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a b s t r a c t

For achieving realistic numerical simulations of bowed string instruments, based on physical modeling,

a good understanding of the actual friction interaction phenomena is of great importance. Most work

published in the field including our own has assumed that bow/string frictional forces behave according

to the classical Coulomb stick–slip model, with an empirical velocity-dependent sliding friction

coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well

captured using such friction model. However, recent work has shown that the tribological behavior of

the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb

model may be an over-simplistic representation of the friction force. More specifically, it was suggested

that a more accurate model of the interaction force can be achieved by coupling the system dynamical

equations with a thermal model which encapsulates the complex interface phenomena. In spite of the

interesting work performed by Askenfelt [32], a direct measurement of the actual dynamical friction

forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a

modal-based identification technique making use of inverse methods and optimization techniques,

which enables the identification of the interface force, as well as the string self-excited motion, from the

dynamical reactions measured at the string end supports. The method gives convincing results using

simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where

the force identifications are very sensitive to errors in the transfer function modal parameters, we

suggest a method to improve the modal frequencies used for the identifications. Preliminary

experimental results obtained using a basic bowing device, by which the string is excited with the

stick of the bow, are then presented. Our identifications, from the two dynamical string reactions, are

consistent as attested by the comparison of the two available versions of the string dynamical motion

and of the friction force. Furthermore, the method seems adequate to investigate the interface force for

the bowed string.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An important aspect of friction-related problems deals with
the development of accurate models to simulate, as precisely as
possible, the friction force acting on a bowed system and its
resulting motion. Due to the complex nature of this interaction,
which is highly nonlinear, several models have emerged—mostly
of empirical nature—with different assumptions depending on
the problem to address. Particularly, for the case of a bowed
string, a classical Coulomb model—in which the friction force is
a function of the sliding velocity—represents a reasonable
approximation to typical behavior [1–4]. Recently, Smith and
Woodhouse [5,6] measured the friction and relative sliding speed
ll rights reserved.
between a rosined rod and a vibrating cantilever system. They
argued that the friction force cannot be expressed by the classical
Coulomb model and suggested that such model is an
over-simplistic representation of the stick–slip vibration in the
bowed string. They proposed a rather complex model involving
the temperature at the contact point and claimed that it is more
appropriate for simulating the bowed string dynamics.

Experimentally, the bow-string interface force cannot be easily
measured directly. To overcome this difficulty, Schumacher [7]
presented a method for reconstructing the force at the bowing
point using the two forces signals measured at the string’s
terminations. The reconstruction is accomplished by combining
the force signals with the actual reflection and transmission
functions which describe the wave propagation along
the string. As a step forward this first attempt, two versions of
the reconstruction method have also been then proposed by
Woodhouse et al. [8]. The first method operates in the
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time-domain and is relatively straightforward for non-dissipative
systems. However, its application on a real violin body, where
dissipation exists at the extremities or through the presence of a
finger on the violin fingerboard, might be delicate because the
deconvolution of a frequency-dependent effect is likely to be
difficult in practice. The second method, also based on a
wave-propagation formulation, works in the frequency domain
and could allow for dissipation. When both methods are
applicable, the two approaches work well and give consistent
results [8].

Recently, the present authors have extended their previous
work on remote identification using wave-propagation
techniques [9–11]. We presented a modal approach for
extracting—from remote vibratory measurements—the vibro-
impact forces, as well as vibratory responses at the support
location, of gap-supported tubes under flow turbulence excitation
[12]. Based on realistic simulations, we tested and assessed the
accuracy of the approach. The technique performs well on
simulated data, and identifications remain satisfactory even under
difficult conditions, when noisy signals and less-than-exact modal
parameters are considered.

In the present paper, we address the inverse problem of
identifying the friction force, as well as the string dynamics, at the
contact point of a bowed string from the end support reactions. A
modal-based formulation is employed and the identification
procedure involves regularization and optimization techniques.
First, we assess the accuracy of the method with simulated data
stemming from nonlinear computations of a bowed string following
our preliminary work [13], and second, we apply the technique to
measured signals obtained from an experimental system consider-
ing a violin string bowed by the wood stick of a bow.

In contrast to the wave-propagation approach, the modal
approach asks for a large number of parameters to describe the
system dynamics, which is certainly a disadvantage. However, as
discussed in [8–11], the implementation of wave-propagation
techniques could be delicate when boundary conditions are not
perfectly known or when dissipation occurs at the end supports.
In the modal approach, these effects are automatically encapsu-
lated in the modal parameters. This fact significantly favors
identification techniques based on modal formulation. However,
similarly to any identification technique, our method also
presents some delicate issues.

To overcome the ill-conditioning of the inverse problem and
reduce its sensitivity to noise, the regularization of the transfer
operator is achieved through a frequency domain procedure. The
choice of an appropriate regularization parameter is based on the
L-curve criterion and performed using the minimal product
method [14].

As a significant feature, the problem of dealing with the
imperfect knowledge of the modal parameters employed to build
the system transfer function is addressed. Optimization
techniques are used with the aim of obtaining from an initial
set of the modal parameters a better estimate suitable for the
inversion. It is shown that when realistic errors are introduced in
the modal frequencies, the optimization procedure improves
significantly the identifications. The method gives good results
with simulated signals and its application to real data indicates
that the proposed method is adequate to investigate the bowed
string dynamics. Our results may ultimately give insights in the
complex frictional force interactions.
Fig. 1. Relevant parameters in bowed strings. FN is the normal force between the

bow and the string , vbow is the bow velocity and fcðtÞ is the friction force arising

between the string and the bow at location xc.
2. Time-domain computations of the nonlinear dynamics

Time-domain simulations of a bowed string were performed to
generate the reference signals needed for assessing the accuracy
of the identification method. The computational approach used
here has already proved its efficiency in previous works of the
authors concerning bowed musical instruments [15–18]. The
general approach is described in detail in [3,18].
2.1. Formulation for the string dynamics

We consider an ideal string of length L and cross-sectional area
S, fixed at both ends and stretched to an axial tension T. As in most
published work, the description of the vibrating string is done
focusing on the transverse displacement y(x,t) of the string
described basically by the wave equation:

rS
@2y

@t2
�T

@2y

@x2
¼ f ðx,tÞ, ð1Þ

where r is the density of the string and f(x,t) is the externally
applied excitation. As illustrated in Fig. 1, a bowed string is
excited by a transverse friction force. The bow acts tangentially on
the surface of the string and its stick–slip action results in a form
of self-excited vibration for the string motion. We retain here the
assumption of a bow which contacts the string at a single
point xc, and therefore assumed a localized contact force
f ðxc ,tÞ ¼ fcðtÞdðx�xcÞ.

In musical acoustics, it is now well-known that modal-based
formulation provides a convenient framework to perform efficient
nonlinear computations for both dispersive and non-dispersive
systems [3,17,19]. Adopting a modal representation of the string
assumed unconstrained at the contact location and assuming
damping phenomena to be proportional, the modal discretization
of Eq. (1) leads to

€qn ðtÞþ2onzn _qn ðtÞþo2
nqnðtÞ ¼F nðtÞ, ð2Þ

where qnðtÞ are the modal amplitudes, on are the circular
eigenfrequencies and zn are the damping values for each mode
(n¼1,2,y,N). The modal forces FnðtÞ are the projections of the
contact force f ðxc ,tÞ on the mode shapes of the string
jnðxÞ ¼ sinðnpx=LÞ, defined as

FnðtÞ ¼

Z L

0
f ðxc ,tÞjnðxÞdx¼

Z L

0
fcðtÞdðx�xcÞjnðxÞdx¼ fcðtÞjnðxcÞ:

ð3Þ

The physical motion at any point of the string can be computed
from the modal amplitudes qnðtÞ by superposition:

yðx,tÞ ¼
XN

n ¼ 0

qnðtÞjnðxÞ, ð4Þ

and similarly for the velocities and accelerations by successive
time derivation of the modal amplitudes qnðtÞ.
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2.2. Friction model

The friction model used in the numerical simulations is of the
Coulomb type, with a velocity-dependent friction coefficient. The
friction force fcðtÞ arising between the string and the bow at
location xc of the string is given by

fcðtÞ ¼�mdðvcÞFN signðvcÞ if jvcj40,

jfcðtÞjomSFN if jvcj ¼ 0,

(
ð5Þ

where FN is the normal force between the bow and the string (see
Fig. 1). During bow/string adherence, a (constant) static friction
coefficient mS is used while for sliding regimes, a dynamic friction
coefficient mdðvcÞ is considered as a function of the relative
bow–string velocity:

vcðtÞ ¼ vðxc ,tÞ�vbowðtÞ, ð6Þ

where vbowðtÞ is the bow velocity. As presented in [18], the sliding
friction law model is given by

mdðvcÞ ¼ mDþðmS�mDÞe
�Cjvc j, ð7Þ

where 0rmDrmS is an asymptotic lower limit of the friction
coefficient when j _ycðtÞj-1, and C controls the decay rate of the
friction coefficient with the relative bow–string sliding velocity.

The implementation of the adherence model is thought by using
the concept of spring/damping attachment point as presented in
[3,18]. The idea is to ‘‘attach’’ the string to the bow at the contact
point by introducing a suitable ‘‘adherence stiffness’’ Ka, and to damp-
out any residual bow/string relative motion using an ‘‘adherence
damping’’ term Ca. The adherence force faðxc ,tÞ is then implemented
as a penalty formulation, where the force is a function of the relative
bow–string displacement and velocity, and computed as follows:

faðxc ,tÞ ¼�KaycðtÞ�CavcðtÞ: ð8Þ
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Fig. 2. Computed displacement, velocity and frictional force at the bow contact point xc

N¼50 modes). Details during the steady state regime.
The relative displacement between the string and the bow hair is
given by ycðtÞ ¼ yðxc ,tÞ�ybowðtÞ, where ybowðtÞ ¼ ðt�taÞ _ybow is the
current position of the bow contact point assuming a constant bow
speed, and ta is the time value when adherence is detected.
2.3. Numerical simulations of the nonlinear dynamical responses

For given initial conditions, the system of Eqs. (2)–(8) can be
integrated using an adequate time-step integration algorithm,
producing a transient and leading to a periodic motion of the string.

The bowing simulations were performed for a violin G-string
pinned at both extremities, with a fundamental frequency of
196 Hz, an effective length L¼0.33 m and a linear density
rS¼ 3:1� 10�3 kg m�1. For simplicity, the string was assumed
perfect, so the natural frequencies fn ¼on=2p¼ n c=2L of the
string are harmonics (c is the transverse wave speed), and a
constant modal damping value of zn ¼ 0:1% was assumed for all
modes. A modal basis with N¼50 modes was used and, for the
friction law and the adherence model, the same values used in
[18] are chosen (mS ¼ 0:4, mD ¼ 0:2, C¼5, Ka ¼ 105 N m�1 and a
near-critical value for Ca). The time-domain integration of the
nonlinear coupled modal equations is achieved using a constant
average acceleration Newmark algorithm [20]. However, instead
of implementing an iterative numerical scheme, we prefer to
calculate the quantities at each time-step tk in an explicit manner
from the modal forcing term at the previous time-step tk�1, and to
provide accurate results, a small time-step size of Dt¼ 10�6s has
been used. Signals are one-second long which is long enough to
reach a steady state periodic regime for these playing conditions.

Fig. 2 shows the time-histories of the displacement yðxc ,tÞ,
velocity vðxc ,tÞ and the friction force fcðtÞ at the bowing point
xc ¼ 0:03 m when applying a normal bow force FN of 1 N and bow
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¼ 0:03 m, for a 0.33 m string pinned at both extremities (FN ¼ 1 N, vbow ¼ 0:1 m s�1,
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Fig. 3. Computed time-histories of the dynamical reactions at the two end supports (left: x¼ 0; right: x¼L) for a 0.33 m string pinned at both ends (FN ¼ 1 N,

vbow ¼ 0:1 m s�1, xc ¼ 0:03 m, N¼50 modes). Global time history trace (up) and details of the force during initial transient (middle) and steady state regime (above).
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velocity vbow of 0:1 m s�1. Not unexpectedly, it shows that the
string motion has developed a Helmholtz oscillating regime with
the corresponding stick–slip motion. The transverse force at the
two end supports are computed from the modal time response
qnðtÞ as

R1ð0,tÞ ¼�T
XN

n ¼ 1

qnðtÞ
@jnðxÞ

@x

� �
x ¼ 0

¼�T
XN

n ¼ 1

qnðtÞ
np
L

R2ðL,tÞ ¼ T
XN

n ¼ 1

qnðtÞ
@jnðxÞ

@x

� �
x ¼ L

¼ T
XN

n ¼ 1

qnðtÞð�1Þn
np
L

,

8>>>>><
>>>>>:

ð9Þ

where T ¼ 4L2f 2
1 r S is the string tension at rest and f1 is the

fundamental frequency of the string. Fig. 3 shows the typical
transverse force signals at the end supports of the string which
will be then used as inputs for the identification procedure.
Although a nonzero dc level appears in the support reactions in
Fig. 3, our identifications will be computed from zero-mean
support reaction signals, to suit the experimental conditions. As
known, piezoelectric force transducers—as the ones used in our
experiments (see Section 7)—are not able to measure a
continuous static motion. The issue to recover the mean
displacement of the string and the mean friction force is for
later work. For the moment, the dc level will miss in both the
measurements and the identifications.
3. Approach for source identification

As noticed earlier, no direct method of measuring the frictional
force—without disturbing the string motion—can be easily
achieved. So, the problem may be addressed by solving an inverse
problem.
As typical for inverse problems, an important difficulty is the
proper inversion of the transfer/propagation operator which
describes the phenomena [12,21,22]. The ill-conditioning—

physical or numerical—of the operator makes inverse problems
sensitive to small perturbations, which are always present in
experimental identifications. Noisy data lead to large errors in the
inverse solution and regularization methods are required to
reduce the noise amplification.

Other issue to be considered in system identification is the
choice of the physical model. Models are typically based on
well-established relationships but involve some unknown
physical parameters. As a matter of fact, errors in the modeling
cause further degradations of the identification procedure [9,21].
From such point of view, wave propagation approach could be
attractive since only the wave speed and dissipation are required
to describe the waves propagation along the string in the
dispersion equation. However, the reflections and dissipation
phenomena which occur at the string terminations can make its
implementation delicate in practice [8,9]. In contrast to the wave
approach, modal-based techniques automatically encapsulate
these effects in the modal parameters. The price of this approach
is that all the modal parameters, i.e. the modal mass, eigenfre-
quencies, damping values and modeshapes, must be determined
accurately in the frequency range of interest. For example, Fig. 4
shows how bad results can be if one attempts to recover the
frictional force using slightly incorrect modal frequencies in our
problem. It is shown in this figure, beyond the real friction force at
the contact point, the identifications of the force obtained when
an uncertainty of 2% is added to the modal frequencies. To avoid
such perverse effects, optimization techniques can be applied
with the aim to obtain better estimates of the modal parameters
before the inversion.
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It is noteworthy that, if the nonlinear system dynamical
responses are known (either from measurements or from
computations), then the inverse problem of identifying the
excitations (including all nonlinear interaction forces) from the
available responses becomes linear, because the basic vibrating
system may be modeled as such. In other words, once the system
response is available, then even the motion-dependent forces
(i.e. the friction force) can be seen as common external excitations
which led to the measured string responses. Then, excitation
identification becomes essentially a problem of response
deconvolution, when working in the time domain, or—which is
more practical—response inversion, by working in the frequency
domain.
4. Source identification using modal formulations

Based on a linear formulation in the frequency domain, the
problem of deconvolution of a contact force Fcðxc ,oÞ from a
reaction Rðxr ,oÞ measured at location xr can be summarized:

Rðxr ,oÞ ¼HðrÞðxc ,xr ,oÞFcðxc ,oÞ()Fcðxc ,oÞ ¼ Rðxr ,oÞ
HðrÞðxc ,xr ,oÞ

, ð10Þ

where HðrÞðxc ,xr ,oÞ is the force-to-reaction transfer function, built
by modal superposition as

HðrÞðxc ,xr ,oÞ ¼
XN

n ¼ 1

T jnðxcÞj0nðxrÞ

mn½o2
n�o2þ2ioonzn�

, ð11Þ

with T the tension of the string, i¼
ffiffiffiffiffiffiffi
�1
p

and the prime denoting
spatial derivative. The displacement of the string at the contact
point is computed from the estimation of the force through

Yðxc ,oÞ ¼HðdÞðxc ,xc ,oÞFcðxc ,oÞ, ð12Þ
using the force-to-displacement transfer function constructed as

HðdÞðxc ,xc ,oÞ ¼
XN

n ¼ 1

jnðxcÞjnðxcÞ

mn½o2
n�o2þ2ioonzn�

: ð13Þ

The identified velocity signal of the string at the contact point is
obtained by replacing HðdÞðxc ,xc ,oÞ in Eq. (12) by ioHðdÞðxc ,xc ,oÞ.
Finally, the corresponding time-domain signals of the contact
force fcðtÞ, velocity vðxc ,tÞ and displacement yðxc ,tÞ of the string at
the bowing point are computed by inverse Fourier transform. It
should be noted that, even if the identification procedure involves
Fourier transforms and is achieved in the frequency domain, its
application to non-stationary signals is effective. Actually, the
Fourier transform is not limited to periodic signals in its
formulation [23]. It is the frequency resolution which plays an
important role by imposing an artificial periodicity to the time
signal, connected with the time window (record length). It will be
shown in Section 5 that the identification of transient regimes
works well in practice, provided that the record length is
significantly longer than the transient duration, which usually
does not constitute a problem.

Adopting a modal formulation of the system obviously leads to
the important aspect of modal truncation. The choice of the
number of modes N to be used in the identifications (see Eqs. (11)
and (13)) is problem-dependent and has to be based on the
knowledge of the system. Here, to address the accuracy of our
approach, a number of N¼50 modes is used for both the
identifications and the nonlinear time-domain computations.
When dealing with measured signals from the experimental
system, the choice of the number of modes is more critical.
Ideally, all modes in the system excited frequency range should be
used for identification. However, one may be interested in a
somewhat narrower frequency range. On the other hand, it is
useless to try identifications using higher-order modes which are
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insufficiently known. These two aspects govern the truncation
order which must be used in practice.

To provide a feel of the dependence of the identification
approach on the contact point location xc , Figs. 5 and 6 represent
the identification results of the string dynamics motion
and friction forces obtained by a direct inversion, using
Eqs. (10)–(13)), when an error of 71:5 mm is made in the
bowing point location. As can be seen in the identified friction
force, a difference in the contact point location leads to clear
distinct identifications from the left and right support reactions.
This dependence informs about the need of providing a correct
estimate of the bowing point location for robust identifications. It
also suggests that, in experimental conditions, the optimization of
the contact point location can be achieved by minimizing the
difference of the two waveforms of the identified friction forces.
This will be done for the identifications dealing with measured
signals from the experimental system.

At this stage, the computation of the inverse of the system
transfer function H is an important issue. Although simple in
form, the computation of 1/H could be delicate when near-zero
values of H occurs. This makes inverse solution very sensitive to
small changes (i.e. noisy data) and calls for the use of regulariza-
tion techniques by which such sensitivity is removed.
5. Inverse problem regularization

To illustrate the effect of noise in the inverse solutions,
Figs. 7 and 8 show the identifications of the string dynamics
motion and friction forces at the bowing point, obtained from
noise-free and noise-contaminated data, respectively. To simulate
the noisy measurements, a Gaussian white noise of about 8% of
the standard deviation of the support reaction signals has been
added to the support reactions. It represents a rather difficult
noisy experimental situation. The size of the modal basis is N¼50
modes. The results in Figs. 7 and 8 show that a direct inversion
(as described in Section 4) works well in a noise-free
situation—recovering many details of the true results—whereas
the presence of noise alters significatively the quality of the
identifications. As seen in Fig. 8, if the displacement and velocity
of the string are reasonable faithfull to the true result globally, the
identification of the friction force is unacceptable.

To reduce the amplification of noise, the regularization of the
inverse problem has to be considered. In a recent paper [12], the
authors have explored two regularization techniques, a Tikhonov
inspired method—perhaps the most widely used technique for
regularizing ill-posed problems—and SVD filtering methods, both
methods producing quite satisfying identifications. In the present
paper, regularization is applied by filtering the transfer function
before the inversion, similarly to the water level regularization

technique [24]. The basic idea is to employ a modified inverse of
the transfer function of the system GðrÞ ¼ 1=HðrÞ. One notes that the
deconvolution presented in Eq. (10) can be rewritten as

Fcðxc ,oÞ ¼ Rðxr ,oÞ
HðrÞðxc ,xr ,oÞ

¼ Rðxr ,oÞGðrÞðxc ,xr ,oÞ: ð14Þ

Now, the regularization of the original problem consists in
replacing the operator GðrÞ by a regularized operator GReg ,
computed as follows:

GRegðxc ,xr ,oÞ ¼
1=HðrÞðxc ,xr ,oÞ if jHðrÞðxc ,xr ,oÞj4e,
0 if jHðrÞðxc ,xr ,oÞjoe,

(
ð15Þ



0.78 0.785 0.79 0.795
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

y(1
)  (t

) [
 m

 ]

0.78 0.785 0.79 0.795
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

0.78 0.785 0.79 0.795

−1

−0.5

0

0.5

Time [ s ]

v 
(t)

 [ 
m

/s
 ]

0.78 0.785 0.79 0.795

−1

−0.5

0

0.5

Time [ s ]

0.78 0.785 0.79 0.795
−0.2

−0.1

0

0.1

0.2

Time [ s ]

f c
 (t

) [
 N

 ]

y(2
)  (t

) [
 m

 ]
v 

(t)
 [ 

m
/s

 ]
f c

 (t
) [

 N
 ]

0.78 0.785 0.79 0.795
−0.2

−0.1

0

0.1

0.2

Time [ s ]

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Fig. 6. Computed (dot) and identified (solid) time-histories of the displacement (up), velocity (middle) and frictional force (above) at the bowing contact point, obtained

from the support reactions at x¼0 (left) and x¼L (right), when an imperfect contact point location is used in the identification. xc ¼ 0:0285 m, N¼50 modes. Steady state

regime.

−3
−2
−1

0
1
2
3

x 10−4

y (1
)  (t

) [
 m

 ]

−3
−2
−1

0
1
2
3

x 10−4

−1

−0.5

0

0.5

v 
(t)

 [ 
m

/s
 ]

−1

−0.5

0

0.5

0.78 0.785 0.79 0.795
−0.2

−0.1

0

0.1

0.2

Time [ s ]

f c
 (t

) [
 N

 ]

y (2
)  (t

) [
 m

 ]
v 

(t)
 [ 

m
/s

 ]
f c

 (t
) [

 N
 ]

0.78 0.785 0.79 0.795
−0.2

−0.1

0

0.1

0.2

Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Fig. 7. Computed (dot) and identified (solid) time-histories of the displacement (up), velocity (middle) and frictional force (above) at the bowing contact point, obtained

from the noise-free support reactions at x¼0 (left) and x¼L (right). No regularization technique is used. N¼50 modes. Steady state regime.

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–1436 1425



0.78 0.785 0.79 0.795
−3
−2
−1

0
1
2
3

x 10
−4

Time [ s ]

y (1
)  (t

) [
 m

 ]

0.78 0.785 0.79 0.795
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

0.78 0.785 0.79 0.795
Time [ s ]

−1

−0.5

0

0.5

v 
(t)

 [ 
m

/s
 ]

−1

−0.5

0

0.5

−0.2

−0.1

0

0.1

0.2

f c
 (t

) [
 N

 ]

y (2
)  (t

) [
 m

 ]
v 

(t)
 [ 

m
/s

 ]
f c

 (t
) [

 N
 ]

−0.2

−0.1

0

0.1

0.2

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Fig. 8. Computed (dot) and identified (solid) time-histories of the displacement (up), velocity (middle) and frictional force (above) at the bowing contact point, obtained

from the support reactions at x¼0 (left) and x¼L (right), when noise is added to the support signals and no regularization procedure is applied. The level of noise is 8% of

the standard deviation of the support reactions. N¼50 modes.

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–14361426
where e is a regularization parameter which acts as a lower
boundary on HðrÞ beyond which filtering of the inverse problem is
enabled. Eq. (15) immediately brings up the question of what
should be the value of the regularization parameter e. Actually,
selecting an appropriate e is essential to filter out the noise
significantly, while still recovering important features of the
solution. Several methods have been proposed to select a correct
e, amongst others the classical L-curve method and Generalized
Cross Validation [25,26]. The L-curve diagram, where the norm of
the regularized solution is plotted as a function of the residual
norm in a log–log scale, works well in practice. However, its
implementation could be difficult and sometimes the character-
ization of the corner of the curve—which is a good choice of the
regularization parameter—fails. In this study, the selection of the
regularization parameter is achieved by using the minimal
product criterion [14]. The method aims to minimize the product
between the norm of a convenient measure and the norm of the
corresponding residual. Its underlying concept is consistent with
the L-curve approach and its implementation has the advantage
to be quite straightforward.

In our identifications, we observed that the classic L-curve
diagram, as described before, does not result in a curve having
a L-shaped appearance. However, the L-curve method could
also deal with other measures of the solution in its general
formulation [24,27]. By plotting the first derivative of the force in
the vertical axis, a classic L-curve occurs, as attested in Fig. 9. The
regularization constrains the influence of noise in the high
frequencies and also at anti-resonance. As a consequence, we
expect to recover reasonably the relevant low and high frequency
contents in the solution. Fig. 9 also illustrates the product curve
by which the selection of the regularization parameter is
computed. The ordinate is the norm of the first derivative of the
identified force, while the abscissa is the regularization parameter
plotted with a log–log scale. The selected e value corresponds to
the minimum of the product curve, and one can see that the
method picks effectively a value placed in the corner region of the
corresponding L-curve.

The benefit of the regularization is evident by comparing the
identification results shown in Figs. 8 and 10 obtained when noisy
support reaction signals are considered. For the results in Fig. 10,
the regularization was used while in Fig. 8 the inversion was
computed without precautions from Eqs. (10)–(13). The results
for the identified forces are clear in showing the noise attenuation
when regularization is performed. The selected regularization
parameter values, computed by the minimum product method,
are e1 ¼ 0:82 and e2 ¼ 1:02 for the identifications from the support
reaction at x¼0 and x=L, respectively. In Fig. 10, one notes that the
larger e, the more filtered are the identifications. Moreover, it is
observed that the high frequency information at the beginning
and end of the slipping stage is missing in the two identified
forces, because regularization has the effect of a filter. To recover
such details, improvement of the method could be done by
incorporating some physical constraints, but for the present
system, no such a priori information can be easily supplied.

To illustrate the accuracy of the technique, a measure of the
difference between the identified and true friction force waveforms
is proposed in terms of the correlation coefficients. The correlation
coefficients between two signals x and y is defined in terms of their
covariance sxy and standard deviations sx and sy, respectively, as

Rxy ¼
sxy

sxsy
: ð16Þ

For uncorrelated signals, the coefficient is zero while equivalent
signals result in correlation coefficient of 1. The accuracy of the
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Table 1

Difference between the identified f ðiÞc (i¼ 1,2) and the simulated fc friction forces in

terms of the correlation coefficientsR, for different noise levels. Two periods of the

steady state regime are used for the calculation. The corresponding regularization

parameters ei obtained by the minimum product method are also given.

Noise level (%) R
f ð1Þc ,fc

e1 R
f ð2Þc ,fc

e2

0 0.81 0.01 0.95 0.002

1 0.71 0.07 0.67 0.08

2 0.65 0.17 0.63 0.08

3 0.60 0.26 0.50 0.30

4 0.62 0.40 0.48 0.37

5 0.60 0.40 0.48 0.61

8 0.60 0.82 0.48 1.01

10 0.59 0.88 0.45 1.01
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identifications for different noise levels is presented in Table 1. As
expected, the differences between the identified and true friction
forces increase with the noise level as well as the regularization
parameters. Our identifications also show that the e computed by
the minimum product method departs from the corner of
the L-curve as the noise level increases while the corner still
remains. This indicates a lack in the selection technique and suggests
that more efforts have to be done for such cases, probably
by balancing other measure of the solution. Another interesting
aspect to note is that the quality of the identification obtained from
the support reaction signal closer to the bowing point is usually
better.
6. An approach for dealing with uncertainty in the modal
frequencies

As pointed earlier, the choice of a modal representation for the
string imposes to have good knowledge of all the modal
parameters needed to construct the system transfer functions.
In a real situation, the modal parameters are inferred from modal
computations or extracted from experimental data, by modal
identification techniques [28]. They usually provide accurate
estimates, but some errors always occur from either a
faulty modal data acquisition procedure or a bias in the
numerical algorithm. These arguments motivate to assess the
problem of modal uncertainty, which is an essential issue of
identification techniques, although seldom considered in the
literature.

A peculiar aspect in our results is that identifications are
somewhat tolerant to errors in modal damping. Actually, Fig. 11
shows results for the identified displacement, velocity and force
at the contact point when an uncertainty of 50% is added to the
damping values, superimposed to the true signals. An interesting
aspect in Fig. 11 is that identifications remain globally in
accordance to the true results. Physically, it suggests that for the
bowed string, the internal damping and reflection losses at the
string supports—which are included in the modal damping values
znFplay only a modest role in the bowed-string dynamics. In
other words, dissipation—which is essential for maintaining a
stable oscillating regime—originates mainly from friction, for a
bowed string. For our purpose, this is surely a convenient point.
Actually, the optimization of the modal damping parameters is no
longer required.

Contrary to modal damping, the problem of errors in the modal
frequencies must be fixed, as stated earlier (see Fig. 4). Looking at
Fig. 12, where the corresponding spectra of the identified forces in
Fig. 4 are plotted, a careful examination of the spectra reveals that
the effects of errors in the modal frequencies manifest as errors in
the peaks amplitudes. To solve this problem, we then suggest that
an effective solution could be to find the modal frequencies which
reduce the amplitudes of these spurious peaks.

Based on this idea, our approach is to perform an optimization
of the identified force spectra, mode by mode, by systematic
search of the optimal modal frequencies. In addition to that, our
approach is iterative in the sense that, when optimizing each
successive modal frequency, we include the contribution of all the
other modes within the frequency range of the optimized one.
Therefore, several modal optimization loops enable a refinement
of the optimal results.

Looking for a better estimate of each modal frequency o%

n ,
within a range of candidates otest

n , we proceed as follows:
1.
 For a candidate frequency otest
n , compute the system transfer

function by superposition of all modes following Eq. (11).

2.
 Apply a pass-band filter centered at the frequency o%

n to both
the transfer function and the support reaction spectrum.
3.
 Identify the force from the filtered signals following Eq. (14)
and compute the objective function defined as

Cðotest
n Þ ¼

Z o%

n þDon

o%

n�Don

jFcðotest
n ,oÞjdo, ð17Þ

where Fcðotest
n ,oÞ is the spectrum of the identified force.
4.
 Repeat steps 1–3 for each candidate otest
n and minimize

Eq. (17).

Finally, by repeating the procedure for all the modes
n¼1,2,y,N, a new set of optimized modal frequencies fo%

ng is
obtained. As stated before, the convergence can be somewhat
improved by coupling this mode-by-mode optimization with an
iterative procedure to incorporate the effects of the adjacent
peaks. Actually, the optimization can be performed several times,
from the new successive modal frequencies configurations fo%

ng.
This has been done in the present identifications, for which 10
iterations are sufficient to converge. The search range of the
candidates, as well as the integration boundaries Don (which
determines the bandwidth of the pass-band filter)
are a small percentage of the original o%

n (respectively, 73%
and 74%).

Fig. 13 plots the objective functions for the first 12 modes,
computed by testing 50 candidates for each mode. An uncertainty
of 2% has been added to the modal frequencies initially and N¼50
modes have been used for the modal basis. It is noteworthy that a
single well-defined minimum occurs near the exact modal
frequency, and that the optimization procedure converges to it
as expected. Fig. 14 shows that for all the modes, the relative error
remains small. However, one notes that the absolute error in the
determination of the optimal frequencies globally increases with
the mode index and becomes large for modes presenting a node at
the contact point. It is a self-evident consequence of the
modal approach, since no energy can be transmitted to these
modes by the excitation. To overcome such inherent error, a fit of
the optimized modal frequencies could provide good
estimates for the modal frequencies of these unexcited modes
(see Section 7).

Finally, Figs. 15–17 show, beyond the real signals at the
contact point, the identifications of the string displacement and
velocity, as well as the friction force, obtained after optimization
of the modal frequencies. It can be seen that the method is
capable of giving convincing identifications for all quantities, both
during transient and steady state regimes. Both the displacement
and the velocity of the string are in good agreement with the
simulated signals. The identifications of the friction force are
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reasonable faithfull to the true result, globally. And as it can be
noticed by comparing results in Figs. 4 and 17, the optimization
improves undoubtedly the identifications. Results also show that
the identification procedure seems reliable, because the
reconstructions from one or the other support reaction are very
similar.



185 190 195 200
0

500
1000
1500
2000
2500
3000
3500

Mode 1

|| 
F (

1)
 ||

 +
 ||

 F
(2

) |
|

370 380 390 400
0

500

1000

1500
Mode 2

570 580 590 600 610
0

100
200
300
400
500
600

Mode 3

760 780 800 820
0

100

200

300

400

500
Mode 4

960 980 1000 1020 1040
0

100

200

300

400

500
Mode 5

|| 
F (

1)
 ||

 +
 ||

 F
(2

) |
|

|| 
F (

1)
 ||

 +
 ||

 F
(2

) |
|

1140 1160 1180 1200 1220
0

50
100
150
200
250
300

Mode 6

1300 1350 1400 1450
0

50
100
150
200
250
300

Mode 7

1500 1550 1600 1650
0

100

200

300

400

500

600
Mode 8

1650 1700 1750 1800
0

100
200
300
400
500
600

Mode 9

1850 1900 1950 2000
0

500

1000

1500

Mode 10

2100 2150 2200 2250
0

5

10

15
x 1016 Mode 11

2300 2350 2400 2450
0

500

1000

1500

2000

Mode 12

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

Fig. 13. Objective functions computed for the minimization of the identified force spectra as the modal frequencies candidate o%

n varies (only the first 12 modes

(n¼ 1, . . . ,12) are shown). The objective function is given by Eq. (17). Note that a net minimum occurs near the exact value (dotted line) of the modal frequency and that

the optimization procedure converges to it (’).

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

Mode index

| f
 −

 f o
pt

i  | 
 [ 

H
z 

]
n

n

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Mode index

R
el

at
iv

e 
er

ro
r [

 %
 ]

0 5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Mode index

M
od

es
ha

pe
s 

at
 th

e 
co

nt
ac

t l
oc

at
io

n

Fig. 14. Absolute (up) and relative errors (middle) in the optimized modal frequencies and values of the modeshapes at the contact point location (above), as a function of

the mode index. Note that the absolute errors in the modal frequency are large when modes have a vibration node near the bow contact point.

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–14361430



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

y (1
)  (t

) [
 m

 ]
y (1

)  (t
) [

 m
 ]

y (1
)  (t

) [
 m

 ]

y (2
)  (t

) [
 m

 ]
y (2

)  (t
) [

 m
 ]

y (2
)  (t

) [
 m

 ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

0 0.005 0.01 0.015 0.02
−3
−2
−1

0
1
2
3

x 10
−4

Time [ s ]
0 0.005 0.01 0.015 0.02

−3
−2
−1

0
1
2
3

x 10
−4

Time [ s ]

0.784 0.786 0.788 0.79 0.792 0.794
−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]
0.784 0.786 0.788 0.79 0.792 0.794

−3
−2
−1

0
1
2
3

x 10−4

Time [ s ]

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Ident 1
Exact

Ident 2
Exact

Fig. 15. Computed (dot) and identified (solid) time-histories of the string displacement at the bow contact point, obtained from the support reactions at x¼ 0 (left) and

x¼ L (right), after optimization of the modal frequencies. Uncertainty in the modal frequencies is 2%. N¼50 modes. Global time history trace (up) and details during initial

transient (middle) and steady state regime (above).

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–1436 1431
7. Preliminary experimental identifications

Although the modal-based identification method provides
exploitable and reliable results from simulated data, the complete
technique will be convincing only after experimental identifica-
tion is performed. Therefore, we present hereby the results from a
preliminary set of experiments.
7.1. Experimental set-up

The string is driven by a very basic bowing device as seen in
Fig. 18. The transverse motion of the bow is ensured through use of a
couple of parallel flexible beams which guides the bow fixture. The
normal force of the bow acting on the string and the location of the
bowing point can be adjusted. Two piezoelectric force sensors B&K
8200, which respond to the transverse force exerted by the string at
both ends, provide the signals R1ðtÞ and R2ðtÞ needed for the
reconstructions. The velocity of the bow can be deduced from the
accelerometer B&K 4375 attached to the bow. The signals were
digitalized at a rate of 51 200 Hz through a Siglab model 20–42
acquisition board. An experimental run consists on releasing the
bow, which performs several bowings in opposite directions until it
stops. Measurements were done on a violin G string excited by the
wood of the bow, usually known by the italian term col legno. This
enables a well-localized contact point, which suits our preliminary
experiments. The bow stick was also straightened by increasing the
hair tension. The string is wound, with length 0.33 m, and a
fundamental frequency of 196 Hz, the bowing contact point being at
xc ¼ 0:0285 m ð71 mmÞ. Fig. 19 shows the measured dynamical
reactions at end supports for one stroke. The bow velocity is zero at
the beginning, then passes a maximum at the middle of the run and
returns to zero at the end. The waveforms of the measured
transverse forces display the classic sawtooth time-dependence,
usually encountered, with the superimposed secondary waves
which develop between the bow and the nearest end support. One
can also notice the short transient before reaching the steady state
regime.

An experimental modal identification of the string has been
performed, from pluck tests, and extraction of the string modal
parameters o%

n and zn was achieved by implementing an ERA
algorithm [29]. The modal mass mn and modeshapes jn are
computed from the classic theoretical expressions found in
Ref. [30], for instance. Eleven modes were well identified
experimentally. As expected, because of the string stiffness, the
modal frequencies are not perfectly harmonic. The identified
damping values increase with the modal index, and are as small
as 0.02% for the lowest modes.

As pointed earlier, the choice of the modal basis truncation
order has to be asserted with care, based on physical reasoning.
With respect of the present system, it is known that a large
number of modes contributes to the self-excited motion of the
bowed string [4,31]. Furthermore, the order of truncation is linked
to the spread of the excitation which gives the spatial resolution.
Actually, point-force identifications become incorrect when the
modeshape inter-nodal lengths are comparable with the width
of the bow. In our example, the contact width region is
approximately 2 mm. Then, assuming a larger value correspond-
ing to three times the contact width, the order of truncation is
chosen as N¼55.
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Fig. 18. Upper picture: experimental set-up with the bowing device and the data

acquisition system. Lower picture: the string and one support force sensor.
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Fig. 19. Measured dynamical support reactions at x¼ 0 (left) and x¼ L (right) from the

and detail during a periodic motion of the string (above).
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To increase the size of the modal basis identified from the
pluck tests (only 11 modes were accurately identified), a fitting
procedure is now combined to the optimization scheme described
in Section 6. Bearing in mind the results in Fig. 14, one
understands that a fit of the optimized frequencies can suffer
from the poor estimation of the modes with a vibration node at
the bowing point. For instance, a fit involving 22 modes will not
provide a good fit. To avoid such situation, we begin with the
optimization of the first five identified modal frequencies and
then use these estimates to get a reliable fit of the experimental
system modal frequencies using [30]:

on ¼ no1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB n2

p
for nZ2, ð18Þ

where o1 is the optimized fundamental frequency of the string and
B is the string inharmonicity coefficient. A value of B¼ 1:54� 10�4

is computed in the least square sense (note that the identification
is nonlinear) and then, Eq. (18) is used to infer the required 55
modal frequencies. However, for a better match with the experi-
mental system, more accurate estimates of these frequencies can
be obtained by optimizing the identified spectra and using the 55
fitted modal frequencies as the initial set (see Section 6). As shown
in Fig. 20, a well-defined minimum occurs for the objective
function given by Eq. (17). It is interesting to note that this feature
is observed for all modes which gives some confidence in the use of
the optimization approach from measured data. However, since the
errors in the modal frequencies are large for modes presenting a
node at the contact point, we prefer to use for the less-excited
modes values inferred from an interpolation of the 55 optimized
modal frequencies according to Eq. (18) for which the string
inharmonicity coefficient is found to be B¼ 1:39� 10�4. In
the presented identifications, it concerns modes 11, 12, 22, 34
and 45. For the other modes, the modal frequencies stemming
from the optimization of the identified force spectra have been
used.

For the modal damping, the 11 measured values for
the experimental string are first fitted choosing arbitrarily a
R
2(

t) 
[ N

 ]
R

2(
t) 

[ N
 ]

0.15 0.2 0.25 0.3
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time [ s ]

0.23 0.232 0.234 0.236 0.238
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time [ s ]

experimental system for one stroke. Time-histories: global time history trace (up)



192 194 196 198 200
0

10

20

30

40

Mode 1

|| 
F (1

) ||
 +

 ||
 F

(2
) ||

|| 
F (1

) ||
 +

 ||
 F

(2
) ||

|| 
F (1

) ||
 +

 ||
 F

(2
) ||

385 390 395 400
0

5

10

15

Mode 2

570 580 590 600
0

2

4

6

8

Mode 3

770 780 790 800
0
1
2
3
4
5
6
7

Mode 4

960 970 980 990 1000
0

1

2

3

4

5

Mode 5

1160 1170 1180 1190 1200
0

1

2

3

4

5
Mode 6

1340 1360 1380 1400
0
1
2
3
4
5
6

Mode 7

1540 1560 1580 1600
0

2

4

6

8
Mode 8

1740 1760 1780 1800 1820
0
2
4
6
8

10
12

Mode 9

1940 1960 1980 2000 2020
0

5

10

15
Mode 10

2140 2160 2180 2200 2220
0

10

20

30

40

Mode 11

2340 2360 2380 2400 2420
0

20

40

60

80
Mode 12

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

fn [ Hz ] fn [ Hz ] fn [ Hz ] fn [ Hz ]

Fig. 20. Objective functions computed for the minimization of the experimentally identified force spectra as the modal frequencies candidate o%

n varies (only the first 12

modes (n¼1,y,12) are shown). The objective function is given by Eq. (17). Optimal frequencies chosen for the identifications are noted by ’. Note that they correspond to

a net local minimum of the objective function.

10−2 10−1 100 101

10−2 10−1 100 101 10−2 10−1 100 101

102 10−1 100 101 102

103

104

105

103

104

105

103

104

105

106

103

104

105

106

|| R1(ω) − H1(ω) * F(1)(ω,ε1) ||

|| 
F (

1)
(ω

,ε
1)

 ||
’

|| 
F (

2)
(ω

,ε
2)

 ||
’

|| R2(ω) − H2(ω) * F(2)(ω,ε2) ||

ε1

|| 
R

1(
ω

) −
 H

1(
ω

) *
 F

(1
)(ω

,ε
1)

 ||
 . 

|| 
F (

1)
(ω

,ε
1)

 ||
’

ε2

|| 
R

2(
ω

) −
 H

2(
ω

) *
 F

(2
)(ω

,ε
2)

 ||
 . 

|| 
F (

2)
(ω

,ε
2)

 ||
’

(a) (b)

(c) (d)

Fig. 21. (a) and (b) L-curves obtained from the measured support reactions at x¼ 0 (left) and x¼ L (right). (c) and (d) Corresponding product curves. Left: e1 ¼ 0:12. Right:

e2 ¼ 0:08. Note that the selected regularization parameters determined by the minimum product method are near the corner of the corresponding L-curves.

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–14361434



−1

0

1

2

3 x 10−5

y(
t) 

[ m
 ]

V. Debut et al. / International Journal of Mechanical Sciences 52 (2010) 1419–1436 1435
polynomial of degree 2 and the damping values for the 55 modes
are extrapolated using the corresponding polynomial.

Fig. 21 shows the L-curves and corresponding product curves
obtained by applying the regularization technique described in
Section 5 and using the dynamical reactions measured at x¼0 and
x=L. The regularization parameters determined by the minimum
product method are found to be e1 ¼ 0:12 and e2 ¼ 0:08,
respectively, and it is reassuring to see that these values are
near the corner of the corresponding L-curves.
0.23 0.232 0.234 0.236 0.238
−3

−2

Time [ s ]

Ident 1
Ident 2

0.23 0.232 0.234 0.236 0.238
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time [ s ]

v(
t) 

[ m
/s

 ]
Ident 1
Ident 2

0.23 0.232 0.234 0.236 0.238
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [ s ]

f c
(t)

 [ 
N

 ]

Ident 1
Ident 2
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(solid) and x¼ L (dot), respectively. Note that the two identifications give

near-similar results for the displacement and velocity, and reasonably similar

identifications for the friction force.
7.2. Identifications of the displacement, velocity and frictional force

Fig. 22 shows the identified string displacement, velocity and
frictional force at the contact point from the two string support
reactions during a nearly periodic motion of the string. A modal
basis of N¼55 modes has been used for identifications and the
contact point location has been adjusted to minimize the
difference between the two identified force waveforms
(xc ¼ 0:0285 m). It appears that the string has developed a
Helmholtz regime with the resulting stick–slip vibration
displayed by the displacement and velocity signals.

As attested by the comparison of pair identifications, which is
here the only measure to assess the correct behaviour of the
method, the technique seems to be consistent. It is satisfying to
see that the two versions of the reconstructed signals are very
similar, differing only in local details, for both the string dynamic
responses and the friction force. Besides, by computing the bow
velocity from the accelerometer attached to the bow, one can
verify that the bow velocity during adherence is of the order
0.01 m s�1 as found in the velocity plot in Fig. 22. Note that the
bow velocity is then ten times lower than the value used in the
simulations (see Fig. 2).

An interesting feature of the identified forces in Fig. 22 is the
quasi-periodic and large fluctuations measured during
the (assumed) adherence stage of the string motion. Actually,
the comparison between the identified and simulated forces
(see Fig. 2) shows that these oscillations are more strongly
pronounced in the experimentally identified signals. If we assume
that similarities of the left and right identifications warrant the
identification quality, two physical reasons could explain this
difference. First, it could be related to the difference in the bow
velocity between the computation and experiment. However, it is
most probably due to the presence of secondary torsional waves
which developed between the bow and the nearest end support.
Actually, the model used in the simulations has been established
by neglecting the torsional motion of the string, whereas it is
expected that torsional waves couple with transverse waves in
the experiments, because they are both strongly excited at the
contact point [31]. In Fig. 22, the string’s torsional motion is
highlighted by the fluctuations in the string velocity during
adherence. It should be noted that our measurements are
obtained when bowing the string with the wood stick, which
has a much greater axial stiffness than the bow hair, thus
preventing any significant vibrations of the string contact point
during adherence. Now, an interesting fact is that the effects of
torsional waves are likely reflected somehow in our identification
procedure. Actually, it is important to emphasise that if the
eigenfrequencies and damping factors differ for transverse and
torsional vibrations, their modeshapes are similar. Part of the
torsional energy can thus be accounted in the product
jnðxcÞjnðxcÞ in Eq. (11) even if the transfer function HðrÞ used in
the identification procedure describes only the propagation of the
transverse waves. Therefore, one may tentatively conclude that
the torsion modes are responsible for the large observed
fluctuations in the identified force. Much more is to be learned
from the identification results, which will be reported at a later
stage of this investigation.
8. Conclusions

A method has been presented for the identification of the
frictional nonlinear interaction force and string dynamics at
the contact point for a bowed string. The identification procedure
combines the use of regularization and optimization techniques
to overcome difficulties due to polluting noise and modeling
errors respectively.

In contrast to the previous efforts in this field, the present
method uses a modal approach, which allows to deal easily with
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the effects of wave reflections and damping at the string support
ends. As a significant contribution, a technique to address the
problem of modal uncertainty is presented. Optimization of the
modal frequencies is achieved in the frequency domain, mode by
mode, by systematic search, combined with an iterative proce-
dure to include the contribution of all the modes within the
frequency range of the optimized one. Results show that the
technique improves significantly the identifications when small
errors in the modal frequencies exist. The regularization of the
problem has been achieved in the frequency domain, by forcing to
zero the frequency terms in the inverse solution corresponding to
small values of the transfer function.

The presented results give a good idea of the overall accuracy of
the identification process, by comparison of our identifications with
original simulated data stemming from nonlinear computations of
the bowed string. The method provides reasonably convincing
identifications of the string displacement, velocity and of the
interaction force between the bow and the string. Finally, the
technique was applied to experimental data, obtained by using a
basic bowing device and driving the string with the stick of the bow.
The agreement between the two versions of the frictional force is
satisfactory and identification results are consistent. Extensive
systematic experiments will now be performed, in order to better
understand the different aspects of a real string bow excitation.
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