
Available online at www.sciencedirect.com
ScienceDirect

SoftwareX 1–2 (2015) 19–25
www.elsevier.com/locate/softx

Original software publication

GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers

Mark James Abrahama,∗, Teemu Murtolad, Roland Schulzb,c, Szilárd Pálla, Jeremy C. Smithb,c,
Berk Hessa, Erik Lindahla,d

a Theoretical Biophysics, Science for Life Laboratory, KTH Royal Institute of Technology, 17121 Solna, Sweden
b Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States

c Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville,
TN 37996, United States

d Center for Biomembrane Research, Department of Biochemistry & Biophysics, Stockholm University, SE-10691 Stockholm, Sweden

Received 23 February 2015; received in revised form 15 June 2015; accepted 25 June 2015

Abstract

GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of
biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations
are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. These work on
every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and
ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. The latest best-in-class compressed
trajectory storage format is supported.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: Molecular dynamics; GPU; SIMD; Free energy
Code metadata

Current code version 5.0.5
Permanent link to code/repository used for this code version https://git
Legal Code License LGPL v2
Code versioning system used git
Software code languages, tools, and services used C, C++, C
Compilation requirements & dependencies ANSI C8
Developer documentation http://ww
User and developer support http://ww
Bug tracker http://red

1. Motivation and significance

Molecular dynamics (MD) has greatly expanded the scope of
chemistry and several other fields by providing spatial and
temporal resolution not available in experiments. Simulations

∗ Corresponding author.
E-mail address: mjab@kth.se (M.J. Abraham).

http://dx.doi.org/10.1016/j.softx.2015.06.001
2352-7110/ c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open acces
hub.com/ElsevierSoftwareX/SOFTX-D-15-00003
.1

UDA, MPI, OpenMP, CMake
9 and C++98; Unix, Linux, MacOS, Windows
w.gromacs.org/Developer Zone
w.gromacs.org/Support
mine.gromacs.org

have become more accurate with better force fields, they easily
sample molecular motions on the µs scale, and ensemble tech-
niques make it possible to study millisecond scale processes
such as protein folding. A typical MD user chooses an ini-
tial molecular configuration, describes the atomic interactions
and model physics, runs a simulation, and makes observations
from the trajectory. Such simulations evaluate the millions of

s article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2015.06.001&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00003
http://www.gromacs.org/Developer_Zone
http://www.gromacs.org/Support
http://redmine.gromacs.org
mailto:mjab@kth.se
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


20 M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25
interactions of particles for billions of time steps, which can
require extraordinary amounts of computational hardware and
time—the scientific quality of the result is often proportional to
the amount of sampling. The huge application potential has led
to implementations of MD in many software packages, includ-
ing GROMACS [1], AMBER [2], NAMD [3], CHARMM [4],
LAMMPS [5], and Desmond [6]. The commoditization of ad-
vanced computational techniques by these packages is an im-
portant reason for the wide adoption of MD today.

In addition to the thousands of publications using GRO-
MACS every year, one of the most exciting parts of free
software is how other people use in ways not anticipated.
GROMACS has long been deployed in the Folding@Home
distributed computing project [7], and it is frequently used
for metadynamics together with PLUMED [8]. Coarse-grained
force fields such as MARTINI [9] use the GROMACS infras-
tructure to implement mesoscale physics models that access
otherwise impossible scales of time and distance. Databases of
topology file inputs and associated thermochemical results have
begun to appear [10,11], and several online services can pro-
duce coordinates, parameters and topologies for GROMACS
simulations [12,13]. Extending and reusing parts or all of GRO-
MACS code is explicitly encouraged. The free license permits
commercial use.

Many implementations (including ours) provide high perfor-
mance when using large numbers of processors on supercom-
puters, but a key focus for the development of GROMACS is the
fundamental assumption from economic science that resources
are scarce: No matter how many cores are available, minimiz-
ing resource usage makes it possible to run more simulations,
e.g. through ensemble methods. GROMACS aims to provide
the highest possible absolute performance and efficiency on any
hardware, so that both the maximum achievable and real world
throughput is high, to make best use of scarce resources. The
package runs fast on every single architecture present in the
Top500 supercomputer list, as well as on embedded systems
and everyday laptop computers.

In contrast to many other computational challenges, applica-
tions in MD typically have an intrinsically fixed problem size.
When studying a protein system with 30,000 atoms, it is not
relevant that a virus comprising 10 million atoms would scale
better. Therefore, weak scaling performance is typically not of
primary concern. However, it is critically important to reduce
the amount of computer time per unit simulation through opti-
mization, or by improving strong scaling. This improves “time
to solution”, and also the efficiency, measured as the science
performed per amount of hardware or power consumed. While
some applications need long individual trajectories, there are
also many scientific questions that can be answered by using
several trajectories, and for these the overall efficiency will be
higher by executing independent simulations in parallel.

Strong scaling of MD is a very difficult software engineering
challenge that requires synchronization of computation,
coordination, and communication phases down to 100 µs for
hundreds of thousands of cores. Hardware advances have been
breathtaking, but re-engineering the software to use the new
capabilities has been very challenging, and even forces us
to reconsider some of the most fundamental MD concepts
including the neighbor lists used to track spatial interactions.

This paper will briefly describe historical properties of GRO-
MACS, and then report on recent improvements in GROMACS
4.6 and 5. The source code, as well as a large amount of in-
troductory, tutorial, installation, usage, reference and developer
documentation is available from http://www.gromacs.org.

2. Simulation capabilities

Simulations with leap-frog Verlet, velocity Verlet, Brown-
ian and stochastic dynamics are supported, as well as calcula-
tions that do energy minimization, normal-mode analysis and
simulated annealing. Several techniques are available for reg-
ulating temperature and/or pressure. Both SHAKE [14] and
P-LINCS [15,16] are available for enforcing holonomic con-
straints, and the latter can be combined with virtual interaction
sites [17] to eliminate enough fast degrees of freedom to allow 5
fs time steps. All widely used molecular mechanics force fields
can be used, and 15 flavors of AMBER, CHARMM, GROMOS
and OPLS are validated and included. Several community-
supported force fields are also available. Non-standard func-
tional forms are supported through user tables.

Simulations may employ several kinds of geometric re-
straints, use explicit or implicit solvent, and can be atom-
istic or coarse-grained. mdrun can run multiple simulations
as part of the same executable, which permits generalized en-
semble methods [18] such as replica-exchange [19,20]. Non-
equilibrium methods, such as pulling and umbrella sampling,
are available, as well as highly powerful alchemical free-energy
transformations, and essential dynamics [21]. Many popular
simulation file formats can be read natively, or via a VMD plug-
in [22].

3. Software description

GROMACS has grown into a very large software project
with almost two million lines of code. For a detailed description
of the historical development and many algorithms included in
the engine, we refer the interested reader to the previous papers
published [1,23–28]. For developers, one of the most impor-
tant changes is that GROMACS 5 is the first release that has
moved to C++. While many parts of the code remain in C and
it will take a few years to complete the transition, this has led
to improvements in code modularity, handling of memory and
errors, and enabled much better Doxygen developer documen-
tation and unit testing.

GROMACS 5 works within an elaborate multi-level paral-
lelism (Fig. 1) that distributes computational work across en-
sembles of simulations, multiple program paths and domains
within simulations, multiple cores working on each domain,
exploiting instruction-level parallelism across those cores. This
design is able to make effective use of all of the available re-
sources when running typical PME simulations on typical hard-
ware. However, the design works less well if the hardware is too
unbalanced; GROMACS 5 performance will typically be good
with comparable expenditure on CPU and accelerator, and as
many CPU sockets as accelerators.

http://www.gromacs.org


M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25 21
Fig. 1. Multi-level parallelism in GROMACS. SIMD registers are used to parallelize cluster interaction kernels or bonded interactions in each core, and OpenMP
multithreading is used for parallelism inside spatial domains while nonbonded interactions are handled by GPUs or other accelerators. MPI with load balancing is
used to decompose a single simulation into domains over many nodes in a cluster, and ensemble approaches are used to parallelize with loosely coupled simulations.
High performance requires that software targets each level explicitly.
We expect ensemble-level parallelism to play an increas-
ingly important role in MD algorithm development. While the
code scales down to a few tens of atoms per core (when only
using CPUs), there will always be practical limits on the de-
gree of parallelism achievable. A typical 150,000-atom system
has about thirty million particle–particle interactions per MD
step, which will not scale to a million-core system because
communication and book-keeping costs will dominate. The
Copernicus ensemble framework has been developed alongside
GROMACS 5, to serve this need and scale to tens of thou-
sands of simulations [29]. It currently supports free-energy cal-
culations, Markov state modeling, and the string method using
swarms [30] (http://copernicus.gromacs.org).

Within a simulation, using parallel computers requires split-
ting the problem into independent units of work. In GRO-
MACS, an “eighth shell” spatial domain decomposition [31,32]
efficiently partitions the simulation in a way that preserves lo-
cality of reference within each domain. This data parallelization
maps each domain to an MPI rank, each of which can in practice
have access to various kinds of hardware. Internally, all systems
are described with triclinic unit cells, which makes complex ge-
ometries such as rhombic dodecahedron, truncated octahedron
or hexagonal boxes supported in all parts of the code. This can
improve performance up to 40% compared to the same water
thickness around a solute in a rectangular box (Fig. 2). Dy-
namic load balancing between domains is performed in all three
dimensions in triclinic geometry; this is critical for high perfor-
mance. Fig. 2 shows how the larger computational load due to
torsions and angles in the protein compared to water leads to
significant differences in domain size in the upper left part.

Long-range electrostatics is handled by the particle-mesh
Ewald (PME) method [33] by using dedicated MPI ranks for
the lattice summation and a two-dimensional pencil decompo-
sition [1] for the required 3D-FFT.

Historically, GROMACS has made use of MPI for domain-
level parallel decomposition across nodes, and later CPU
cores too, and supplied hand-tuned assembly kernels to access
SIMD (single instruction, multiple data) units where available.
However, the run-time overheads of the former and the
development-time cost of the latter were not sustainable, and
there was also the need to incorporate accelerators (such
as GPUs) into the parallelization strategy. GROMACS 4.6
introduced a native heterogeneous parallelization setup using
Fig. 2. Left: The protein lysozyme (24,119 atoms) in a compact unit
cell representation corresponding to a rhombic dodecahedron with close-to-
spherical shape. Right: Internally, this is represented as a triclinic cell and a
load-balanced staggered 6×4×3 domain decomposition grid on 72 MPI ranks.
The PME lattice sum is calculated on a uniform grid of 6 × 4 MPI ranks (not
shown).

both CPUs and GPUs. There are two important reasons for still
including the CPU: First, the advanced domain decomposition
and load balancing would be very difficult to implement
efficiently on GPUs (which would hurt scaling). Second, we
see it as a huge advantage that all algorithms are available in
all simulations, even the esoteric or new ones not yet ported
to GPUs, and the heterogeneous acceleration makes it possible
to completely hide the hardware from the user. There is only a
single binary, and by default it will use all available hardware
fairly efficiently, with many run-time options available to tune
performance.

To make this possible, a new algorithm for evaluating
short-ranged non-bonded interaction was implemented, based
on Verlet lists with automatic buffering [34]. This recasts
the traditional Verlet algorithm to suit modern computer
hardware, which permits highly efficient offload of short-
ranged work on SIMT-based (simultaneous multithreading)
GPUs, as well as efficient SIMD-based CPU implementations.
This works well, since the essential requirements for data
locality and reuse are similar on both kinds of hardware. This
is an important architectural advance, since the same code
base and algorithms can be used for all hardware. The key
innovation was to transform the standard formulation of the
Verlet algorithm that uses lists of particle–particle pairs into
lists of interacting small clusters of nearby particles, and to
choose the sizes of those clusters at compile time to match
the characteristics of the SIMT or SIMD target hardware. This
means there is no requirement for the compiler to recognize

http://copernicus.gromacs.org


22 M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25
Fig. 3. Left: A classical Verlet implementation treats all j-particles within an
interaction radius (red) of the central red i-particle, and adds a buffer, also
called “skin” (dashed red). Particles outside the buffer (unfilled) are omitted.
Right: The M × N scheme builds lists of clusters of N particles (blue), where at
least one particle in each cluster is within the buffered interaction radius of any
particle in the central red cluster. This envelope has an irregular shape (dashed
red), and has an implicit additional buffer (unfilled blue circles) from those
particles in clusters where only some particles are within the nominal buffer
range. Actual interactions are based on particle distances (red circle, only one
shown). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the opportunity for vectorization; it is intrinsic to the algorithm
and its implementation. Additionally, the cluster sizes are easily
adjustable parameters allowing to target new hardware with
relatively low effort. Fig. 3 shows how the Verlet scheme re-
casts the idea of a particle-based pair list into a list of interacting
clusters. Fig. 4 illustrates the flow of data in kernels executing
on processors of different SIMD widths or GPUs.

Unlike the old “group” scheme, there is no need for special
kernels optimized for common molecules such as water. The
searching can schedule kernels that will evaluate van der
Waals interactions only on the first half of atoms in a given
cluster; this runs faster on domains where only some atoms
have such interactions, which includes most water models in
current use. Naturally, if whole clusters do not have van der
Waals or Coulomb interactions, their interactions are evaluated
by kernels that skip the corresponding computation entirely.
Branches are unavoidable in short-ranged MD kernels, as
the model physics permits only interactions within a certain
distance to contribute. Implementing such code is most efficient
when using selection or branch instructions that produce null
results when the interaction should not contribute. This is also
useful for other kinds of interaction exclusions used in MD.

The maturation of SIMD intrinsics in compilers made this
possible to implement in a new higher-level fashion that retains
the performance of the previous raw hand-tuned assembly. To
achieve this, we have implemented a SIMD abstraction module
that permits us to develop CPU non-bonded kernels in a way
that is nearly agnostic about the SIMD width and feature set
of the hardware upon which they will run. In particular, we
have designed an extensive new internal SIMD math library in
both single and double precision that completely avoids both
table lookups and integer instructions (which are not available
for all SIMD instruction sets). This means that porting to new
CPU architectures is a straightforward job of implementing
the interface of the SIMD module using the intrinsics suitable
for the new CPU, and the old non-bonded kernels can use
them correctly. Further, several other modules in GROMACS
now use the same SIMD layer and derive the same benefits
for performance portability. Crucially, this has reduced the
total size of the nonbonded kernels to only a few hundred
lines of C, while simultaneously supporting many more SIMD
instruction sets. GROMACS performance is now more sensitive
to the quality of the compiler, which reflects wide-ranging
Fig. 4. Illustration of the classical 1 × 1 neighborlist and the 4 × 4 non-bonded cluster algorithm setups on processors with different SIMD widths. All numbers are
particle indices in a pair list, black dots are interaction calculations, and gray arrows indicate loads. The content of SIMD registers for i- and j-particles (cf. Fig. 3)
are shown in red and blue, respectively. Dashed black lines show the computation units, with dotted black arrows indicating their order of execution. The 4×4 setup
calculates 4 times as many interactions per memory operation. Unlike the 1 × 1 setup, the 4 × 4 setup does not require data shuffling in registers.



M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25 23
improvements in both. The proliferation of new kinds of SIMD
support in CPUs means that GROMACS users have more
need to take care to use binaries that match the hardware
capabilities.

In particular for SIMD and GPU acceleration, GROMACS
makes extensive use of strength-reduction algorithms to permit
use of single precision, including a single-sum implementation
of the virial calculation [35]. Some molecular simulation
packages always compute in double precision; this is available
in GROMACS for the few kinds of simulations that require it,
but, by default, a mixed precision mode is used, in which a few,
critical, reductions are performed in double precision. Other
high-performance implementations [2] use mixed precision to
a larger extent.

The offload model for acceleration creates the need for
large groups of atoms in the same spatial region to be treated
in the same neighbor search. This conflicts with the former
GROMACS model of mapping each CPU core to an MPI
rank, and thus a separate domain of atoms close in space.
Typically, a CPU has many more cores than it has accelerators,
the inefficiency of scheduling separate work for each domain
on the accelerator was high, and the existing limitations on the
minimum sizes of domains was also problematic. To alleviate
this, OpenMP-based multi-threading support was added to
GROMACS to permit multiple CPU cores to work on a single
domain of atoms. This allows for domains to be larger and
thus the overall efficiency to be greatly improved. The resulting
OpenMP parallelism is also useful when running on CPU-only
hardware, which extends the strong-scaling limit with hybrid
MPI/OpenMP, but adds complexity for the user.

The PME algorithm commonly used for molecular simu-
lations is able to shift workload between the short- and long-
ranged components with moderate efficiency, while preserving
the quality of the model physics. This permits GROMACS 5 to
automatically balance the workload for optimal performance.
This is particularly useful for the offload model implemented
in GROMACS 5 because best throughput is typically obtained
when few resources lie idle. Further, when using multiple nodes
for a single simulation, the long-ranged component of the PME
calculation needs to do global communication for the 3D FFT.
This partly drives our choice of which work to offload; doing
PME work on a current generation accelerator in a simulation
across multiple nodes would accrue latency from data transfers
both across the network and from host to device and this would
eliminate any performance gain.

One major weakness of the current accelerator-offload im-
plementation in GROMACS is that accelerators are idle once
the forces are computed and transferred back to the CPU.
Typical schemes for integrating the forces to update the posi-
tions often need to enforce holonomic constraints on degrees
of freedom such as bond lengths, and such implementations
normally feature either iteration or inter-rank communication,
which does not suit an offload model of accelerator usage. Over-
coming such limitations is a key target for future improvements.
4. Software functionalities

GROMACS is free software distributed under LGPLv2.1,
which even allows linking into commercial applications. It
requires only standards-conforming C99 and C++98 compilers,
and CMake version 2.8.8. Various external libraries are either
bundled for convenience, or can be detected (e.g. MKL) or even
downloaded automatically (e.g. FFTW) by CMake. Portability
is assured via extensive automated continuous integration
testing using Jenkins, deployed on Windows, MacOS and
Linux, using multiple versions of compilers including those
from Intel, GNU, Microsoft, LLVM and IBM. GROMACS
supports NVIDIA GPU architectures with compute capabilities
2.0 and later, and the new SIMD module provides native
support for a total of 13 different architectures including all
x86 flavors (from SSE2 through Xeon Phi, AVX2 and the still
unreleased AVX-512F/ER), PowerPC A2 (BlueGene/Q), Sparc
VIIIfx (K computer), ARM Neon, IBM VMX (Power7) and
VSX (Power8). The latest version can even run inside a browser
supporting Google Native Client.

Every single commit during GROMACS development is
subject to mandatory code review and automatic regression
tests, unit tests and static code analysis before it is added to
the public git repository (available via

git clone git://git.gromacs.org/gromacs.git).
While the released code is tested on an even larger set of ar-
chitectures, this makes even the rapidly moving development
branch uniquely stable.

4.1. A parallel analysis framework

A new C++ framework for developing GROMACS analysis
tools has been introduced, which makes it easy to write new
tools that require only a simple loop over all trajectory frames.
The framework also provides reusable components for grid-
based neighbor searching and common data processing tasks
like histograms. Some tools for computing basic geometric
properties (distances and angles), as well as surface area
calculation, have been converted to the new framework, though
much work remains to achieve the full benefits of the new
scheme. Future development also aims to support analyzing
single trajectory frames in parallel, and Python bindings.

4.2. New simulation features

Just as PME has eliminated cutoff artifacts for electrostatics,
there has been increasing attention to cutoff problems and van
der Waals interactions. While dispersion corrections alleviate
some issues, the fundamental problem is that complex systems
such as membranes are neither homogeneous nor isotropic.
GROMACS 5 includes a new, very accurate, Lennard-Jones
PME implementation [36] whose implementation is only
10%–20% more expensive than short cutoffs in GROMACS,
and to the best of our knowledge about an order of magnitude
faster than any other alternative. It works for both geometric
and Lorentz–Berthelot combination rules, and should enable



24 M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25
Fig. 5. The anatomy of GROMACS performance. Left: The reference setup (A) spends the majority of wall-time in short-range force evaluations, but as SIMD
(B), OpenMP (C, D), and GPU (E, F) acceleration are enabled this drops tremendously even on a workstation. With GPUs (E, F), the CPU computes a relatively
small amount of bonded interactions. Relying on multi-threading (F) when using GPUs is more efficient than SPMD parallelization with domain-decomposition (E)
even though multi-threading in cache intensive code like PME is challenging. Right: The absolute performance in GROMACS 5.0 is greatly improved over earlier
versions, and more than an order of magnitude higher with accelerators.
much more accurate membrane simulations, free energies, and
improved force-field parameterization.

Other new features include Andersen-style thermostats, the
Adaptive Resolution Sampling scheme [37] for multi-scale
models, Hamiltonian replica exchange, simulated tempering
and expanded-ensemble methods [38], rotation of groups with
the non-equilibrium pulling module [39], a new computational
electrophysiology module [40] that can swap molecules from
one side of a membrane to the other, and support for the
Interactive Molecular Dynamics [41] protocol to view and
manipulate ongoing simulations. The high-quality “counter-
based” parallel random number generator Random123 [42] is
now used. New bonded interactions were introduced for coarse-
grained simulations [43]. Flat-bottomed position restraints were
added to avoid perturbing models unnecessarily.

GROMACS 5 also comes with a new highly flexible and effi-
cient compressed file format—TNG [44]. This improves on the
previous best-in-class XTC trajectory compression by further
exploiting domain knowledge and multi-frame compression, it
adds features such as containers for general simulation data,
digital signatures, and provides a library to which tool develop-
ers may link.

5. Performance & scaling

GROMACS can scale to the largest machines in the world
when using gigantic systems, and detailed benchmarks are
available on the website. For this work, we want to illustrate
the efficiency with more challenging heterogeneous bench-
marks used in recent studies: first a very small voltage sensor
(VSD) embedded in a united-atom lipid bilayer in a hexago-
nal box (45,700 atoms) [45], and second a complete ion chan-
nel (GluCl) embedded in a larger united-atom bilayer (142,000
atoms) [46]. All simulations use PME and initial cut-offs of
1.0 nm. All bonds were constrained with the LINCS [16] al-
gorithm, and the VSD uses virtual interaction sites constructed
Fig. 6. Absolute scaling performance on a GluCl ion channel of 142,000
atoms, 2.5 fs time steps without virtual sites, with PME and initial cutoffs
1.0 nm, running on Beskow (32 Haswell CPU cores per node, Cray XC40)
and Piz Daint (8 Sandy Bridge CPU cores + Tesla K20X per node, Cray
XC30).

every step to extend the time step to 5 fs. A stochastic velocity-
rescaling thermostat was used [47]. Fig. 5 shows how the frac-
tion of CPU cycles spent on force evaluation in the VSD system
drops dramatically when adding SIMD and GPUs. Case “E”
reflects the problem with multiple MPI ranks on the CPU and
effectively time-sharing the GPU, which introduces decomposi-
tion overhead. With GPUs, there is only a small component left
for bonded forces; the CPU primarily evaluates the PME mesh
part. Absolute performance is much higher with acceleration
(explaining the larger fractions for constraints and PME), as il-
lustrated in the right panel, which shows parallelization bene-
fits in different GROMACS versions on a single-socket 8-core
Core-i7 5960X desktop with one NVIDIA GTX980 GPU. With
SIMD, GPU and OpenMP acceleration, the desktop achieves
close to 200 ns/day for the VSD. Fig. 6 shows absolute per-
formance for the larger GluCl system on CPU-only and GPU-
equipped Cray clusters. Despite the much faster CPUs with
AVX2 support on the XC40, the older XC30 nodes paired with
K20x GPUs beat it handily. With similar CPUs and K40 GPUs,
we expect accelerated clusters to deliver about 3× the perfor-
mance of CPU-only ones.



M.J. Abraham et al. / SoftwareX 1–2 (2015) 19–25 25
6. Conclusions

The recent efforts to maximize single-core and single-node
performance show benefits at all levels, which makes it even
more impressive that the relative scaling has also improved
substantially. The enhancements described above boost user
throughput on all kinds and quantities of hardware, but they
were focused on mature technologies. There are many other ap-
proaches open for future performance improvements to GRO-
MACS. In particular, an implementation that expresses the
algorithm in fine-grained tasks that can be preempted when
high-priority work is available, and automatically balanced be-
tween otherwise idle executors seems very attractive.

Acknowledgments

This work was supported by the European Research
Council (258980, BH), the Swedish Research Council (2013-
5901, EL) the Swedish e-Science Research Center, the
ScalaLife EU infrastructure (261523), the EU FP7 CRESTA
project (287703), Intel Corporation and the ORNL Adaptive
Biosystems Imaging project funded by the Biological and
Environmental Research of the Office of Science of the U.S.
Department of Energy (RS, JCS). Computational resources
were provided by the Swedish National Infrastructure for
computing (2014/1-30 & 2014/11-33), and the Swiss National
Supercomputing Centre CSCS (g43). GROMACS would not be
possible without a large and loyal team working on code review,
triage, and contributing code and fixes. Thank you!

References

[1] Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al.
Bioinf 2013;29:845–54.

[2] Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, et al.
J Comput Chem 2005;26:1668–88.

[3] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al.
J Comput Chem 2005;26:1781–802.

[4] Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S,
Karplus M. J Comput Chem 1983;4:187–217.

[5] Plimpton S. J Comp Phys 1995;117:1–19.
[6] Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et

al., Proceedings of the ACM/IEEE conference on supercomputing; 2006.
p. 0–7695–2700–0/06.

[7] Shirts M, Pande VS. Science 2000;290:1903–4.
[8] Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. Comput

Phys Commun 2014;185:604–13.
[9] Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. J Phys

Chem B 2007;111:7812–24.
[10] Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D.

J Chem Theory Comput 2012;8:61–74.
[11] van der Spoel D, van Maaren PJ, Caleman C. Bioinf 2012;28:752–3.
[12] Zoete V, Cuendet MA, Grosdidier A, Michielin O. J Comp Chem 2011;

32:2359–68.
[13] Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, et al. J Chem

Theory Comput 2011;7:4026–37.
[14] Ryckaert JP, Ciccotti G, Berendsen HJ. J Comput Phys 1977;23:327–41.
[15] Hess B, Bekker H, Berendsen HJ, Fraaije JG. J Comput Chem 1997;18:

1463–72.
[16] Hess B. J Chem Theory Comput 2008;4:116–22.
[17] Berendsen HJC, van Gunsteren WF. In: AJB, et al., editors. Molecular

liquids-dynamics and interactions, NATO ASI C 135. Dordrecht (The
Netherlands): Reidel; 1984. p. 475–500.

[18] Mitsutake A, Sugita Y, Okamoto Y. Biopolymers 2001;60:96–123.
[19] Hansmann UH, Okamoto Y. J Comput Chem 1997;18:920–33.
[20] Sugita Y, Okamoto Y. Chem Phys Lett 1999;314:141–51.
[21] Amadei A, Lisnsen A, Berendsen H. Proteins: Struct, Func, Genet 1993;

17:412–25.
[22] Humphrey W, Dalke A, Schulten K. J Mol Graph 1996;14:33–8.
[23] Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E. In: Markidis S,

Laure E, editors. Solving software challenges for exascale. Lecture notes
in computer science. Springer International Publishing; 2015. p. 3–27.

[24] Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van Drunen R,
van der Spoel D, et al. In: de Groot RA, Nadrchal J, editors. Physics
computing, vol. 92. Singapore: World Scientific; 1993. p. 252–6.

[25] Berendsen HJ, van der Spoel D, van Drunen R. Comput Phys Commun
1995;91:43–56.

[26] Lindahl E, Hess B, van der Spoel D. J Mol Mod 2001;7:306–17.
[27] van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE,

Berendsen HJ. J Comput Chem 2005;26:1701–18.
[28] Hess B, Kutzner C, van der Spoel D, Lindahl E. J Chem Theory Comput

2008;4:435–47.
[29] Pronk S, Pouya I, Lundborg M, Rotskoff G, Wesén B, Kasson PM, et al.

J Chem Theory Comput 2015;11:2600–8.
[30] Pan AC, Roux B. J Chem Phys 2008;129:064107.
[31] Bowers KJ, Dror RO, Shaw DE. J Phys: Conf Ser 2005;16:300.
[32] Bowers KJ, Dror RO, Shaw DE. J Comput Phys 2007;221:303–29.
[33] Darden T, York D, Pedersen L. J Chem Phys 1993;98:10089–92.
[34] Páll S, Hess B. Comp Phys Comm 2013;184:2641–50.
[35] Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, Drunen RV,

Spoel DVD, et al. In: de Groot RA, Nadrchal J, editors. Physics
computing, vol. 92. Singapore: World Scientific; 1993. p. 257–61.

[36] Wennberg CL, Murtola T, Hess B, Lindahl E. J Chem Theory Comput
2013;9:3527–37.

[37] Fritsch S, Junghans C, Kremer K. J Chem Theory Comput 2012;8:
398–403.

[38] Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-
Velyaminov PN. J Chem Phys 1992;96:1776–83.

[39] Kutzner C, Czub J, Grubmüller H. J Chem Theory Comput 2011;7:
1381–93.

[40] Kutzner C, Grubmüller H, de Groot BL, Zachariae U. Biophys J 2011;
101:809–17.

[41] Stone JE, Gullingsrud J, Schulten K. Proceedings of the 2001 symposium
on interactive 3D graphics. New York (NY, USA): ACM; 2001. p. 191–4.

[42] Salmon JK, Moraes MA, Dror RO, Shaw DE. Proceedings of 2011
international conference for high performance computing, networking,
storage and analysis. New York (NY, USA): ACM; 2011. p. 16:1–:12.

[43] Bulacu M, Goga N, Zhao W, Rossi G, Monticelli L, Periole X, et al.
J Chem Phys 2005;123:3282–892.

[44] Lundborg M, Apostolov R, Spångberg D, Gärdenäs A, van der Spoel D,
Lindahl E. J Comp Chem 2014;35:260–9.

[45] Henrion U, Renhorn J, Börjesson SI, Nelson EM, Schwaiger CS,
Bjelkmar P, et al. Proc Natl Acad Sci 2012;109:8552–7.

[46] Yoluk O, Brömstrup T, Bertaccini EJ, Trudell JR, Lindahl E. Biophys J
2013;105:640–7.

[47] Bussi G, Donadio D, Parrinello M. J Chem Phys 2007;126:014101.

http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref1
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref2
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref3
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref4
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref5
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref7
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref8
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref9
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref10
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref11
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref12
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref13
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref14
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref15
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref16
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref17
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref18
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref19
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref20
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref21
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref22
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref23
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref24
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref25
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref26
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref27
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref28
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref29
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref30
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref31
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref32
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref33
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref34
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref35
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref36
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref37
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref38
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref39
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref40
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref41
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref42
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref43
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref44
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref45
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref46
http://refhub.elsevier.com/S2352-7110(15)00005-9/sbref47

	GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
	Motivation and significance
	Simulation capabilities
	Software description
	Software functionalities
	A parallel analysis framework
	New simulation features

	Performance & scaling
	Conclusions
	Acknowledgments
	References


