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Abstract

In standard computer codes for the analysis of RBS data, the energy straggling is taken to be a Gaussian function. This leads to
unphysical simulations whenever the energy spread is comparable to the average energy loss and to the system resolution, which may
happen in the near surface region. We propose to use the gamma distribution for the energy straggling, since it asymptotically
approaches the Gaussian distribution for small values of the energy spread relative to average energy loss, while it has no high energy
tail above the initial beam energy. This was implemented in the code NDF. We compare the results with calculations made with the
stochastic model for 100 keV protons in Hf delta layers in Si and show that a major improvement is obtained with regard to the Gaussian
distribution. We also show calculations for 1.5 MeV 4He+ experiments.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In standard computer codes for the analysis of Ruther-
ford backscattering (RBS) data, the energy straggling is
taken to be a Gaussian function [1]. While this is often a
good approximation, it leads to difficulties close to the sur-
face, where the number of ion-electron collisions is small.
In this case, if a Gaussian distribution is used for the energy
loss, its high energy tail leads to a significant contribution
of beam particles with energy higher than the initial beam
energy. That is, some ions would have gained energy,
which is clearly not the case. Instead, close to the surface
the energy distribution of the ions is highly asymmetric,
i.e. non-Gaussian.
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One of the most reliable approaches to this problem is
based on a stochastic theory of energy loss that takes into
account both electronic and atomic energy transfers, which
is inherently non-Gaussian [2–5]. However, even after
recent progresses that led to faster calculation times, these
are still too long for automated fitting or to perform data
analysis with Bayesian inference using the Markov chain
Monte Carlo method.

We propose to use the gamma distribution for the
energy straggling, since it asymptotically approaches the
Gaussian distribution for small values of the energy spread
relative to average energy loss, while it has no high energy
tail above the initial beam energy, similarly to the advanced
stochastic approach. This was implemented in the code
NDF. We compare the results with calculations made with
the stochastic model for 100 keV protons in Si and show
that a major improvement is obtained with regard to the
Gaussian distribution. We also show calculations for
1.5 MeV 4He+ RBS.

mailto:nunoni@itn.pt


8 7 6 5 4 3 2 1 0
 Depth (nm)

N.P. Barradas et al. / Nucl. Instr. and Meth. in Phys. Res. B 261 (2007) 422–425 423
2. The gamma function

Firstly, we can divide the beam energy distribution p(r)
in two components: the initial beam energy distribution
p(r0) and the energy distribution p(rstrag) that arises as
the beam crosses the sample, which we can generically call
straggling, and that is our main concern here. In all cases r
is the spread of the distribution considered. In the moment
where a beam enters the sample, we have rstrag = 0, that is,
p(rstrag) is a delta function. For a sufficiently large number
of ion-electron interactions the details of the energy trans-
fer can be ignored and p(rstrag) is approximately Gaussian-
shaped. This is not valid for small average energy loss DE,
where the straggling is highly skewed, being limited on the
high energy side by the initial beam energy E0, with an
extended tail (as compared to DE) in the low energy side.
The same happens for very large energy losses if r is com-
parable to DE, which can occur for instance at very grazing
angles due to enhanced straggling at large depths due to
multiple scattering [6,7].

We considered using, for the straggling, the gamma dis-
tribution with mean DE and standard deviation rstrag,
because it has the same general properties: it becomes a
delta function for DE! 0 and it becomes a Gaussian func-
tion for rstrag/DE! 0. Its general form is [8]

pðxÞ ¼ ba

CðaÞ x
a�1e�bx; ð1Þ

where C is the gamma function, a ¼ x2=r2; b ¼ x=r2 and x
and r are the mean and standard deviation, respectively.
We compare the gamma and Gaussian distributions in
Fig. 1 for several values of r0 ¼ r=x, where it is clear that
as r 0 increases, the gamma distribution deviates more
strongly from the Gaussian shape.

Note that it is only the straggling that is taken to follow
the gamma distribution. The initial beam energy spread r0

and the system resolution are both assumed Gaussian, and
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Fig. 1. Gamma (solid lines) and Gaussian (dashed lines) distributions for
different values of r0 ¼ r=x, where x and r are the mean and standard
deviation of the distribution.
are evaluated independently from the straggling as an addi-
tional convolution.

3. Calculations

We previously developed a code, named Flatus, that
implements the stochastic model of ion energy loss [9,10]
and applied it to the calculation of energy spectra of Hf
delta layers immersed in a pure Si matrix at different
depths, ranging from 0.5 nm to 5 nm. The conditions for
which the spectra were calculated were monochromatic
100 keV protons at normal incidence and 180� scattering
angle, for an ideal experimental system (no beam angular
divergence, point beam spot and point detector and ideal
detector). The calculations are shown in Fig. 2. It is clear
that very near the surface the spectra calculated with the
energy distribution given by Flatus are very different from
the calculation based on Gaussian energy spread. In the
latter case, a high energy tail is observed, at energies larger
than the maximum observable energy (97.77 keV), which is
unphysical. At larger depths, which correspond to large
energy loss values, rstrag=x decreases and the calculations
become more similar. It is interesting to point out that,
while the total yield is the same for both distributions,
the maximum yield value in the near surface part of the
spectra is larger for the Flatus calculation than for the
Gaussian distribution.

The important point, however, is that the calculation
using the gamma distribution for the straggling is very sim-
ilar to the results obtained with the full stochastic model of
ion energy loss. In fact, the small differences observed
between the two calculations are hardly noticeable in a real
experiment. At the very least, a major improvement is
obtained with regard to the Gaussian distribution.
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Fig. 2. Calculated energy spectra of 100 keV H+ scattered from Hf delta
layers at different Si depths, for an ideal system. Calculations using
different distribution functions for the energy spread are shown: Gaussian
(dash-dot-dotted), gamma (solid) and calculated by the code Flatus
(dashed).



Fig. 4. Calculated Gaussian (thin solid lines) and gamma (thick solid
lines) distributions at different depths, for 1.5 MeV 4He+ scattered from
Au.
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We show in Fig. 3 calculations made for 1.5 MeV 4He+

at normal incidence and 180� scattering angle off Si/SiO2

1500 · 1015 at. cm�2/Au 250 · 1015 at. cm�2, for Gaussian
and gamma distributions, with straggling as given by the
Bohr model [11] with the Chu correction [12,13], as
calculated and enhanced by a multiplicative scaling factor.
This scaling factor is an expedite way of simulating
enhanced straggling. A 15 keV FWHM system resolution
was used.

For a scaling factor 3, the only significant difference is in
the Au signal very near the surface, where the Gaussian dis-
tribution leads to unphysical non-zero yield at energies
around 1400 keV. For a scaling factor 5 to the calculated
Bohr/Chu straggling, the Au signal near the surface is very
different when the gamma distribution is used. In fact, the
yield at the surface becomes larger than the calculation for
pure Bohr/Chu Gaussian straggling, which is the well-
known Lewis effect [14]. This was already observed in
Fig. 2 and is a consequence of the different shape of the
energy distribution. The energy distribution at different
depths in the Au layer (i.e. for different values of the aver-
age energy loss DE) is shown in Fig. 4 for the gamma and
Gaussian distributions. It is evident that the maximum
yield enhancement very close to the surface (around energy
1370 keV) is due to the difference in the shape of the two
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Fig. 3. Calculated energy spectra for 1.5 MeV 4He+ scattered from Si/
SiO2 1500 · 1015 at. cm�2/Au 250 · 1015 at. cm�2, for different scalings of
the Bohr/Chu straggling, and with Gaussian and gamma distributions.
distributions. This enhancement has been observed experi-
mentally in medium energy ion scattering (MEIS) [9],
where energy straggling is comparatively much larger than
in RBS.

Finally, even for a scaling factor 5, the spectrum of Si
and O are almost undistinguishable when Gaussian or
gamma distributions are used.
4. Summary

We used the gamma distribution for the energy
straggling in ion scattering, and showed that the results
obtained in the calculation of energy spectra are very sim-
ilar to those obtained when the energy distribution is calcu-
lated accurately, with the stochastic model of ion energy
loss.

While we do not claim that the gamma distribution con-
tains in itself any particular physical meaning, it leads to
major improvements when compared to using the Gauss-
ian distribution, while being almost as simple and fast to
calculate.

In particular, while the Gaussian distribution leads to
unphysical results near the surface whenever the energy
straggling is comparable with both the energy loss and
the system energy resolution, the gamma distribution does
not.

We implemented the gamma distribution for the strag-
gling in the standard data analysis code NDF [15,16], as
an user option.
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