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tenders for human application based
on their non-invasive nature, ease of
use and robustness, measurement of
hypoxia status, validity, ability to
demonstrate heterogeneity and general
availability, these techniques are the
primary focus of this review. We
discuss where developments are re-
quired for hypoxia imaging to become
clinically useful and explore potential
new uses for hypoxia imaging tech-
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Abstract Tumour hypoxia represents
a significant challenge to the curability
of human tumours leading to treat-
ment resistance and enhanced tumour
progression. Tumour hypoxia can be
detected by non-invasive and invasive
techniques but the inter-relationships
between these remains largely unde-
fined. '*F-MISO and Cu-ATSM-PET,
and BOLD-MRI are the lead con-

niques including biological conformal
radiotherapy.
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Tumour Resistance

Introduction

The suspicion that tumour hypoxia increased resistance to
radiotherapy was first considered in the 1930’s but it was
not until 1955 that Tomlinson and Gray showed that
chronic hypoxia occurred in human bronchial carcinomas
with necrosis occurring approximately 150 pm from blood
vessels [1], which is a little larger than the currently known
diffusion distance of soluble oxygen in tissues (approxi-
mately 70 um). Decades of research in radiation therapy
then followed, much of which focused on attempts to
circumvent hypoxia-mediated radio-resistance but these
efforts were only moderately successful. Over the last
decade, it has become evident that hypoxia changes the
patterns of gene expression in several ways that alters the

malignant potential of tumours, leading to more aggressive
survival traits. As a result, hypoxic cancers are difficult to
treat, particularly by radiation and photodynamic therapy
[2], but also by cytotoxic chemotherapy. Attempts at
circumventing the cure-limiting impact of hypoxia have
included the use of hyperbaric oxygen and radiation
sensitizer drugs but these have, in general, not proved
widely advantageous. However, attempts to take advantage
of the presence of tumour hypoxia, such as hypoxia-
specific cytotoxins, are more promising. As hypoxia-
directed therapies enter into clinical trials, it has become
important to non-invasively assess for the presence of
hypoxia and to be able to follow how it is modulated by
new therapies. Hypoxia imaging may help select the most
appropriate population that would benefit from novel
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hypoxia-directed therapies. In this review we describe the
causes for and the effects of tumour hypoxia, as well as
summarise the lead contenders for human tumour imaging.
We also assess where developments are required for them
to become clinically useful imaging tests and explore
potential new wuses for hypoxia imaging techniques
including biologically-directed conformal radiotherapy.

Overview of tumour hypoxia & its importance

For the majority of solid tumours hypoxia develops
because of the inability of the vascular system to supply
the growing tumour mass with adequate amounts of
oxygen. Consequently, both low oxygen tensions and
nutrient deprivation contribute to impaired tumour growth
such that growth beyond 2 mm requires tumour neovascu-
larisation. The major factors that play roles in the
development of tumour cell hypoxia are the known
abnormalities in structure and functioning of tumour
microvessels [3], the increased diffusion distances between
blood vessels (many of which may not even carry
oxygenated red blood cells), the expanding tumour cell
mass competing for oxygen and the reduced oxygen
carrying capacity of blood due to disease- or treatment
related anaemia. Thus, there are three distinct types of
tumour hypoxia [4]: (1) Perfusion related (acute) hypoxia
that results from inadequate blood flow in tumours that is
generally the consequence of recognised structural and
functional abnormalities of the tumour neovasculature.
Such acute hypoxia is often transient, caused by temporary
occlusions and temporary rises in interstitial pressure and
can affect all cells right up to the vessel wall; (2) Diffusion
related (chronic) hypoxia is caused by increased oxygen
diffusion distances due to tumour expansion and affects
cells greater than 70-100 wm from the nearest capillary,
depending on where tumour cells lie in relation to the
arterial or venous end of a capillary; (3) Anaemic hypoxia,
which relates to reduced O,-carrying capacity of the blood
and may be tumour associated or treatment related.

The presence of hypoxia within human tumours before
starting treatment has been observed in a variety of tumour
types including squamous cell carcinomas, gliomas,
adenocarcinomas (breast & pancreas) and in sarcomas.
For example, in the normal cervix the pO, is a median of
42 mmHg compared to a median of 10 mmHg in squamous
carcinomas, and for cervix cancer the oxygenation status is
independent of size, stage, histopathological type, and
grade of malignancy [5]. Oxygen probes, that is, electrodes
implanted directly into tumours to measure oxygen con-
centration by a polarographic technique [6—8] have shown
(1) heterogeneity within and between the same tumour
types of oxygen concentration and, (2) that hypoxia
contributes to poor prognosis; pO,<10 mmHg results in
poor local tumour control, disease-free survival and overall

survival in squamous carcinomas of the head and neck and
of the cervix [9, 10].

A large body of clinical evidence suggests that the
hypoxia-mediated aggressive behavior of cancer cells and
their resistance to therapy is orchestrated by the hetero-
dimeric transcription factor, hypoxia inducible factor-1
alpha (HIF-1), via a number of molecular events required
for the adaptation of tumour cells to hypoxia (including
unregulated glycolysis, angiogenesis and mutant p53) [11].
It is also important to realise that in some tumours
including uterine licomyomas, HIF expression is not
always correlated with the presence of hypoxia suggesting
that other factors including genetic events also contribute to
activation of HIF, the most significant one of which is the
loss of function of the Von Hippel-Lindau (VHL) tumour
suppressor protein which results in constitutive activation
of the HIF pathway. HIF-1 controls the expression of a
variety of genes, the protein products of which play crucial
roles in the acute and chronic adaptation of tumour cells to
oxygen deficiency, including enhanced erythropoiesis &
glycolysis, promotion of cell survival, inhibition of apo-
ptosis, inhibition of cell differentiation, and angiogenesis.
Thus, adaptive changes in the proteome and genome of
neoplastic cells result in the emergence of more aggressive
clones which are of cells that are more able to overcome
nutrient deprivation or escape their hostile environments.
Selection pressures by hypoxia and clonal expansion of the
more aggressive cell types can result in exacerbations of
regional hypoxia, further promoting the development of
cell phenotypes that are treatment resistant (Fig. 1). Given
the central role of HIF-1 in hypoxia mediated aggressive
behaviour of cancer cells and their resistance to therapy,
HIF-1 has become a target for the development of anti-
cancer drugs [12].

There is debate about whether there is a critical
intratumoural pO, below which detrimental changes
begin to occur that is common across cell types. This
occurs because experiments performed in cell cultures
may not be applicable to in-vivo environments and some
of the literature variation can be attributed to the tumour
cell type chosen for experiments and the demands of host
tissues. With these caveats in mind, the critical pO,
tensions below which cellular functions progressively
cease or anticancer treatments are impaired are approxi-
mately as follows [13]: Effectiveness of immunotherapy
becomes impaired (30-35 mmHg); Photodynamic therapy
(15-35 mmHg); Cell death on exposure to radiation (25—
30 mmHg); Binding of hypoxia immunohistochemical
markers (1020 mmHg); Proteome changes (1—
15 mmHg) and Genome changes (0.2-1 mmHg). The
differences in these numbers are smaller than the
similarities so that, from a practical perspective, for
solid tissue tumors in vivo, a value of between 5-—
15 mmHg is a good number to remember because of its
impact on therapy. This number is in contrast to ischaemic
hypoxia in the myocardium or stroke where detrimental
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Fig. 1 Stylised diagram show-
ing how hypoxia leads to
therapy resistance and the
development of an aggressive
tumour cell phenotype. Figure
adapted from [4]
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effects are experienced at higher O, [14]. In all these
instances the critical oxygen level in tissues reflects the
drive to match delivery with metabolic demand.

As noted above, the presence of tumour hypoxia appears
to impair the effectiveness of radiotherapy and radiosen-
sitivity is progressively limited as tumour pO, levels fall.
Hypoxia-induced radioresistance is multifactorial with
the presence of oxygen mediating DNA damage through
the formation of oxygen free radicals which occurs after the
interaction of radiation with intracellular water. The ratio of
doses administered under well-oxygenated to hypoxic
conditions needed to achieve the same biological effect
(i.e., cell kill) is called the oxygen enhancement ratio
(OER). For sparsely ionising radiations such as x- and
gamma rays, the OER at therapeutic doses is between 2.5—
3.5 [15]. That is, well oxygenated cells are about three
times more sensitive to x- and gamma radiation than the
same cells when they are hypoxic. Half maximal sensitivity
to x- and gamma rays occurs at oxygen tensions of
approximately 2—5 mmHg; above pO, values of approxi-
mately 10-15 mmHg near maximal oxygen effects are
seen. However, it should be recognised that sensitivity of
cells to radiation is dependent on the phase of the cell cycle,
with cells in the G, phase having a lower OER (i.e., more
radiosensitive) than cells in S-phase. As noted above, the
oxygen effect is not the only mechanism for radioresistance
in hypoxic tumour cells. Evidence is accumulating that the
hypoxia-mediated proteomic and genomic changes may
also contribute to radioresistance by increasing the levels of
heat shock proteins (heat shock proteins (HSPs), are
induced in response to environmental stresses like heat,
cold and oxygen deprivation [16]) or by increasing the
number of tumour cells that can resist apoptosis by
mutating p53 (the slowing of cell division is dependent
on a protein brake known as p53; the disruption of the
functioning of this protein is associated with approximately
50-55% of human cancers).

Locoregional spread,
metastasis

Clinical imaging of hypoxia

prognosis

As tumour hypoxia is an important biological characteristic
and there is no good or easy clinical way to predict its
presence, it has been suggested that imaging may be a good
way of non-invasively selecting cancer patients who would
benefit from treatments that overcome, circumvent or take
advantage of the presence of hypoxia. Since tumour
hypoxia is a key mechanism that leads to radioresistance,
it has been repeatedly suggested that a hypoxia mapping
technique could be integrated with conformal radiotherapy
techniques to improve target delineation and dose delivery;
this is discussed in more detail below. Imaging could also
be used to document whether or not and the extent to which
reoxygenation of tumours occurs during radiotherapy. Key
requirements of any method that evaluates tumour hypoxia
include non-invasive assessments that allow serial changes
during treatment to be monitored and evaluation of
heterogeneity between and within tumours.

There are a number of ways in which tissue oxygenation
status can be assessed in vivo (both invasive and non-
invasive) or in vitro using material from biopsy. Non-
imaging methods of assessing for the presence of hypoxia
in tissues include histological appearance, immunohisto-
chemical staining for intrinsic markers of hypoxia (e.g.,
carbonic anhydrase IX (CA-IX) and hypoxia inducible
factor-1 (HIF-1)) and for the binding of externally
administered nitroimidazoles [17, 18].

From an imaging perspective, an ideal test would: (1)
distinguish normoxia / hypoxia /anoxia/necrosis, (2)
distinguish between perfusion-related (acute) and diffu-
sion-related (chronic) hypoxia if possible, (3) reflect
cellular in preference to vascular pO,, (4) be applicable
to any tumour site with complete loco-regional evaluation,
(5) be simple to perform, non-toxic and allow repeated
measurements, and (6) be sensitive at pO, levels relevant to
tumour therapy. Therefore, the challenge for hypoxia
imaging is to measure low levels of tissue pO, on a spatial
scale similar to the O,-diffusion distance (70-100 um); a
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much smaller dimension than can be achieved with human
imaging techniques. Currently available MRI and PET
methods were compared at a National Institute of Health/
National Cancer Institute of the USA sponsored workshop
in April 2004 and it was noted that only a few techniques
have potential for in vivo assessment in humans particu-
larly for repeated, sequential measurements. '*F-MISO
and °“®*Cu-ATSM PET, and BOLD-MRI are the lead
contenders for human application based on their non-
invasive nature, ease of use and robustness, measurement
of hypoxia status, validity, ability to demonstrate hetero-
geneity and general availability (Table 1).

13 MISO

['®F]Fluoromisonidazole, 3-fluoro-1-(2'-nitro-1'-imidazo-
lyl)-2-propanol or (**F-MISO), is the prototype hypoxia
imaging agent whose uptake is homogeneous in most
normal tissues, reflecting its high partition coefficient that
nears unity, and whose delivery to tumours is not limited by
perfusion [19]. The initial distribution of E-MISO is flow
dependent, as with any freely diffusible tracer, but local
oxygen tension is the major determinant of its retention
above normal background in tissues after 2 hours
(Fig. 2). "®F-MISO accumulates in tissues by binding to
intracellular macromolecules when pO,<10 mmHg. Re-
tention within tissues is dependent on nitroreductase
activity (that is, on reduction status of a NO, group on
the imidazole ring) (Fig. 3) and accumulation in hypoxic
tissues over a range of blood flows has been noted,
including within the intestinal lumen where it is retained in
anaerobes!

Hypoxia can be imaged with '®F-MISO PET in a
procedure that is well-tolerated by the patients. Imaging
requires 20-30 min and starts anywhere from 75 to
150 min after injection, making it similar to the bone scan
with which most cancer patients are familiar. Useful and
well-validated images can be achieved with a modest dose
of radiation, typically 250 MBq. No arterial sampling or

metabolite analysis is required and synthesis is achieved
through relatively simple modifications of nucleophilic
displacement / deprotection synthesis boxes such as are
used for fluoro-deoxyglucose (‘*F-FDG). In the USA,
F-MISO has investigational new drug (IND) authorisation
from the Food and Drug Administration (FDA) as an
investigational product for use in humans. Unlike Eppen-
dorf pO, histography, '*F-MISO is onl}l sensitive to the
presence of hypoxia in viable cells; SE-MISO is not
retained in necrosis because the electron transport chain
that reduces the nitroimidazole to a bioreductive alkylating
agent is no longer active (Fig. 3). Limitations of '*F-MISO
PET include the modest signal-to-noise ratio of raw
'®F-MISO PET images but if a venous blood sample is
acquired during the mid-course of the imaging procedure
and used to calculate a Tumour:Blood (T/B) ratio image,
then normoxic uptake (T/B<1) can be electronically
subtracted to increase image contrast. Several studies in a
range of hypoxic tumours, stroke and hypoxic myocardium
[14] have shown that a T/B of >1.2 reliably identifies the
presence of hypoxia. The presence of high normal liver
uptake impairs complete assessment of liver lesions and
urinary excretion interferes with imaging near the bladder.

'8E_MISO PET is able to monitor the changing hypoxia
status of lung tumours during radiotherapy [20]. Studies in
sarcoma [21] and head and neck cancer [22-24] have
demonstrated a correlation of '*F-FMISO uptake with poor
outcome to radiation and chemotherapy.

Cu-ATSM

Cu-diacetyl-bis(N*-methylthiosemicarbazone) (Cu-ATSM)
holds exceptional promise as an agent for delineating
the extent of hypoxia within tumours with PET. Nu-
merous pre-clinical studies have evaluated and validated
its use for imaging of hypoxia in tumours and other tissues
[25-32]. The mechanism of retention of the reagent in
hypoxic tissues is largely attributed to the low oxygen
tensions and the subsequent altered redox environment of

Table 1 Comparison of techniques for evaluating human tumour hypoxia

Technique and key Invasive Requires Measures  Clinically Validated General availability Monitors changes

references investigation injection in RT (1-5; poor-wide) in pO2

18F-MISO PET No Yes Hypoxia =+ 3 No
[19, 24, 51-53]

18F_AZA PET [54] No Yes Hypoxia  No 2 No

8F_EF5 PET [55] No Yes Hypoxia =+ 2 No

64Cu ATSM No Yes Hypoxia + 3 No
[25, 26, 28, 34, 35]

BOLD-MRI [36] No No [dHb] in Yes 4 Yes

RBCs
Polorographic elec- Yes No pO2 Yes 2 Yes

trode [6-8]




865

Primary tumour

A (t) [kBa/ca]

L ]

0 S0 100 150 00

FDG-PET

1[min]

Fig. 2 The '"®FDG-PET image (bottom left panel) shows increase
uptake in both the oropharyngeal tumour (arrow) and in the left neck
nodal metastasis (asterix). The '*F-MISO images (bottom right
panel) were acquired in a dynamic mode and representative images
after 1 minute, 30 minutes and 240 minutes are shown together with

hypoxic tumours (increased NADH levels) (Fig. 4).
Clinical studies, well-tolerated by patients, involved
%0Cu-ATSM imaging sessions of about 60 minutes with
analysis of 30-60 minute summed-images. This time
frame not only yields excellent data with good image
quality (Fig. 4) in a very short time frame which opens up
the opportunity with the shorter-lived ®°Cu to perform
multiple imaging sessions. A number of radioactive
copper isotopes with longer half lives are available, e.g.
®Cu (t;,=12.74 h) [33], enabling wide geographic
distribution and the United States FDA recently approved
an IND application for the study of **Cu-ATSM for the
imaging of hypoxia in human tumours.

In human studies of lung [34] and cervix cervical cancers
[35], encouraging evidence has emerged that “’Cu-ATSM
can act as a prognostic indicator for response to therapy. In
the prospective study of 14 humans with non-small cell
lung cancer, a semi-quantitative analysis of the ®°Cu-
ATSM muscle-to-tumour ratio was able to discriminate
those likely to respond to therapy from non-responders
[34]. A similar study in 14 women with cervical cancer
demonstrated a similar predictive value in the tumour
response to therapy [35].

Nodal metastasis -

ra
=]

A (t) [kBa/co]

0 50 100 150 200

F-MISO PET

tlmin]

time-activity curves from the two regions of interest indicated in the
FDG-PET image. The early distribution (I minute) shows hyper-
perfusion in the region of the primary tumour and metastasis
because of the high partition coefficient of '*F-MISO. After 2 hours,
only the left neck nodal metastasis is shown to be hypoxic

BOLD-MRI

Blood oxygenation level dependent (BOLD) and intrinsic
susceptibility weighted MRI are interchangeable terms. As
in any MR image, tissue contrast in BOLD images is
affected by intrinsic tissue properties including spin-lattice
and spin-spin relaxations. Additionally, BOLD MRI con-
trast is affected by blood flow and paramagnetic deoxy-
haemoglobin within red blood cells (oxyhaemoglobin is
not paramagnetic). Deoxyhaemoglobin increases the MR
transverse relaxation rate (R,*) of water in blood and
surrounding tissues thus BOLD-MRI is sensitive to pO,
within, and in tissues adjacent to perfused vessels [36].
Static tissue components include iron content (e.g. myo-
globin found in muscle) and presence of fibrosis or
ligamentous structures (e.g. in benign prostatic hyperplasia
and the suspensory ligaments of the breasts) also affect the
appearances of intrinsic susceptibility weighted images. In
order to decouple the effects of flow from deoxyhaemo-
globin and static components it is necessary to measure the
T,* relaxation rate (R,*=1/ T,*) which can be done by
using a multi-echo GRE sequence (Fig. 5). Decoupling of
flow from static effects on R2* images occurs because the
flow component can be thought of as affecting individual
T2* images of a multi-gradient echo sequence equally. It is
important to remember that, although synthetic R2* images
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Fig. 3 The structure of [ '®F]-fluoromisonidazole, '*F-MISO, and its
mechamsm of retention in hypoxic tissues. The partition coefficient
of F-MISO is near unity so the molecule diffuses freely into all
cells. Once '®F-MISO is in an environment where electron transport
is occurring (viable tissues), the -NO, substituent (which has a high
electron affinity) takes on an electron to form the radical anion
reduction product. If O, 1s also present, that electron is rapidly
transferred to oxygen and 'SF-MISO changes back to its original
structure and can leave the cell. However, if a second electron from
cellular metabolism reacts with the nitroimidazole to form the

are free of the contribution of blood flow (that is, they
mainly reflect deoxyhaemoglobin content and static tissue
components), improving blood flow and vascular function-
ing will also increase tissue oxygenation, which can be
seen by changes in R2* images.

The observations made in the previous paragraph imply
two intuitive inferences. (1) BOLD-MRI images are more
likely to reflect on acute (perfusion-related) tissue hypoxia
which, as stated above, occurs because of transient
occlusions of vessels, simply because hypoxic areas extend

covalent bonding
to macromolecules

2-electron reduction product, the molecule reacts non-discriminately
with peptides and RNA within the cell and becomes trapped. Thus,
retention of FMISO is inversely related to the intracellular partial
pressure of O, as shown in the lower left panel [45]. This
mechanism is confirmed by the autoradiograph of a tumour spheroid
(bottom right panel) with a radius of approximately 0.5 mm that
shows no retention in the necrotic core or in the well-oxygenated
outer sphere but intense uptake (white spots) in a donut like ring
where cells are hypoxic

to the level of the blood vessels. In contradistinction,
chronic hypoxia is less likely to be reflected by BOLD-
MRI because the red blood cells in vessels are too distant
from the area of hypoxia. (2) For BOLD-MRI to be able to
inform on tissue oxygenation status, it is important for red
blood cells to be delivered to the tissue in question. Human
and xenograft studies have shown that tumour perfusion
varies widely and that red blood cell perfusion is not simply
related to the absence/presence of vessels; plenty of tumour
vessels maybe present but perfusion by red blood cells may
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Fig. 4 Retention mechanism of Cu(II)ATSM in hypoxic tissues. (a)
Cu(II)ATSM is bioreduced (Cu(Il) to Cu(I)) once entering the cell.
The reduced intermediate species (likely to be [Cu-ATSM]-) is
trapped within the cell because of its charge. This transient complex
can then go through one of two competing pathways: reoxidation to
the uncharged Cu(Il) species (which can escape by diffusion), or
proton-induced dissociation (which releases copper to be irrevers-
ibly sequestered by intracellular proteins). [Cu-ATSM]- favours the
reoxidation route because it is easily oxidised but chemically more
resistant to protonation. Copper from Cu(Il) ATSM is trapped
reversibly as [Cu-ATSM]- (if oxygen is absent), with the possibility
of irreversible trapping by dissociation over a longer period. Cu(Il)
ATSM is thus hypoxia-selective. (b) High quality axial *Cu-ATSM-
PET image through the mid-upper thorax demonstrates heteroge-
neously increased uptake (arrow) within a known lung cancer in the
aorto-pulmonary window and left suprahilar region. PET images
representing summed data were obtained from 30 to 60 minutes after
injection of *°Cu-ATSM

not occur [37]. This observation probably explains in part
why no direct correlations between baseline R,* and tissue
pO, have been observed (that is, R,* does NOT measure
tissue pO,). So it is necessary to know or to determine the
distribution of blood volume in tissue in order to be able to
correctly interpret R,* images in order to infer oxygenation
status. Thus, if a tissue is perfused but has a high baseline
R,* in one area/region compared to another area/region in
the same tissue (i.e. the statistic components are the same),
then one can infer that the high R,* region is relatively
more hypoxic; this hypothesis is supported by recent
preclinical and clinical data [38, 39].

As stated above, the use of BOLD-MRI for assessment
of tissue hypoxia is predicated on the assumption that the
oxygenation of haemoglobin is proportional to blood
arterial pO, which is in equilibrium with oxygenation of
surrounding tissues. Many studies have shown that
changes in R,* in response to vasomodulation with
Carbogen (95% CO,:5% O,) inhalation, for example, are
temporally correlated with changes in tissue pO,. Tumours
differ in their responses to carbogen inhalation with only

50-60% of human tumours showing changes in R,* [40,
41]. The reasons for these limited and heterogeneous
responses are complex but undoubtedly include the fact
that tumours have adapted to widely different perfusion
and that, even when vessels are present, red blood cell
transport along these vessels may not be effective as
demonstrated by Robinson et al. [37]. Thus, hypoxic
tumours with high blood volume (due to high microvessel
density coupled with large vessels) will not only have
raised baseline R,* values but are more likely to respond to
Carbogen. This will be reflected by large changes in R,*;
and it is these hypoxic tumours that show positive
radiosensitisation with Carbogen. On the other hand,
hypoxic tumours with low blood volume (due to lower
microvessel density, or due to small vessels) will have
lower baseline R,* values and are thus less likely to
respond to Carbogen. In this situation, there will be
negligible changes in R,* and such hypoxic tumours do not
show radiosensitisation with Carbogen [42]. Readers
should also note that the BOLD response to Carbogen is
also dependent on the ability of the underlying maturity of
the vasculature with mature vessels able to respond actively
to vasoconstrictory and vasodilatory stimuli [43].

The primary advantages of BOLD-MRI are that there is
no need to administer exogenous radioactive contrast
material and images at high temporal and with high spatial
resolution can be obtained and repeated as needed. It is
possible to decouple the effects of flow and deoxy-
haemoglobin which are seen in native BOLD images and
so to demonstrate changes in oxygenation independent of
changes in blood flow. Major limitations of BOLD-MRI
include the fact that they do not measure tissue pO, directly
(either in blood or tissues because of a non-linear
relationship of R,* and tissue pO2), the images obtained
have low signal to noise ratio and clinical studies with
Carbogen vasomodulation are technically challenging
(approximately 25-35% of patient examinations fail due
to respiratory distress caused by an increased respiratory
drive induced by Carbogen [40, 41]. BOLD-MRI appears
most sensitive to oxygen levels adjacent to perfused vessels
(that is, perfusion related or acute hypoxia) and BOLD-
MRI sensitivity to more distant diffusion related or chronic
hypoxia is an unknown.

Hypoxia guided radiotherapy

Recently introduced, technological improvements in ra-
diotherapy delivery systems, including intensity-modu-
lated radiotherapy (IMRT), have provided a means for
shaping the dose distribution not only to the geometry of
target volumes, and also to the differences in radiobiology
across tumours [44]. Thus, it is now possible to define an
additional “target within the target” as 3D pixel maps of the
prescribed dose incorporating biological information
derived from functional images; sometimes called dose
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Fig. 5 Data acquisition and quantification of BOLD-MRI in the
prostate gland. Gradient recalled-echo MR images acquired at 1.5 T
with a fixed repetition time and flip angle (TR ~100 msec; alpha 40
degrees) with lengthening echo-time (TE) are acquired through the
prostate gland (bottom row of images). These images show
increased susceptibility (T,*) effects with increasing TE. The rate
of signal intensity decay in the dorsal aspect of the prostate is

painting by numbers [45, 46]. This allows treatment to the
desired dose with escalation based on biologically relevant
data, such as hypoxia which was discussed above, that is
mechanistically related to therapeutic outcome. As an
example of this, the spatial distribution of ****Cu-ATSM
uptake on PET was successfully fused with CT radiother-
apy planning images to show a proof of concept. This
theoretical treatment planning would deliver higher doses
of radiation via intensity modulated radiotherapy tech-
niques (IMRT) to the most hypoxic regions of head and
neck tumours [47].

In the case of hypoxia, it is important to remember that if
the tumour stays hypoxic throughout the course of a
treatment, more (escalating) radiation alone may not be
sufficient to overcome the hypoxia-induced resistance.
Hence, from a therapeutic perspective it is additionally
important to know when and if reoxygenation occurs after
initial radiotherapy (either by a reduction of oxygen
consumption by the arrest of proliferation or by death of
well oxygenated cells [15] (Fig. 6). However, data
correlating treatment success with hypoxia and reoxygen-
ation changes occurring during treatment are sparse; the
extent and rapidity of reoxygenation is impossible to
predict for individual tumours. The complexity of the
processes leading to reoxygenation suggests the need for
repeated imaging during the initial phase of treatment to
determine the best time for dose adaptation. Koh et al. used
'®F-MISO PET imaging to detect reoxygenation of some
lung tumours after just a few treatments, whereas other

. Mean muscle
R,*=28 sec”!

TR 100 me; TE 55 s

dependent on intrinsic T,* relaxation (local structure), deoxy-
haemoglobin concentration [dHb] and local blood flow. Synthetic
R,* (=1/T,*) images are created by plotting the natural logarithm of
the signal intensity against the TE (top left panel). R,* map (top
right panel) reflects on the structure of tissues and local [dHb] but
inflow effects are minimised; however, R,* maps retain sensitivity
to pO, changes caused by alterations in blood flow

patients exhibited no reduction in hypoxia even over the
full course of radiotherapy [20]. Thus, dose escalation to
target hypoxic areas in all patients at the beginning of the
treatment could be a wasted effort because reoxygenation
would change its distribution. Dose escalation is possibly
best undertaken towards the end of treatment, at a time
when hypoxic radioresistant cells are predominate.

Recently, Thorwarth et al. presented a study where
dynamic (mapping of perfusion) and static (mapping of
hypoxia) '*F-MISO scans were obtained in 15 patients
with head-and-neck cancers who were subsequently treated
with chemoradiation [48]. Their data suggested that
subsequent treatment failure was related to both pretherapy
hypoxia and concurrent poor perfusion. This result hints
that reoxygenation did not occur as a consequence of the
deficient vasculature of tumours [49]. Thus, it may be
necessary not only to target hypoxic regions but also areas
of poor blood flow. Dose escalation maps can be derived
from dynamic "E.MISO PET scans for targeting poor
perfusion, while functional planning target volumes could
be obtained from late static scans (that reflect hypoxia);
both concepts lend themselves equally well to IMRT
(Fig. 7). As a caution, simulated treatment plans also
suggest that some patients may require such high radiation
doses that will lead to a high risk of late complications in
the vicinity of the tumour bed, such as necrosis, rupture of
blood vessels or excessive fibrosis.
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Fig. 6 The re-oxygenation phenomenon. Tumours contain mixtures
of aerated and hypoxic cells. Radiation is effective at eliminating
well oxygenated cells because they are radiosensitive. Reoxygen-
ation cause the preradiation pattern to return which can be
eliminated by further radiation fractions but a progressive decrease
in the tumour mass occurs after a series of fractions. Figure adapted
from [15]

Fig. 7 Dose escalation map superimposed on CT with Planning
Target Volume (red). Isodose lines show conformality to hypoxic
lymph node with a maximum dose increase by 20%. This is the
same patient illustrated in Fig. 2

Challenges for hypoxia imaging techniques

As hypoxia imaging techniques move from academic
research environments to routine clinical usage, it becomes
important to recognise the unique challenges of clinical
translation. For example, it is important that patient
examination times are short to improve patient compliance
particularly for repeated examinations. Thus, the need for
doing dynamic scanning followed by several static scans
over a prolonged period of time with PET techniques could
prove a disincentive for patients. However, as noted above,
not all patients undergoing hypoxia studies by PET need
dynamic imaging although it may be useful in selected
patients where the aim is to demonstrate both perfusion and
hypoxia (for example to demonstrate reperfusion-reoxy-
genation). In-contradistinction, the interpretation of
BOLD-MRI does require that the distribution of blood
flow/volume is known and this can be done in clinical
studies using dynamic contrast enhanced MRI (DCE-MRI)
[50]. Whatever the chosen technique for clinical transla-
tion, there needs to be standardisation of imaging
procedures and analysis methods in order to allow
techniques to become more completely validated, for use
in clinical trials. Amongst other issues that require
addressing when clinical trials are being designed include
the need for quantification, test-retest variability and data
collection in body parts where there is a large degree of
physiological movement such as the lungs and liver.

A practical question often asked is whether it is
necessary to quantify imaging data to answer important
clinical questions. Subjective assessments work well
enough in the clinic; however it is important to realise
that subjective criteria cannot be applied simply from one
centre to another particularly, when different equipment
and imaging routines and human observers are used.
Quantification techniques aim to minimise errors that can
result from the use of different equipment and imaging
protocols. Quantification techniques also enable the deri-
vation of parameters that are based on some understanding
of physiological processes and so can provide insights into
tumour biology, for example the simple T/B and T/M ratios
described for the two PET procedures. Quantification
techniques are preferred when serial imaging studies are
anticipated, for example when evaluating response to novel
anticancer therapeutics.

The reproducibility of the imaging technique should also
be known in order to estimate the sample size required to
evaluate therapy efficacy. Variation between measurements
of the same quantity on the same individual can be caused
either by measurement error or by physiological changes
between measurements. Whilst it is possible (in theory) to
reduce measurement error, physiological variation is
inherent, and can cause difficulty in attempts to character-
ise disease or to monitor the effects of therapy. An estimate
of measurement error enables us to decide whether a
change in observation represents a real change. Data
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addressing the precision and measurement variability of
hypoxia imaging techniques are urgently needed and
should be an integral part of any prospective study that
evaluates functional response to therapy to allow assess-
ments of individual patients and group changes.

It is intuitive that analysis and presentation of imaging
data needs to take into account the heterogeneity of tumour
hypoxia. The presence of motion can invalidate functional
parameter estimates particularly for pixel-by-pixel analyses
and this is especially true for high spatial resolution
techniques such as BOLD-MRI. Motion is averaged in
PET imaging because imaging times are long. In that case,
pixel-analyses of the data and the issues of heterogeneity
assessment can become less meaningful. The first step in
heterogeneity analysis includes ROI definition which
should be performed independent on the hypoxia imaging
being assessed. For BOLD-MRI this could be done by
anatomic MRI images and for PET studies could include
the CT component of CT-PET studies although some
groups have used ROIs defined in '*FDG-PET images.
However, ROIs defined on '*FDG-PET images are know to
be prone to error as far as tumour boundaries are concerned
and are highly dependent on the level of threshold chosen.
Whole tumour ROIs yield outputs with good signal-to-
noise ratio, but lack spatial resolution and are prone to
partial volume averaging errors and thus are unable to
evaluate tumour heterogeneity. Pixel mapping has the
advantages of an improved appreciation of heterogeneity of
hypoxia and the risk of missing important diagnostic
information and of creating ROIs that contain more than
one tissue type is reduced. An important advantage of pixel
mapping is being able to spatially map tumour character-
istics such as hypoxia, glucose metabolism and blood flow

and to be able to probe the spatial correlations between
different kinetic parameters, providing unique insights into
tumour structure, function and response to treatment.

Conclusions

To summarise, tumour hypoxia is common and its effects
represents a significant challenge to the curability of human
tumours, leading to treatment resistance and enhanced
tumour progression. Tumour hypoxia can be detected by
non-invasive and invasive techniques but the inter-relation-
ship between these techniques needs to be better defined;
human validation of the utility of hypoxia imaging is sparse
at best. Anti-hypoxia therapies exist in the clinic and more
are on their way. Either they don’t work very well or we
don’t know how to use them optimally. Hypoxia imaging
may allow better definition of a sub-population of cancer
patients that would benefit for novel anti-hypoxia directed
therapies.
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