

control room working area and bunker entrance



Control room.
In front it is possible to see
a view of the concrete shielding
wall of the electron accelerator



View of part of the cooling system where the primary circuit transfers heat to the secondary circuit



View of the bunker entrance



modulator



- 1 Magnetron (3 GHz)
- 2 Thyratron
- 3 Pulse Forming Network

The radiofrequency for electron acceleration is produced by high voltage pulses (20 - 30 kV) applied to the magnetron

Pulsed frequency (10 - 300 Hz) is delivered by the thyratron (high energy electrical switch)

The thyratron discharges the accumulated energy of the PFN capacitors and triggers the magnetron



waveguide electron gun



- 1 Waveguide
- 2 Electron gun

The radio frequency (FR) produced in the magnetron is sent to the accelerator through a RF waveguide system

Electrons are produced by heating a tungsten filament (electron gun)

The RF is injected into the waveguide where electrons are accelerated, focused and guided by electromagnets



acceleration section







- 1- Acceleration section; RF injected in two points (grouping electrons and increasing their energy)
- 2 Bending electromagnet (270°); target manifold for X-ray production (in a tungsten target)



Electron beam Photon beam (tungsten target)



Acceleration section top view



Beam exit