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Abstract. The optically stimulated luminescence from minerals is proving to be a very useful
dating technique in archaeology and physical geography. In this work we study the analysis of
the relevant data from a Bayesian viewpoint, comparing some simple age and noise models.

INTRODUCTION

Carbon dating is a well-established technique in archaeology [1], but its use is condi-
tional upon the availability of suitable organic material and is limited to the last 60,000
years. Luminescence from minerals, when thermally or optically stimulated, provides
an alternative dating procedure. It relies on the release of energy from trapped electrons
accumulated, over time, through excitations induced by the ionising radiation in the en-
vironment [2]. The strength of the luminescence signal indicates when a piece of pottery
was last fired, or a sediment exposed to sunlight prior to deposition [3], for example,
assuming that the ‘bleaching’ process fully reset the mineral clock to zero; an environ-
mental radiation study is also required to convert the measurements into actual dates.

We consider just one aspect of the problem which can be phrased generically as
follows: Given N measurements {xk}, of the ‘equivalent dose’ of laboratory radiation
De, with associated error-bars {εk}, and background information and assumptions I,what
is the underlying (age) distribution F(x) of the sample? By F(x) we mean that the
probability density that the ‘true’ value for aliquot k is x̂k , Pr

(

x̂k
∣

∣F(x), I
)

, is F(x̂k).
It can be related to the measurement xk by using marginalisation and the product rule of
probability [4]:

Pr
(

xk
∣

∣εk,F(x), I
)

=
Z

Pr
(

xk, x̂k
∣

∣εk,F(x), I
)

dx̂k =
Z

Pr
(

xk
∣

∣x̂k,εk, I
)

F(x̂k)dx̂k , (1)
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where unnecessary conditioning symbols have been dropped on the far right, and the
definition of F(x) substituted.

In this paper, we analyse published test data [5] using a mixture model:

F(x) =
M

∑
j=1

A j h j(x) , (2)

where A j is the relative contribution from dose component j, h j(x), so that ∑ A j = 1,
and M is a ‘few’. In particular, we compare alternative simple choices for the ‘intrinsic
shape function’, h j(x), and different assumptions about the noise characteristics, {εk}.

THE INTRINSIC SHAPE FUNCTION

The integral of Eq. (1) is easy if h j(x) = δ(x−µ j). With this δ-function choice and the
usual assumption of independent Gaussian noise, of variance ε 2

k , the likelihood function
for the {xk} becomes a product of the N terms for the individual xk:

Pr
(

xk
∣

∣εk,{A j,µ j},M, I
)

=
M

∑
j=1

A j

εk
√

2π
exp

[

−
(

xk −µ j
)2

2ε2
k

]

, (3)

FIGURE 1. (a)-(c) Data obtained by irradiating quartz grains with a laboratory beta-dose of 5, 10 and
20 Gy respectively; (d) the amalgamated measurements for the 103 (= 43+25+35) grains.



TABLE 1. The evidence for the number
of δ-function components, M, in Fig. 1.

M (a) (b) (c)

1 -243.3 -62.4 -112.0
2 -174.2 -63.7 -109.0
3 -129.0 -65.0 -109.5
4 -125.0 -66.0 -110.1
5 -123.8 -67.4 -110.5

The only pdf still outstanding is the prior for the model parameters, Pr
(

{A j,µ j},M
∣

∣I
)

.
The simplest assignment is a uniform one in a suitable range: 0 6 A j 6 1, with the
sum subject to normalisation, 0 6 µ j 6 Dmax ∼ 50 Gy and 1 6 M 6 5 (say). The best
estimate of the De values and proportions of the age components is given by the allowed
maximum of the likelihood function if their number is taken as being known, at least in
the ‘quadratic approximation’, whereas the probabilistic evidence for M itself is given
by the average value of the likelihood [4].

Figure 1(a)-(c) shows three sets of data obtained by irradiating well-bleached quartz
grains with doses of 5, 10 and 20 Gy, respectively, from a laboratory source of beta
rays; (d) is their amalgamation [5]. Since these test measurements pertain to single dose
components, by design, their spread is indicative of the intrinsic shape function. That is
to say, if we analyse each of Fig. 1(a)-(c) with an acceptable choice for h j(x) in Eq. (2),
but an unknown number of components, then we ought to find most evidence for M=1.
Carrying out the calculation for the δ-function case of Eq. (3), we find that the noise is
not sufficient to account for the scatter in Fig. 1(a) but is adequate for the measurements
in (b) and (c). The formal results for ln

[

Pr
(

{xk}
∣

∣M,{εk}, I
)]

are given in Table 1.
Since a δ-function model, and the noise in the measurements, cannot account for the

spread in Fig. 1(a), a reasonable way of proceeding is to try an intrinsic shape function
that has an inherent width. The simplest of these is a Gaussian, because the integral of
Eq. (1) is then still straightforward; Eq. (3) just becomes

Pr
(

xk
∣

∣εk,{A j,µ j,σ j},M, I
)

=
M

∑
j=1

A j√[

2π
(

ε2
k +σ2

j

)] exp

[

−
(

xk −µ j
)2

2
(

ε2
k +σ2

j

)

]

, (4)

where σ2
j is the variance of the jth component. As a first attempt, we could set all the

widths equal to a constant, σ, or even a constant fraction of the equivalent doses, σµ j.
Indeed, the latter option was chosen in the original work [5] by using a fixed width in
ln(De). While working on a logarithmic axis has merit, as the equivalent dose appears
to be a scale parameter, there is a competing argument: since a difference in age of one
hundred years can be just as important on an absolute scale of a thousand years as it is
on ten thousand (say), the De display characteristics of a location parameter. There is
also the mathematical difficulty of taking logarithms of negative De when dealing with
very noisy measurements, especially since some zero-age grains are not unexpected in
natural samples. We opted to allow variable widths, in the range 0.5 6 σ j 6 5 Gy, with a
uniform prior, and used a Markov Chain Monte Carlo (MCMC) algorithm to handle the
strong non-linearities in the calculation [6]. The probabilistic evidence for the number



TABLE 2. The evidence for the number of Gaussian
components, of variable widths, in Fig. 1.

M (a) (b) (c) (d)

1 -147.2 -63.5 -107.2 -358.9
2 -125.6 -65.0 -108.1 -348.5
3 -124.5 -67.1 -109.2 -346.2
4 -124.8 -68.7 -110.2 -345.1
5 -125.7 -70.1 -111.5 -344.6

of components in the data of Fig. 1, ln
[

Pr
(

{xk}
∣

∣M,{εk}, I
)]

, is given in Table 2. An
estimate of the equivalent dose distribution F(De), or F(x), for the data of Fig. 1(d) is
shown in Fig. 2(a). It was obtained by summing up the Gaussian contributions from all
the MCMC samples displayed in Fig. 2(b). The width associated with each point in this
two-dimensional ‘cloud plot’ is not shown, of course, and the number of components
was integrated out by our MCMC algorithm using the prior Pr

(

M
∣

∣I
)

∝ 1/M! for M>1;
this Poisson assignment, with mean unity, simply reflected our expectation that M was
no more than a few without imposing an explicit upper bound.

A ROBUST NOISE MODEL

Although a Gaussian model returns a far higher evidence for M =1 for the data of Fig.
1(a) than does a δ-function, it’s still not adequate as far as the noise is concerned; at
least two are preferred. Admittedly, the second component merely makes a low-level
contribution to F(x) at higher equivalent doses and its need might be eliminated by using
an asymmetric intrinsic shape function; for example, with a log-normal distribution (as
in [5]). This seems odd, however, as the data of Fig. 1(b) are slightly better explained
by Eq. (3) than Eq. (4) and because a single δ-function is not too unreasonable for Fig.

FIGURE 2. (a) The equivalent dose distribution for the data of Fig. 1(d), scaled vertically to a maximum
value of unity, obtained by averaging over the parameters of the Gaussian components model. (b) The
corresponding MCMC samples of {A j,µ j}, with the {σ j} suppressed and M marginalised out (using a
Poisson prior with <M >=1).



1(c). It appears that something quirky occasionally happened in the measurements of
Fig. 1(a), but we don’t really understand what. Rather than opting for a more elaborate
h j(x), therefore, we could revert to the simpler δ-function choice and try a noise model
of greater robustness.

As in [7], let’s make the conservative assumption that the quoted error-bars represent
the most optimistic estimate of the uncertainties; that is to say, the {εk} will be treated
as lower bounds of the ‘true’, but unknown, Gaussian noise {ε̂k}. The latter can be
eliminated from the analysis, in the usual fashion, through the use of marginalisation
and the product rule:

Pr
(

xk
∣

∣x̂k,εk, I
)

=
Z

Pr
(

xk, ε̂k
∣

∣x̂k,εk, I
)

dε̂k =
Z

Pr
(

xk
∣

∣ε̂k, x̂k, I
)

Pr
(

ε̂k
∣

∣εk, I
)

dε̂k , (5)

where unnecessary conditioning symbols have been dropped on the far right and, as
before, x̂k is the true value for aliquot k. In the previous section, where the given error-
bars were believed, we had implicitly assigned Pr

(

ε̂k
∣

∣εk, I
)

= δ(ε̂k − εk). To express
complete ignorance about ε̂k, a scale parameter argument would suggest that a Jeffreys’
prior should be used (as long as ε̂k >εk); this was done in [7]. Being improper without
an upper bound on ε̂k, however, this is not suitable for model selection. So, we opted to
assign

Pr
(

ε̂k
∣

∣εk, I
)

=
εk

ε̂2
k

, (6)

for ε̂k > εk , and zero otherwise, as the closest form to the Jeffreys’ prior that is easy
to integrate and normalise. In conjunction with a Gaussian pdf for Pr(xk|ε̂k, x̂k, I), Eq.
(5) leads to the likelihood function Pr(xk|x̂k,εk, I) shown by the solid line in Fig. 3; for
comparison, the corresponding pdf with the Jeffreys’ prior is plotted with a dotted line
and the Gaussian, where the error-bars are believed, is drawn with a dashed line. The
slowly decaying tails offer protection against the skewing effect of ‘outliers’ since the
penalty for a large misfit is less severe. With δ-functions for h j(x), Eqs. (1), (2), (5) and

FIGURE 3. (a) The likelihood, Pr(xk| x̂k,εk, I), plotted as a function of the residual, (xk− x̂k)/εk, when
εk is believed (dashed) compared with when it’s used as a lower bound (solid); the Jeffreys’ prior solution
for the latter case is also shown (dotted), and all three have been scaled vertically to unity. (b) The same
likelihood functions plotted on a logarithmic axis.



TABLE 3. The ‘lower-bound noise’ evidence for the
number of δ-function components, M, in Fig. 1.

M (a) (b) (c) (d)

1 -122.4 -65.5 -117.5 -366.3
2 -123.8 -67.3 -118.9 -354.8
3 -125.6 -69.3 -120.4 -351.3
4 -126.8 -70.9 -121.2 -351.7
5 -127.9 -72.3 -122.1 -352.0

(6) yield the following likelihood for an individual datum:

Pr
(

xk
∣

∣ε̂k >εk,{A j,µ j},M, I
)

=
M

∑
j=1

A j εk√
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. (7)

The resultant probabilistic evidence for the number of components in the data of Fig.
1, ln

[

Pr
(

{xk}
∣

∣M,{εk}, I
)]

, is given in Table 3. The best estimates of the {A j,µ j} for
the M =3 model and their standard marginal error-bars, in the quadratic approximation,
for the data of Fig. 1(d) are shown in Fig. 4(a); the ‘known’ De values and proportions
of the three dose components are marked by asterisks. The related MCMC samples are
displayed in Fig. 4(b).

DISCUSSION

Let’s consider first the individual sets of data, where we knew that M = 1 by design
but pretended to be ignorant. Of the three combinations of intrinsic shape function and
noise model tried, the greatest evidence for the correct answer was from Eq. (7) for
the measurements in Fig. 1(a). This is not surprising from a visual inspection, as the
data show far more scatter than the quoted error-bars can accommodate and in a skewed

FIGURE 4. (a) The best estimates and their marginal error-bars, in the quadratic approximation, of the
parameters for the M =3 δ-function model for the data of Fig. 1(d) using the robust likelihood of Eq. (7);
the asterisks mark the correct (known) De values and proportions of the three dose components. (b) The
MCMC samples of {A j,µ j}, with M marginalised out using a Poisson prior with <M >=1.



manner. The most ‘well-behaved’ case is that of Fig. 1(b), and so probability theory is
happiest with the simplest analysis of Eq. (3): believe the {εk} and assume δ-functions.
The measurements in Fig. 1(c) show significant spread, but the quoted noise-levels are
fairly large and there is nothing weird. There is some preference for the Gaussians of
Eq. (4) over δ-functions, therefore, but little reason to doubt the {εk}.

In a real problem, there might be a mixture of components and it’s our task to infer
their number and nature. The amalgamation of the previous data in Fig. 1(d) presents
a challenge then, in that each of the contributions is best analysed under different
assumptions. Although ever more complicated formulations of the problem are always
possible, pragmatically we’re likely to use something akin to Eq. (4) or Eq. (7). As seen
from Figs. 2 and 4, both tell a similar story. Technically the measurements favour the
likelihood of Eq. (4) to that of Eq. (7), but the results from the latter seem cleaner (based
on the visual appearance of the cloud plots, and a knowledge of the true answer). At least
on the basis of this example, there seems to be merit in the simplicity and conservatism
of the robust noise analysis.

A comparison of the inferred parameters of the mixture model with their ‘known’
values indicates that a respectable job has been done for the equivalent doses, but their
proportions are not correct. The best-fit {A j} are not too misleading, however, when their
uncertainties are taken into account. Our central conclusions are consistent with those
of [5], but we’ve shown that there’s an alternative set of simple assumptions, based on
allowing for the possibility of ‘outliers’ in the data, that can be helpful for the analysis
of luminescence dating measurements.
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