stability of flow/structure coupled

systems as a function of the average axial gap velocity. Two applications of our formulation are

presented: (1) first we study how an axial flow modifies the rigid-body motion of immersed plates

falling under gravity; (2) then we compute the dynamical behavior of an immersed oscillating plate as a

function of the axial gap flow velocity. Linear stability plots of oscillating plates are shown, as a function

of the average fluid gap and of the axial flow velocity, for various scenarios of the loss terms. These

results highlight the conditions leading to either the divergence or flutter instabilities. Numerical

simulations of the nonlinear flow/structure dynamical responses are also presented, for both stable and

unstable regimes. This work is of interest to a large body of real-life problems, for instance the dynamics

of nuclear spent fuel racks immersed in a pool when subjected to seismic excitations, or the self-excited

vibro-impact motions of valve-like components under axial flows.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many systems of practical interest are subjected to intense
fluid/structure interaction forces when a thin layer of fluid is
interposed between two vibrating structures. A typical example is
provided by immersed structural components, which may impact
if an external excitation is imposed. Nonlinear effects can then
become dominant and should not be neglected. Significant work
in this field has been performed at CEA/Saclay during the last two
decades, in connection with nuclear facilities (see [1,2]). However,
to our best knowledge, all previous nonlinear studies were limited
to systems which vibrate and impact under no-flow conditions.
This constitutes a severe limitation which may lead to erroneous
predictions of the interaction forces and of the system motions. In
particular, self-excited motion regimes may arise, which ob-
viously cannot be predicted using a ‘‘stagnant’’ flow formulation.
ll rights reserved.
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On the other hand, the extensive literature on the fluid/
structure dynamics of industrial squeeze-film problems is mostly
concerned with linearized analysis, when the vibratory motions
are such that, at each location r, the fluctuating part ~hðr,tÞ of the
local fluid gap hðr,tÞ ¼ hðrÞþ ~hðr,tÞ is small compared to the mean
gap value hðrÞ (see, for instance, works by Fritz [3], Hobson [4],
Mulcahy [5,6], Inada and Hayama [7,8], Perotin and Granger [9],
Porcher and DeLangre [10], Inada and Hayama [11], Kaneko et al.
[12] or Moreira et al. [13], as well as the review books by
Paı̈doussis [14] and Kaneko et al. [15]). One of the most thorough
analysis along these lines was achieved by Inada and Hayama [7],
who evaluated the fluidelastic force under steady flow, including
added mass, damping and stiffness flow terms for an one-
dimensional tapered leakage channel. More recently, Porcher
and DeLangre [10] evaluated the dynamical effects of changing
the loss coefficients at the channel inlet and outlet boundary
conditions.

The linearized approach is adequate for stability studies, which
are often the primary concern, but obviously unable to provide
answers at larger vibratory amplitudes, when the fluctuating gap
~hðr,tÞ is of the same order of magnitude as hðrÞ. Such is the case, in
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Nomenclature

Cs structural damping
C1(t), C2(t) integration ‘‘constants’’ for the dynamical pressure

field
Fe(t) external force
Fe mean value of the external force
~F eðtÞ fluctuating component of the external force
Ff(t) fluid/structure coupling force per unit width of the

plate
Ff mean value of the fluid coupling force
~F f ðtÞ fluctuating component of the fluid coupling force
F̂f complex amplitude of the oscillatory fluid force
f1,f2 friction coefficients for the distributed tangential flow

stresses
fs structural in vacuum plate frequency
H fluid gap under static and no-flow conditions
h(r,t) fluid gap
hðrÞ mean value of the fluid gap
~hðr,tÞ fluctuating component of the fluid gap
KIn singular loss coefficient for the entering flow at the

plate boundaries
KOut singular loss coefficient for the exiting flow at the

plate boundaries
Ks structural stiffness
L�Lx lower dimension of the plate (length)
Lx� Lz plate dimensions (length�width)
Ma fluid added mass
Ms structural mass
m,n coefficients of Hirs’ correlation for the friction

coefficient
PA,PB external static pressures at the left-side (x¼0�) and

right-side (x¼L+) fluid reservoirs
Pext identical external static pressures at the left-side and

right-side fluid reservoirs (symmetrical case)
P(x,y,z,t) flow pressure 3D field
P(r,t) bulk-flow pressure field
r�{x,z} location along the system
Re Reynolds number of the flow
t time
T dimensionless time
U(t)�C1(t) space-independent unsteady component of the

axial flow velocity
U mean value of the axial flow velocity

U dimensionless mean value of the axial flow velocity
~UðtÞ fluctuating component of the axial flow velocity
~U ðtÞ dimensionless fluctuating component of the axial

flow velocity
Û complex amplitude of the oscillatory axial flow

velocity
u(r,t) bulk-flow velocity field (x component)
v(r,t) bulk-flow velocity field (z component)
Vx(x,y,z,t)flow velocity 3D field (x component)
Vz(x,y,z,t) flow velocity 3D field (z component)
X1�Y plate displacement in state-space formulation
~X 1 � ~Y dimensionless plate displacement in state-space for-

mulation
X2 �

_Y plate velocity in state-space formulation
~X 2 �

_~Y dimensionless plate velocity in state-space formula-
tion

x coordinate along the direction of dimension Lx

Y(t) vertical motion of the upper plate
Y mean value of the plate displacement
~Y ðtÞ fluctuating component of the plate displacement
~Y ðtÞ dimensionless fluctuating component of the plate

displacement
Ŷ complex amplitude of the oscillatory plate displace-

ment
z coordinate along the direction of dimension Lz

DP¼PA�PB difference between the left side and right-side
reservoir static pressures

e reduced gap parameter
ln¼sn7 ion complex eigenvalues of the linearized problem
Z reduced mass parameter
v fluid kinematic viscosity
o motion frequency
o0 modal frequency of the plate in still fluid
on imaginary part of the complex eigenvalues of the

linearized problem (damped modal frequency)
r fluid volumic mass
sn real part of the complex eigenvalues of the linearized

problem
tx

1, tz
1 shear stresses at the fluid/wall interface of plate 1

tx
2, tz

2 shear stresses at the fluid/wall interface of plate 2
zs structural in vacuum plate damping
z0 modal damping of the plate in still fluid
zn¼�sn/9ln9 modal damping of the linearized problem
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particular, beyond the stability boundaries, when addressing the
nonlinear responses of self-excited systems. Finding a suitable
analytical formulation for the fully nonlinear problem is the main
subject of the present paper, where we extend previous efforts in
this field, in order to cope with the nonlinear coupling terms
which arise when the fluid between the vibrating surfaces is
subjected to axial flow.

Overall, the analytical formulation developed here may be
connected with our approach in work focused on immersed rotor
dynamics (see [13,16–20]). Indeed, the successful ‘‘bulk-flow’’
approach started by Fritz [3] and Hirs [21], and later used by
many authors (see [22]) appears also well suited to deal with the
small-to-moderate fluctuating gaps, such as found in the config-
uration of the present problem. We will start by deriving a
nonlinear flow model under no-flow conditions. Apart from the
specific dissipative terms connected with our quadratic-in-
velocity pressure-drop formulation, we obtain fluid forces which
are similar to those previously presented by Esmonde et al. [1].
Then we extend our formulation to the interesting case of
vibrating surfaces subjected to an axial flow. The nonlinear model
is then linearized, and a considerably simpler formulation is
obtained which is convenient when ~h=h{1.

As noted by a several authors [10,13,18,20], dissipative terms
induce frequency-dependent delay effects for systems subjected
to steady flows. Here, similarly to the approach originally
developed by Moreira et al. [13,20], the frequency-dependent
terms are conveniently integrated by using an additional variable
(related to the fluctuating axial flow-rate), and dynamically
formulated through a first-order nonlinear differential equation.
This approach enabled us to completely avoid iterations while
evaluating the nonlinear dynamics of coupled systems, or when
computing eigenvalues of the corresponding linearized problems.

To complete the paper we present numerical simulations of
systems which present both practical and academic interest. Our
first example concerns the motion of a gravity-driven plate
colliding with a rigid plane surface, as a function of the axial flow
velocity. This example is motivated by impact problems which
may arise between immersed nuclear components, such as fuel
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racks. We also present examples of vibrating structures under
axial flows, which are illustrated by eigenvalue computations and
nonlinear simulations. Depending on the flow and on the
structural parameters, various dynamical regimes are obtained,
in particular nonlinear post-stable limit-cycles. Hence, the present
model may be useful for many dynamical predictions, ranging
from vibro-impact problems in industrial components to musical
instruments. Limited experimental results are available at the
present time (see [23]), which should be extended in future work.
2. Nonlinear theory

2.1. Flow equations

To derive the bulk-flow equations for the flow within a small-
to-moderate fluctuating gap, the control volume shown in Fig. 1
applies, where the gap h(r,t) between the vibrating plates 1 and 2
is filled with an incompressible fluid of volumic mass r.

As mentioned before, at each location r�{x,z} we define
hðr,tÞ ¼ hðrÞþ ~hðr,tÞ, where hðrÞ is the average value of the local gap
between the non-vibrating plates under steady flow and load
conditions. Because the transverse gap h(r,t) is assumed small
with respect to the longitudinal plate dimensions Lx (length) and
Lz (width), in the bulk-flow modeling approach one neglects the
changes in pressure and velocity across the fluid gap, so that we
may conveniently replace the pressure field P(x,y,z,t) and the
components Vx(x,y,z,t) and Vz(x,y,z,t) of the velocity field by their
gap-averaged values:

pðr,tÞ � pðx,z,tÞ ¼

Z hðx,z,tÞ

0
Pðx,y,z,tÞdy ð1Þ

uðr,tÞ � uðx,z,tÞ ¼

Z hðx,z,tÞ

0
Vxðx,y,z,tÞdy, vðr,tÞ � vðx,z,tÞ

¼

Z hðx,z,tÞ

0
Vzðx,y,z,tÞdy ð2Þ

Then, considering a small control volume CV across the fluid
gap thickness, with whole boundary CS, the continuity equation is
written as

@

@t

ZZZ
CV
rdVþ

ZZ
CS
rVUndS¼ 0 ð3Þ

where V is the velocity of the fluid crossing CS and n is the local
unit vector normal to the boundary. The momentum equation is
written as

@

@t

ZZZ
CV

VrdVþ

ZZ
CS

VrV dndS¼
X

n

Fn ð4Þ
1

2

y

x

z

O

2dx2dx
2dz

2dz
h (r,t)

Fig. 1. Control volume used for deriving the bulk-flow equations.
where Fn are the external and volumic forces acting the fluid in
CV. Referring to the elementary control volume shown in Fig. 1,
one obtains (see, for instance, [6] or [1]):

@

@t

ZZZ
CV
rdV ¼

@

@t
ðrhÞdxdz,ZZ

CS
rV dndS¼

@

@x
ðrhuÞdxdzþ

@

@z
ðrhvÞdxdz ð5Þ

so that the continuity equation reads:

@h

@t
þ
@

@x
ðhuÞþ

@

@z
ðhvÞ ¼ 0 ð6Þ

On the other hand, the component terms of the momentum
equation are given as

@

@t

ZZZ
CV

VrdV ¼
@

@t
ðrhuÞdxdz

� �
iþ

@

@t
ðrhvÞdxdz

� �
k

ZZ
CS

VrVUndS¼
@

@x
ðrhu2Þdxdzþ

@

@z
ðrhuvÞdxdz

� �
i

þ
@

@x
ðrhuvÞdxdzþ

@

@z
ðrhv2Þdxdz

� �
k

X
n

Fn ¼ �tx
1�t

x
2�h

@p

@x

� �
dxdz

� �
iþ �tz

1�t
z
2�h

@p

@z

� �
dxdz

� �
k

ð7Þ

where as discussed in Section 2.2, tx
1, tx

2, tz
1 and tz

2 are the shear
stresses at the fluid/wall interfaces of plates 1 and 2, respectively,
along the orthogonal directions of the unit vectors i and k. Then,
the momentum equation (4) leads to the following scalar
equations:

r @

@t
ðhuÞþ

@

@x
ðhu2Þþ

@

@z
ðhuvÞ

� �
¼� tx

1þt
x
2þh

@p

@x

� �
ð8Þ

r @

@t
ðhvÞþ

@

@x
ðhuvÞþ

@

@z
ðhv2Þ

� �
¼� tz

1þt
z
2þh

@p

@z

� �
ð9Þ

For the geometry of interest here, shown in Fig. 2, we are
interested in the flow between two plates such that (L�Lx)5Ly,
therefore, we may postulate v5u. Then, Eqs. (6), (8) and (9)
reduce to the following 1D formulation:

@h

@t
þ
@

@x
ðhuÞ ¼ 0 ð10Þ

and

r @

@t
ðhuÞþ

@

@x
ðhu2Þ

� �
¼� tx

1þt
x
2þh

@p

@x

� �
ð11Þ

Furthermore, because the plate surfaces will in this paper be
assumed parallel, we have h(x,t)¼Y(t), 8x, where for simplicity it
will be assumed that the lower plate is fixed and the fluid
gap Y(t) is given by the displacement of the upper plate. Finally,
L

Y (t)PA PB
x

Fig. 2. Geometry of the flow-structure system.
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Eqs. (10) and (11) become

@Y

@t
þY

@u

@x
¼ 0 ð12Þ

r @

@t
ðYuÞþY

@

@x
ðu2Þ

� �
þtx

1þt
x
2þY

@p

@x
¼ 0 ð13Þ

and the dynamic force exerted by the fluid per unit width of the
plate – e.g., the total force is LzFf(t) – is given by

Ff ðtÞ ¼

Z L=2

�L=2
pðx,tÞdx ð14Þ

2.2. Dissipative phenomena

Following the bulk-flow approach, the tangential stresses tx
1

and tx
2 will be formulated using a loss-of-head model:

tx
1,2 ¼

1

2
ru9u9f1,2 ð15Þ

where the friction coefficients at the walls f1 and f2 are established
based on empirical correlations (see [24,25]). Typically, f changes
with the flow Reynolds number as [21]

f ¼ nðReÞm ¼ n
uh

n

� �m

ð16Þ

where parameters m and n depend on the flow. For turbulent
flows between plane smooth surfaces, Hirs suggest the following
values:

103oReo3104
) m¼�0:25, n¼ 0:055) f ¼

0:055ffiffiffiffiffiffi
Re4
p ð17Þ

otherwise, the Blasius friction correlation can be used with almost
similar results:

f ¼
0:0665ffiffiffiffiffiffi

Re4
p ð18Þ

On the other hand, for laminar flows, the friction coefficient
decreases very fast for increasing flow velocities. In rectangular
channel it can be easily shown that:

Reo4103
) f ¼

12

Re
ð19Þ

Beyond these distributed stresses, other singular dissipative
effects arise in the boundaries x¼7L/2 of the moving plate. Very
complex phenomena arise here, which may be modeled in a
simplified manner using a quasi-static Bernoulli formulation. We
then obtain, for instance at x¼L/2:

p
L

2
,t

� �
þ

1

2
ru

L

2
,t

� �2

¼ Pextþ
1

2
ru

L

2
,t

� �
u

L

2
,t

� �����
����KIn,Out ð20Þ

where Pext is a static reference pressure in an external
reservoir, far from the singularity, and the loss coefficients KIn,Out

depend on the local geometry and Reynolds number. For
turbulent flows and an abrupt gap change, typical values are
given by [25] KInE0.5 (when _Y ðtÞ40) and KOutE1 (when
_Y ðtÞo0). In short, this means that about half the kinetic energy
of the inflow and the full kinetic energy of the outflow is lost
through irreversible phenomena. Idel’Cik [24] and Blevins [25]
present detailed data for many boundary shapes. In general,
smooth (rounded) corners of the plates at x¼7L/2 will lead to
lower values of KIn. On the other hand, low velocity flows will lead
to increased values of the loss coefficient.

2.3. Solution without permanent axial flow

The dynamical response of parallel plates separated by a
stagnant fluid constitutes the much simpler problem studied by
Esmonde et al. [1]. Here, the external static pressure PA on
reservoir at the left side of the plate is equal to the static pressure
PB on the right side, PA¼PB�Pext. We also postulate that the plate
surfaces are similar, so that f1¼ f2� f and we obtain from Eqs. (12)
and (13):

@u

@x
¼�

_Y

Y
ð21Þ

@p

@x
¼�r _uþ

u _Y

Y
þ2u

@u

@x
þ

u9u9
Y

f

" #
ð22Þ

with Y(t)40, 8t. It appears immediately that, when Y-0, the
flow-generated force will tend to infinity. Accounting for the
problem symmetry, the direct integration of Eq. (21) provides
the velocity field:

uðx,tÞ ¼�x
_Y

Y
ð23Þ

and from Eq. (22), applying the boundary conditions discussed in
Section 2.2, the pressure field becomes:

pðx,tÞ ¼ Pext�
1

2
r L

2

� �2

�x2

" #
€Y

Y
þr 1

2

L

2

� �2

�x2

" #
_Y

2

Y2

�
1

3
r L

2

� �3

�x3

" #
_Y _Y
�� ��
Y3

f�
1

8
rL2

_Y _Y
�� ��
Y2

KIn,Out ð24Þ

Note that, in the previous integration, the friction coefficient f

was assumed constant in space, which is in strictly not true.
Indeed, from Eq. (16) it is seen that the friction coefficient
depends on u(x,t), so that one has in general f(x,t). However,
experimental evidence show that for turbulent flows the
exponent m in Eq. (17) is quite small (in many cases almost
zero), so that the change of the friction coefficient with flow
velocity becomes second order. Hence, for turbulent flows, the
preceding simplification is well justified. However, if the flow
velocity is low enough, laminar flows will arise such that
f � Oð1=uÞ (see Eq. (19)), and the convenient simplification
adopted here will lead to some error. Notice that such is the
case, in particular, for the geometry of Fig. 2 under no permanent
axial flow. Indeed, symmetry imposes that near the middle of the
plate u(0,t)¼0, therefore a (smaller or larger) region of the
channel will always display laminar flow. This difficulty will be
addressed elsewhere, because in this paper we are mostly
concerned about the vibrations of plates subjected to a permanent
axial flow which is often turbulent, therefore the above-
mentioned inadequacy will be tolerated.

From Eqs. (14) and (24), we obtain following explicit form for
the total dynamic force of the fluid on the plates, per unit width:

Ff ðtÞ ¼ PextL�
rL3

12

€Y

Y
þ
rL3

24

_Y
2

Y2
�
rL4

32

_Y _Y
�� ��
Y3

f�
rL3

8

_Y _Y
�� ��
Y2

KIn,Out ð25Þ

In solution (25) one can recognize, beyond the trivial constant
force term stemming from Pext, four vibration-induced nonlinear
dynamical terms which are related to: (a) the local fluid inertia,
(b) the convective inertia, (c) the distributed wall interface
stresses, and (d) the singular losses at the boundaries. Notice
that the magnitude of all these force terms increase dramatically
as the fluid gap closes, because of the various powers of Y(t) in the
denominators of Eq. (25)—hence the squeeze-film effect.

Most terms in solution (25) are analogous to those published
by Esmonde et al. [1]. However, our quadratic dissipative term
related to flow/wall stresses is different from theirs, due to the
distinct assumptions involved. Both coefficients KIn and KOut can
be used when performing a numerical simulation, the first one
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during aspiration ( _Y ðtÞ40) and the other during ejection
( _Y ðtÞo0).

2.4. Solution with permanent axial flow

For a more general flow configuration, the problem symmetry
is broken. We will now assume that the external static pressure PA

on the left side of the plate is higher than the static pressure PB on
the right side. A permanent flow is thus generated, directed from
left to right, which increases with the ratio PA/PB. Integration of
the continuity equation will now lead to the general velocity field:

uðx,tÞ ¼�x
_Y

Y
þC1ðtÞ ð26Þ

Then, from Eqs. (22) and (26) we get

pðx,tÞ ¼
1

2
rx2

€Y

Y
�rx2

_Y
2

Y2
þrx

_Y

Y
C1ðtÞ

þ
1

3
r x2

_Y

Y2
�2x

C1ðtÞ

Y
þC1ðtÞ

2 _Y

 !
x
_Y

Y
�C1ðtÞ

�����
�����

"

�C2
1 ðtÞ C1ðtÞ

�� �� _Y if�rx _C 1ðtÞþC2ðtÞ ð27Þ

and the integration ‘‘constants’’ C1(t) and C2(t) are computed by
enforcing the boundary conditions:

p �
L

2
,t

� �
¼ PA�

1

2
ru �

L

2
,t

� �2

�
1

2
ru �

L

2
,t

� �
u �

L

2
,t

� �����
����KA ð28Þ

p
L

2
,t

� �
¼ PB�

1

2
ru

L

2
,t

� �2

þ
1

2
ru

L

2
,t

� �
u

L

2
,t

� �����
����KB ð29Þ

where to simplify the formulation, KA and KB stand for the average

values of the corresponding inflow and outflow loss coefficients.
The inflow and outflow singular loss coefficients are usually

different and, furthermore, usually depend on the flow Reynolds
number. Then, using ‘‘average’’ values for single inflow/outflow
coefficients constitute a convenient but obviously rough approx-
imation. For the nonlinear time-domain computations, nothing
prevent us from using time-varying friction coefficients, function
of the local time-varying Reynolds number. For the time-domain
formulation, one can then take the ‘‘average’’ friction coefficients
simply as a notational convenience. Notice, however, that the
friction coefficients available in the literature were obtained for
steady flows, and that their use under unsteady conditions –
although a common practice – is a least debatable. Even so,
because very few experimental data is available on unsteady
friction coefficients, the use of steady coefficients adopted in this
paper – in spite of entailing obvious pertinent criticisms – follows
the most current practice. However, having accepted such crude
approximation, it seems reasonable (even for the time-domain
nonlinear computations) to use constant friction coefficients, with
‘‘average’’ values (in the sense of time-averaged) such that they fit
reasonably well the actual range of Reynolds numbers of the
computed motion. The values adopted must be based on
estimates of the inflow and outflow Reynolds numbers, and may
eventually be refined in an iterative manner, from the computated
flow results, so that the ‘‘average’’ singular loss coefficients be as
compatible as possible with the resulting inflows and outflows,
for the computed range of Reynolds numbers. Clearly, this
constitutes a less-than-satisfactory issue, but sometimes conve-
nience prevails, when the better alternative is exceedingly
involved or asks for nonexistent experimental data.

For vibrating plates subjected to symmetrical boundary
conditions, there is no net axial flow, and therefore there is
inflow when the plates separate and outflow when they approach.
This simple geometrical fact enables an easy distinction of when
one should apply inflow or outflow values for the singular loss
coefficients. Then, for the nonlinear computations, it is reasonable
to apply different values of the friction coefficients, according to
the motion stage of the plate, which causes the flow to enter or
exit the channel. However, when the pressure boundary condi-
tions are non-symmetrical, there is a net axial flow which
prevents the use of a simple relationship between the plate
motions and the nature of the flow. The flow velocity direction in
each point now depend on both the pressure-induced axial flow
as well as on the plate motion Y(t). Therefore, in contrast with the
basic case discussed in Section 2.3, inflow and outflow are not
simply related to conditions _Y ðtÞ40 or _Y ðtÞo0, as flow patterns
can be much more complex and one cannot state, a priori, the
nature of the flow from the plate motions. Under such conditions,
it may be reasonable to use suitable ‘‘average’’ values for the loss
coefficients, which should be representative as much as possible
of the full inlet/outlet cycle. Also notice that, for linearized
analysis of the flow-coupled system, one cannot use time-
dependent friction coefficients. The ultimate compromise of using
constant average loss coefficients representative of the full
inlet/outlet cycle then becomes mandatory. If plate boundaries
are abrupt, average loss values 0:5 o KA,Bo 1 should be used
for turbulent flows, the upper boundary increasing somewhat for
laminar flows (see [24]). These issues are investigated in greater
detail by Piteau and Antunes [26].

Equating the left-side and right-side boundary conditions (28)
and (29), we compute C1(t) and C2(t) in Eq. (27). Then, integration
of the pressure field leads to the dynamic force per unit width
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where C1(t) is expressed in terms of the following nonlinear
differential equation:
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These flow-related equations are coupled with the structural
dynamical equation for the plate dynamics, through:

Ms
€Y þCs

_Y þKs½Y�H� ¼ LzFf ðtÞþFeðtÞ ð32Þ

where Lz is the plate width, H is the fluid gap under static
conditions and no-flow, Ms, Cs and Ks are structural parameters,
Ff(t) is the flow coupling force previously discussed and Fe(t)
stands for any other external force, such as a shaker. Eqs. (30)–
(32) must be solved simultaneously using any suitable time-step



J. Antunes, P. Piteau / International Journal of Mechanical Sciences 52 (2010) 1491–15041496
integration technique, for the initial conditions Y(0)¼Y0, _Y ð0Þ ¼ _Y 0

and C1(0)¼C0.
Derivation of solution (30) and (31) is rather tedious, and is

greatly alleviated by using symbolic manipulators, such as Maple
[27]. One may verify that this general solution reverts to the
previous symmetrical no-flow problem, when PA¼PB¼Pext and
KA ¼ KB ¼ K , in which case C1(t)�0. On the other hand, the
physical meaning of C1(t) becomes clear from Eq. (26), where a
motion-dependent space-symmetrical velocity term is super-
posed to C1(t). The space integral of the first term is null, so that

UðtÞ ¼
1
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 !
dx¼ C1ðtÞ ð33Þ

and we conclude that C1(t)�U(t) is a space-independent unsteady
component of the flow velocity, related to the mean flow-rate
generated by the pressure gradient PA4PB. Hence, we will use in
the following the notation U(t) instead of C1(t).
3. Linearized formulation

First note that, if the flow motion never reverses its direction
(because of a large ratio PA/PB or of a small vibration amplitude),
then we can replace u(x,t) 9u(x,t)9 by u(x,t)2, KA � KA ¼ KIn and
KB � KB ¼ KOut . Then, Eqs. (30) and (31) simplify considerably
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We now look at the case of motions Y(t) such that the
fluctuating part ~Y ðtÞ is small when compared with the mean fluid
gap hðxÞ ¼ Y under flow conditions. We then linearize Eq. (32),
with Eqs. (34) and (35), about the mean amplitude, with

YðtÞ ¼ Yþ ~Y ðtÞ, UðtÞ ¼Uþ ~UðtÞ

Ff ðtÞ ¼ Ff þ
~F f ðtÞ, FeðtÞ ¼ Feþ

~F eðtÞ
ð36Þ

Then, inserting Eq. (36) into the dynamical equations, we
obtain a pair of zero-order (static) equations, which describe the
steady part of the flow, as well as to a couple of first-order
(dynamic) equations describing the fluctuating flow, which are
linearized, by dropping all higher-order terms:
(a)
 Zero-order equations
From Eq. (34) the average flow force per unit width reads
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and the average axial flow velocity stemming from Eq. (35)
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Hence, from Eqs. (32) and (37)
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from which we obtain the mean height of the fluid gap
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First-order equations
(b)

From Eq. (34) the linearized dynamical flow force per unit
width reads
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and, from Eq. (35), we obtain the fluctuating flow velocity
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We then obtain the linearized dynamical equation, from Eqs.
(32) and (41)

Ms
€~Y þCs

_~Y þKs
~Y ¼ Lz

~F f ðtÞþ ~F eðtÞ ð43Þ

which is linearly coupled with (41), and (42).

Note that the fluctuating force ~F f ðtÞ depends on the mean flow

velocity U and on the average fluid gap Y , which is a typical result
for systems subjected to permanent flows. Therefore, unstable
solutions become a distinct possibility. Under no-flow conditions,
U ¼ 0, solution (41) reverts to the classic added-mass term:

~F f ðtÞ
U ¼ 0
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���� ð44Þ

For the general case U40, Eqs. (41) and (42) are coupled, and
both equations must be used simultaneously when computing the
actual motions of the system. Formulation (42) can be seen as a
first order differential equation in ~U ðtÞ, which is forced by the
plate motion ~Y ðtÞ. In general this means there is a phase lag
between ~Y ðtÞ and ~UðtÞ. Another way to look at these results is to
transform Eqs. (41) and (42) for the case of pure oscillatory
motions:

~F f ðtÞ ¼ F̂f eiot , ~Y ðtÞ ¼ Ŷ eiot , ~UðtÞ ¼ Û eiot ð45Þ

where F̂f , Ŷ and Û are complex amplitudes. We then obtain
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This linearized solution is similar to the one produced by
Porcher and DeLangre [10]. It is also compatible with the solution
obtained by Inada and Hayama [7]. It is clear that, as a result of
permanent flow and dissipative effects, both the velocity-coupling
and the stiffness-coupling terms become frequency-dependent in
Eq. (47). This physical result can create computational problems if
one insists on having an explicit form, such as Eq. (47), for the
dynamic flow force. We believe that keeping paired equations
such as in (30),(31) or (41),(42) leads to much simpler computa-
tional work, either when seeking the time-domain nonlinear
solutions or when computing the eigenvalues of the corresponding
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linearized formulation. Indeed, by using this approach, frequency-
dependent coupling coefficients never surface, so there is no need
for iterative or other delicate numerical procedures. This
significant point is further elaborated by Moreira et al. [13].
Fig. 4. Flow force on the dropping mass and axial flow velocity as a function of the

pressure difference DP.

Fig. 3. Motion of the dropping mass as a function of the pressure difference DP.
4. Numerical simulations

4.1. General procedure

Because we are dealing with a single-degree-of-freedom
system, the flow-structure dynamical equation is simply

Ms
€Y þCs

_Y þKs½Y�H� ¼ LzFf ðY , _Y , €Y ,UðY , _Y ÞÞþFeðtÞ ð48Þ

where following Eq. (31) with the notation suggested by Eq.
(33), the unsteady axial velocity is given by the first-order
equation:

_U ¼FðU,Y , _Y Þ ð49Þ

In state-space form, Eqs. (48) and (49) are equivalent to a
system of three first-order equations:
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_U ¼FðU,X1,X2Þ ð50Þ

where X1¼Y and X2 ¼
_Y . One can notice that the inertial term _X 2

appears in both sides of the second Eq. (50), which must be
modified as
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X1
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For instance, for the simpler case with no permanent flow, Eqs.
(50) and (51) become
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The general case U(t)a0 is obviously more involved, as follows
from Eqs. (30) and (31).

4.2. Nonlinear analysis of a gravity-driven impacting plate

Our first example is closely related to the original industrial
problem which motivated this study. An immersed rectangular
plate with mass Ms¼36 kg and axial length Lx�L¼43 mm
(transverse width is Lz¼214 mm) is dropped from a height
Y(0)¼6 mm. The plate is free to move along the vertical direction,
when subjected to gravity, so that Ks¼0. However, there is some
damping Cs¼200 N s/m in a plate-guiding fixture, as identified
from an experimental rig at CEA (Saclay) connected with this
problem (see [23]). The fluid is water, with volumic mass
r¼1000 kg/m3 and kinematic viscosity n¼10�6 m2/s.

Nonlinear time-domain computations were performed for
three values of DP¼PA�PB, namely 0, 0.4 and 1 bar. The singular
loss coefficients used in these computations were KA¼KB¼1. The
friction coefficient f for the distributed pressure-drop was
computed from formulation (16), using in each case an average
value of the Reynolds number along the flow channel.
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Fig. 3 shows how the axial flow, due to DP, affects the motion of
the dropping plate. One can notice that, as the pressure gradient
increases, the mass drops faster, until the flow becomes almost
obstructed by the closing gap. This dynamic behavior can be
related to a ‘‘sucking’’ Bernoulli effect of the axial flow. Accordingly,
the dropping time is smaller and the motion velocity is higher
when DP increases. Fig. 4 shows that the flow interaction force and
the axial flow velocity also increase with DP, as might be expected.
4.3. Nonlinear analysis of a vibrating plate subjected to axial flow

We now turn to the case of a light elastically suspended plate
with mass Ms¼0.05 kg and axial length Lx�L¼40 mm (transverse
width is Lz¼200 mm). The stiffness and damping constants of the
plate fixture are Ks¼2�104 N/m and Cs¼0.0628 N s/m, respec-
tively. These lead to modal frequency and damping values of
fs¼100 Hz and zs¼0.1%. The working fluid is air, with volumic
mass r¼1.2 kg/m3 and kinematic viscosity n¼1.5�10�5 m2/s.
The parameter values in this example were selected aiming a light
structure with ‘‘simple’’ values of the modal parameters fs and zs,
which could become statically or dynamically unstable when
subjected to an air flow of sufficient velocity.

In the computations presented in this section we used a friction
coefficient f¼0.01 for computing the distributed wall/flow stresses,
as well as a loss coefficient at the inlet KA¼0.5 higher than the loss
coefficient at the outlet KB¼0.2. Actually, in agreement with other
investigators, we have found that the present model always leads
to a stable system when a high value of the loss coefficient is
imposed at the outlet (see, for instance, [10]). In practice, this
Fig. 5. Responses of a vibrating plate subjected to axial flow: (a) reference fluid gap H¼0
means that a suitable outlet geometry with gradual transition and
comparatively small losses would be necessary, in order for the
system to display unstable motion regimes (see [25]). Nonlinear
time-domain computations were performed for several values of
DP¼PA�PB and of the reference fluid gap H.

From the extensive time-domain computations performed, we
selected a few cases for presentation here. In order to minimize
the duration of the response transients in the results presented,
we decided to start the dynamical computations after a pre-
computation of the near-steady axial velocity. This was achieved
by first ‘‘blocking’’ the plate at the reference value Y¼H and then
calculating the resulting steady flow velocity U

ðY ¼ HÞ
, from

Eq. (38). Under these conditions, the structure is acted by a
steady force Ff

ðY ¼ HÞ
per unit width given by Eq. (37), which is

typically dominated by a Bernoulli effect of the flow, causing the
moving plate to be ‘‘sucked’’ towards the base plate. The time-
domain numerical simulations next shown are started using the
initial conditions Y(0)¼H, _Y ð0Þ ¼ 0 and Uð0Þ ¼U

ðY ¼ HÞ
. Note that

this pre-computation to obtain an estimate of the near-steady
axial velocity is not an essential step of the procedure. Indeed, we
could as well start our numerical simulations from a motionless
fluid U(0)¼0, which would then be accelerated by the pressure
difference DP. The time-domain solution would obviously be
different and with a longer transient response, but the underlying
physics would be the same. On the other hand, because the
moving plate is typically acted both sides by the average
atmospheric pressure, the average value of PA and PB in solutions
(30) or (34) is irrelevant. Therefore, in order to plot here fluid
forces Ff(t) which only represent the dynamical part of the
solutions, we will choose always PA¼PB+DP such that PA+PB¼0.
.6 mm and DP¼0.02 bar and (b) reference fluid gap H¼0.01 mm and DP¼0.07 bar.



Fig. 6. Responses of a vibrating plate subjected to axial flow: (a) reference fluid gap H¼5 mm and DP¼0.005 bar and (b) reference fluid gap H¼5 mm and DP¼0.07 bar.
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The first computational examples, shown in Fig. 5 pertain to a
system configuration with small reference fluid gaps. In the left-
side plots (a), we have H¼0.6 mm under stagnant conditions and
apply a pressure difference DP¼0.02 bar. The system motion is
damped, tending to a final fluid gap of Yðt-1ÞC0:32mm, with
average flow velocity Uðt-1ÞC32m=s and a steady flow force
Fðt-1ÞC�5:5N (see Eqs. (37), (38) and (40)). As can be noticed
from the plots, the corresponding initial values at Y(0)¼H,
computed from Eqs. (37) and (38) (with Y replaced by H), were
Uð0Þ ¼ 40:5m=s and Fð0ÞC�9:0N.

The computation results in the right side (b) of Fig. 5 were
obtained by considering a smaller gap H¼0.01 mm and imposing
a larger pressure difference DP¼0.07 bar. Actually, for the specific
parameters of this computation, the system is buckling, as was
confirmed by time-domain computations using the linearized
flow formulation (41) and (42). This point will be further
discussed in the next section. Notice for the moment that, due
to suction by the permanent flow, the fluid gap decreases
asymptotically to about Yðt-1ÞC0:002mm, with the average
flow velocity tending to Uðt-1ÞC5:5m=s and the steady flow
force to Fðt-1ÞC�0:17N. The initial values at Y(0)¼H were
Uð0Þ ¼ 12:0m=s and Fð0ÞC�0:8N. In the plot, the transition from
this value of the fluid force to almost zero is extremely fast, as a
result of the zero stiffness of the flow/structure coupled system
system.

The examples shown in Fig. 6 pertain to a configuration with a
much larger reference gap, H¼5 mm. In the left-side plots (a), a
small pressure difference DP¼0.005 bar was imposed, resulting in
a final fluid gap of Yðt-1ÞC4:7mm, with average flow velocity
Uðt-1ÞC30:9m=s and a steady flow force Fðt-1ÞC�5:29N.
The system response is almost harmonic and only slightly
damped, therefore such configuration might well be computed
using the linearized formulation (41) and (42) instead of the
nonlinear model (30) and (31). In contrast to the preceding case,
the results shown in the right-side plots obtained with
DP¼0.07 bar clearly pertain to a linearly unstable system. Here,
as will be shown in the next section, the linearized system
becomes unstable by flutter. Then, limit cycles arise as a result of
the nonlinear flow force terms, which limit the motion amplitude.
Here, the flow force clearly behaves in a non-harmonic manner,
with high-amplitude spikes whenever the gap nearly closes.
Accordingly, the axial flow velocity is very unsteady, pulsating at
the motion frequency.

4.4. Linearized analysis of a vibrating plate subjected to axial flow

The last example of the preceding section demonstrates the
practical interest of the present nonlinear flow solution. Never-
theless, it also proves useful to get a global picture of the
dynamical behavior and stability of the system, based on the
linearized formulation provided by Eq. (43), with Eqs. (41) and
(42). This is easily investigated by computing, for a given
structure and flow, the eigenvalues of the following problem:
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or, defining the added mass Ma ¼ rL3Lz=ð12YÞ
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where the mean values of the flow velocity U and fluid gap Y are
given by Eqs. (38) and (40), respectively. Then, following the usual
procedure for state-space formulation:
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where ~X 1 ¼
~Y and ~X 2 ¼

_~Y . Hence, the dynamical behavior and
stability of the linearized system is described in terms of the
eigenvalues ln and eigenvectors {Xn} of
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Eq. (56) can be easily formulated in dimensionless terms, by
introducing the circular frequency and damping ratio of the
system in still water:
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Fig. 7. Eigenvalues for a vibrating plate subjected to axial flow, for two refe
as well as the following reduced quantities, which arise naturally
from the previous results:
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and we obtain

_~X 1

_~X 2

_~U

8>><
>>:

9>>=
>>;

¼

0 1 0

�1 �2z0�6UZe KAþKB

2
þ

f

3e

� �
�12UZe2 1þ

KA�KB

2

� �

U2
f �U KA�KB

2
�UðeðKAþKBÞþ2f Þ

2
666664

3
777775

~X 1

~X 2

~U

8><
>:

9>=
>; ð60Þ

Eq. (60) highlights the significance of the scaling factors (59),
for vibratory problems under axial flow, in particular the mass
ratio Z, the reduced gap e and reduced axial flow velocity U. Even
so, the resulting system is still quite complex and it is hard to
extract any general conclusions concerning the effects of the
various friction coefficients on the dynamics of the flow-coupled
system. These will be highlighted in the following through a
number of illustrative computations.
rence fluid gaps Y ¼ 0:07 and 2mm, with KA¼0.5, KB¼0.2 and f¼0.01.



Fig. 9. Stability maps for a vibrating plate subjected to axial flow, as a fun

Fig. 8. Stability map for a vibrating plate subjected to axial flow, as a function of U

and Y , for KA¼0.5, KB¼0.2 and f¼0.01.
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Plots of the real and imaginary parts of the three eigenvalues
ln U
� �
¼ sn U

� �
7 ion U

� �
of Eq. (57), as a function of the steady

flow velocity U, are shown in Fig. 7, for two values of the mean
fluid gap, Y ¼ 0:07 and 2mm. They were computed using values
KA¼0.5, KB¼0.2 and f¼0.01 for the loss coefficients. In the left-
side plots, pertaining to configuration Y ¼ 0:07mm, increasing the
flow velocity U decreases the damped modal frequency 7on,
until the stiffness of the system becomes nil at about UC20m=s.
At this velocity (point I1 in the plots), buckling of the system arises.
In the right-side plots, corresponding to configuration Y ¼ 2mm,
increasing the flow velocity barely changes the modal frequency.
However, large changes are displayed by the real part sn of the
eigenvalues, which first decrease (e.g., damping zn ¼�sn= ln

�� ��
increases) until flow velocity is about UC12m=s, and then start
increasing (damping zn decreases). When the flow velocity is
about UC30m=s (point I2 in the plots), sn becomes positive
(zno0) and the system is unstable by flutter.

Fig. 8 displays a more complete scenario, by plotting the
stability map for the loss coefficients KA¼0.5, KB¼0.2 and f¼0.01,
as a function of the mean flow velocity U and average operation
gap Y . The three dynamical regions previously described are
shown through the following color code: green for a stable system,
blue for buckling and red for flutter. The lines highlighted in the
map pertain to the eigen-solutions presented in Fig. 7,
respectively, for Y ¼ 0:07 mm (with buckling at point I1) and
Y ¼ 2 mm (with flutter at point I2). Also, four points P1–P4

highlighted in the map represent the asymptotic values of Y and
ction of U and Y , when KA¼0 and KB¼0, for f¼0, 0.001, 0.01 and 0.1.
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U, as t-N, for the time-domain computations shown in Figs. 5
and 6. Notice that, for the configuration P1 shown in Fig. 5(a),
the system is indeed stable. The same applies to the configu-
ration P3 shown in Fig. 6(a). On the other hand, as claimed
before, configuration P2 pertaining to the computation in Fig. 5(b)
lays in the buckling region of the map. Finally, in agreement with
the results of Fig. 6(b), configuration P4 is linearly unstable by
flutter.

Because stability maps such as the ones in Fig. 8 encapsulate
much interesting information, Figs. 9–11 display several maps of
the system as a function of U and Y , to illustrate distinct
conceptual scenarios depending on the values of KA, KB and f.
For each stability map supplied we decided to postulate constant
values for the friction coefficients, so that the effects of changing
other parameters may be easily grasped. But obviously, in actual
computations of practical interest, one cannot change the fluid
gap and/or velocity while keeping the same friction coefficient. As
discussed earlier, these coefficients must be adjusted accounting
for the representative Reynolds numbers which stem from these
parameters.

Fig. 9 shows the effect on the system stability of the
distributed loss coefficient, in the range 0r fr0.1, when
postulating no singular losses at the inlet and outlet, KA¼KB¼0.
The system is always stable when f¼0, however, even a small
value of the friction coefficient will lead to divergence and flutter
regions. As f increases, so does the extent of the divergence
domain, while the size of the flutter domain decreases. Basically,
the same conclusion can be drawn from Fig. 10, where we used
KA¼1 and KB¼0, although the dynamical behavior when f¼0 is
Fig. 10. Stability maps for a vibrating plate subjected to axial flow, as a fun
now quite different from the previous case with no dissipative
effects. Actually, when KA4KB, the three different regions in the
stability map always arise, irrespectively of the value of the
friction coefficient. Fig. 11, computed using KA¼0 and KB¼1,
shows that when KAoKB the system never displays the flutter
instability.
5. Conclusions

We developed in this paper a theoretical model for the linear
and nonlinear motions of parallel plates subjected to axial flows.
The theory presented should be adequate for small and moderate
fluid gaps. Flow was modeled using simplifying assumptions
connected with the so-called bulk-flow approach, which pre-
serves the inertial character of the flow, is well suited for
turbulent flows and accounts for all spatial aspects in the
Navier–Stokes equations using a single space coordinate. Both
distributed and singular dissipative effects have been addressed,
using empirical pressure-loss terms.

The formulation was illustrated with two examples, namely a
gravity-driven impacting plate and a vibrating system. All test
cases highlight the significance of the axial flow, even for a rigid
impacting system. Solutions for vibrating systems clearly depend
on both the mean axial flow velocity, the inlet and outlet
boundary conditions, as well as on the average fluid gap. This
was shown by computing an extensive set of stability charts and
by performing nonlinear time-domain numerical simulations for
both stable and unstable configurations. In agreement with
ction of U and Y , when KA¼1 and KB¼0, for f¼0, 0.001, 0.01 and 0.1.



Fig. 11. Stability maps for a vibrating plate subjected to axial flow, as a function of U and Y , when KA¼0 and KB¼1, for f¼0, 0.001, 0.01 and 0.1.
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previous studies (see [6,7,10,14,15]) the parametric analysis from
the present model shows that increasing KA has a destabilizing
effect for the system, while increasing KB has a stabilizing effect.
On the other hand, increasing f is mostly destabilizing, depending
on H.

Although this is a theoretical paper, which does not intend to
address the important step of experimental validation, we have
already performed extensive tests to validate the theoretical
predictions for the symmetrical case PA¼PB, with an overall
satisfactory agreement (see [26]). The corresponding validation
experiments under the axial flows generated when PAaPB have
yet to be performed.

This work was motivated by industry-related problems.
Actually, in two related papers, Moreira and Antunes [28,29]
show how the present model can be used effectively to predict the
flow-structure dynamics of immersed spent nuclear fuel racks.
These are stored in pools, often using a regular chessboard-type
layout, with the neighboring racks separated by fluid channels
such that H/L51. The rack dynamics under seismic excitation are
conveniently addressed using, for each channel, the modeling
approach developed in this paper. The closure of the formulation
for the dynamical pressure and flow velocity fields is then
obtained from the mass and pressure compatibility conditions
at each corner, where four channels converge (see [28,29]). In a
very different scientific field, the last example in this paper might
well represent a typical response of the blown reed-valve
embouchure of a musical instrument, when uncoupled from the
acoustical field of the instrument pipe. The present model may
well constitute an improvement over the usual approach based on
a straight application of the quasi-static Bernoulli equation (see
[30–32] for details).
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Paris University, September 1994.

[18] Antunes J, Axisa F, Grunenwald T. Dynamics of rotors immersed in eccentric
annular flows: Part 1—theory. Journal of Fluids and Structures 1996;10:893–918.

[19] Antunes J, Mendes J, Moreira M, Grunenwald T. A theoretical model for
nonlinear planar motions of rotors under fluid confinement. Journal of Fluids
and Structures 1999;13:3–21.

[20] Moreira M, Antunes J, Pina H. A theoretical model for nonlinear orbital
motions of rotors under fluid confinement. Journal of Fluids and Structures
2000;14:635–68.

[21] Hirs G. A bulk-flow theory for turbulence in lubricant films. ASME Journal of
Lubrication Technology 1973;95:137–46.

[22] Childs D. Turbomachinery rotordynamics: phenomena. modeling and
analysis. New York, USA: John Wiley & Sons; 1993.

[23] Piteau P, Antunes J, Borsoi L. Experimental validation of a nonlinear bulk-flow
squeeze-film theoretical model. In: Proceedings of the 7th EUROMECH Solids
Mechanics Conference (ESMC2009), September 2009, Lisbon, Portugal.
[24] Idel’Cik I. Memento des Pertes de Charge. Paris, France: Eyrolles [Also
published in 1994 as Handbook of Hydraulic Resistance. Boca Raton, USA:
CRC Press].

[25] Blevins R. Fluid dynamics. New York, USA: Van Nostrand Reinhold Company;
1984.

[26] Piteau P, Antunes J. Experiments on the nonlinear dynamics of parallel plates
subjected to squeeze-film forces. In: Proceedings of the ASME 2010 10th
biennial conference on Engineering Systems Design and Analysis
(ESDA2010), July 2010, Istanbul, Turkey.

[27] Heal K, Hansen M, Rickard K. Maple V learning guide. New York, USA:
Springer-Verlag; 1996.

[28] Moreira M, Antunes J. A simplified linearized model for the flow-coupled
vibrations of spent nuclear fuel racks. Journal of Fluids and Structures
2002;16:971–87.

[29] Moreira M, Antunes J. Fluid-coupled vibrations of immersed spent nuclear
racks: a nonlinear model accounting for squeeze-film and dissipative
phenomena. In: ASME 2004 International Mechanical Engineering Congress
and Exposition (IMECE2004), November 13–19, 2004, Anaheim, CA, USA,
Paper no. IMECE2004-62353, p. 651–62.

[30] Hirschberg A, Kergomard J, Weinreich G. Mechanics of musical instruments.
Vienna, Austria: Springer-Verlag; 1995.

[31] Fletcher N, Rossing T. The physics of musical instruments. New York, USA:
Springer-Verlag; 1998.

[32] Chaigne A, Kergomard J. Acoustique des Instruments de Musique. Paris,
France: Belin; 2008.


	A nonlinear analytical model for the squeeze-film dynamics of parallel plates subjected to axial flow
	Introduction
	Nonlinear theory
	Flow equations
	Dissipative phenomena
	Solution without permanent axial flow
	Solution with permanent axial flow

	Linearized formulation
	Numerical simulations
	General procedure
	Nonlinear analysis of a gravity-driven impacting plate
	Nonlinear analysis of a vibrating plate subjected to axial flow
	Linearized analysis of a vibrating plate subjected to axial flow

	Conclusions
	References




