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Purpose: The need for an accurate lesion segmentation tool in 18FDG PET is a prerequisite for the
estimation of lesion response to therapy, for radionuclide dosimetry, and for the application of
18FDG PET to radiotherapy planning. In this work, the authors have developed an iterative method
based on a mathematical fit deduced from Monte Carlo simulations to estimate tumor segmentation
thresholds.
Methods: The GATE software, a GEANT4 based Monte Carlo tool, was used to model the GE
Advance PET scanner geometry. Spheres ranging between 1 and 6 cm in diameters were simulated
in a 10 cm high and 11 cm in diameter cylinder. The spheres were filled with water-equivalent
density and simulated in both water and lung equivalent background. The simulations were per-
formed with an infinite, 8 /1, and 4 /1 target-to-background ratio �T/B�. A mathematical fit describ-
ing the correlation between the lesion volume and the corresponding optimum threshold value was
then deduced through analysis of the reconstructed images. An iterative method, based on this
mathematical fit, was developed to determine the optimum threshold value. The effects of the lesion
volume and T/B on the threshold value were investigated. This method was evaluated experimen-
tally using the NEMA NU2-2001 IEC phantom, the ACNP cardiac phantom, a randomly deformed
aluminum can, and a spheroidal shape phantom implemented artificially in the lung, liver, and brain
of patient PET images. Clinically, the algorithm was evaluated in six lesions from five patients.
Clinical results were compared to CT volumes.
Results: This mathematical fit predicts an existing relationship between the PET lesion size and the
percent of maximum activity concentration within the target volume �or threshold�. It also showed
a dependence of the threshold value on the T/B, which could be eliminated by background sub-
traction. In the phantom studies, the volumes of the segmented PET targets in the PET images were
within 10% of the nominal ones. Clinically, the PET target volumes were also within 10% of those
measured from CT images.
Conclusions: This iterative algorithm enabled accurately segment PET lesions, independently of
their contrast value. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3222732�

Key words: PET, lesion segmentation, threshold
I. INTRODUCTION

18FDG PET, a quantitative imaging modality, may now be
considered as one of the most accurate imaging techniques
for diagnosis, staging, and post-treatment restaging of vari-
ous cancers.1–6 The tumor detection is based on the increased
metabolism of glucose in viable malignant cells. A ra-

diotracer uptake of an SUV�2.5 �using filtered back projec-
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tion reconstruction� has been reported to be an indicator of
higher probability of malignancy.7 The final assessment of
the status of the disease is made by assessing this SUV value
in combination with, among other indicators, the lesion size.8

Therefore, having accurately determined lesion boundaries is
an important prerequisite for the effective use of PET, par-
ticularly in radiation therapy planning. Furthermore, precise

knowledge on lesion mass, thus volume, is necessary when
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performing dosimetry for tumor targeting agents such as 124I
for thyroid cancer9 or radiolabeled peptides and
antibodies.10–12 In many institutions, anatomic �CT� and
metabolic �PET� information is routinely combined to deter-
mine the planning target volume13–18 for radiotherapy. Fi-
nally, the use of PET is increasingly being explored as an
alternative to anatomical imaging modalities for the evalua-
tion of cancer treatment response. For example, Larson et al.
proposed a new parameter, total lesion glycolysis, as a quan-
titative measure of tumor response to treatment. This method
combines changes in lesion activity, i.e., FDG uptake, with
the tumor volume.19

Several techniques have been developed to estimate the
volume of a lesion from PET images. The method that is
being used the most is based on the visual interpretation of
the PET scan and the definition of contours as judged by the
experienced nuclear medicine physician.20 In a study, an
SUV of 2.5 was suggested to delineate the gross target vol-
ume �GTV� from the surrounding.21 On another hand, Erdi et
al. estimated lesion size by using a fixed intensity threshold
value which they determined from phantom measurements.22

They showed that the threshold value �defined as a percent-
age of the maximum lesion intensity� at which the real vol-
ume of the spheres was obtained is inversely correlated with
the lesion volume and to the target-to-background ratio �T/
B�. Moreover, by fitting the data to a mixed exponential
model, they determined the asymptotic relationship between
threshold and volume for a given T/B for lesion volumes
greater than 4 cc. This asymptotic, thus fixed threshold for a
given T/B, was then used to determine patient lesion vol-
umes and was in good agreement with CT measurements.22

For small lesions smaller than 4 cc, however, significant dis-
crepancies were observed, which may have been due to the
nonlinearity of the PET system �characterized by the partial
volume effect� for target sizes smaller than 2*FWHM of the
spatial resolution of the camera. Black et al. suggested that
the FDG PET lesion volume can be described using a thresh-
old SUV according to the regressive function �threshold
SUV=0.307�mean target SUV+0.588�.23 Unlike Erdi,
Black et al. showed that the threshold SUV is inversely pro-
portional to the target volume and background activity
concentration.23 In a more recent study, El-Bassiouni et al.
proposed that a patient specific threshold may be optimal.24

The authors used CT as a guideline for defining the PET
threshold value. They also identified that the fixed threshold
values appropriate for targets with maximum activity con-
centration �after background subtraction� greater that
30 kBq /ml was 20%, and for those smaller or equal to
30 kBq /ml it was 40%.

In the majority of the thresholding techniques that were
developed, investigators showed that the threshold value de-
pends on the T/B or contrast.22,23,25 Soma et al. showed that
a T/B based thresholding technique may be more accurate
than using a fixed threshold method,25 as it was suggested by
Erdi et al.22 The same group also suggested that the different
tracer uptake in the tumor surrounding tissues has to be

25
considered.
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In this study, we developed a mathematical tool using
results of Monte Carlo simulations from which we deter-
mined the dependence of the threshold value on the target
size, contrast, and maximum activity concentration of FDG-
PET target volumes in 3D PET acquisitions. The model was
evaluated with both experimental phantom and patient data.
Tumor volumes were then compared to CT volumes.

II. METHODS AND MATERIALS

II.A. Monte Carlo simulations

II.A.1. Monte Carlo tool

The GEANT4 Application for tomographic emission �GATE�
package26 was used to model the GE Advance PET scanner
geometry.27

GATE was developed by a multi-institutional con-
sortium that uses GEANT4 to model and simulate the physics
of medical nuclear imaging, in particular physics of PET and
SPECT. GEANT4 is a toolkit for simulating the transport of
particles through matter. This toolkit has a wide range func-
tionality, which includes particle tracking, geometry, physics
models, and particle hits. GEANT4 is used in applications en-
compassing particle physics, nuclear physics, particle-
accelerator physics, space engineering, and medical physics.

II.A.2. Monte Carlo simulated phantom studies

A cylindrical phantom 11 cm in diameter and 10 cm in
height was simulated using the Monte Carlo code described
in Sec. II A 1. The simulated phantom was filled with mate-
rial of either lung tissue or water �to simulate other normal
tissues�-equivalent density. In addition, spheres were simu-
lated at the center of this phantom, with their diameters rang-
ing from 1.0 cm ��2*FWHM for the GE Advance� to
6.0 cm in increment of 0.5 cm. All spheres had a 1 mm thick
plastic-equivalent density wall. The spheres were simulated
as being filled with water-equivalent density.

To be able to determine the SUV threshold values that
would lead to a correct determination of accurate lesion vol-
umes, it is first necessary to investigate the relationship and
correlation between volume and threshold. In what follows,
we always define threshold as a given percentage of the
maximum activity concentration within the volume of inter-
est. This same approach was taken to investigate the effect of
the lesion contrast and maximum activity concentration on
the determination of an appropriate threshold. Three types of
simulations were performed in order to answer these ques-
tions. For these simulations, lesions were placed within tis-
sues with a variety of lesion contrasts as observed clinically.

II.A.2.a. Lung lesions. Lung tissue has a lower density
than any other tissues in the body. In addition, lesions in the
lung have an average T/B of 8:1 and activity concentration of
1 �Ci /cc. Thus, the simulated lesions �represented as
spheres with radii as described above� were filled with
1 �Ci /cc of 18F and placed within a lung-equivalent density
background with T/B:8/1. This setup was also simulated with
no background activity for comparison.

II.A.2.b. Liver lesions. Liver tissue has a density approxi-

mately equal to that of water and other soft tissues except



4805 Nehmeh et al.: PET lesion segmentation 4805
lung. Generally, liver lesions are observed with T/B:4/1. We
chose to simulate the liver for these reasons and used, once
more, the Monte Carlo geometry described above, simulating
the spheres with 1 �Ci /cc of 18F and with T/B:4/1. The
background was simulated with water-equivalent density.

II.A.2.c. Effect of target activity concentration. The goal
of this simulation was to investigate the effect of the target
activity concentration on its corresponding threshold value.
For this purpose, MC simulation for a 3 cm diameter sphere
simulated in water-equivalent background and with infinite
T/B was performed. The simulation was repeated for four
activity concentrations in the sphere: 0.5, 1.0, 1.5, and
2.0 �Ci /cc.

II.B. Experimental data

II.B.1. Phantom I

The National Electrical Manufacturers Association
�NEMA� 2001 IEC phantom �Fig. 1�a��, with six spheres
ranging between 10 and 37 mm ��1 mm� in diameters, was
used to evaluate the lesion segmentation technique described
in this manuscript. The spheres were filled with 1.0 �Ci /cc
18FDG, with a �T /B:10 /1. The phantom was scanned for
15 min �in single field of view �FOV�� in 3D mode to reduce
the effect of statistical fluctuation. Data were acquired on the
GE Discovery LS PET/CT �GE Healthcare Technologies,
Waukesha, WI� scanner. The PET images were reconstructed
using the 3D FBP algorithm provided by the manufacturer.

ROI

FIG. 2. Example of how the ROI would be drawn around the target. The
pixel values included inside the ROI are exported to an output file, which
will be the input to the segmentation algorithm. The background included in

(a) (b) (c)

FIG. 1. The three phantoms: �a� NEMA2001 IEC, �b� deformed aluminum
can, and coronal view of a patient showing the implemented spheroid in the
brain, lung, and liver are shown.
the ROI is used to estimate the background level in the corresponding slice.
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II.B.2. Phantom II

The shape of the lesion may have an effect on the accu-
racy of our segmentation tool in correctly estimating the le-
sion volume. In order to address this question, we did two
separate phantom scans. First, the ACNP cardiac phantom
was filled with �195.1 cc of 1 �Ci /cc 18FDG and scanned
for 15 min. For the second scan, we used an aluminum can
which we deformed �Fig. 1�b�� and filled with 115 cc of
1 �Ci /cc 18FDG. This was also scanned for 15 min.

II.B.3. Phantom III

A 10.5 cc capsule, filled with 1 �Ci /cc of 18FDG, was
scanned in air for 15 min. The capsule image was then digi-
tally merged over the lung, liver, and brain PET images of a
patient �Fig. 1�c��.

II.B.4. Patient data

Six lesions from five patients were included in this study
and used to evaluate the segmentation algorithm. All data
were acquired in 3D mode on the GE Discovery LS PET/CT
scanner and then reconstructed using the FBP reconstruction

FIG. 3. The threshold values versus spheres volumes for infinite, 8 /1, and
4 /1 T/Bs are shown. This figure also shows the data from T/Bs of 8 /1 and
4 /1 after background subtraction. After background subtraction, those data
sets �T /B� infinity� were in good agreement with the cold background
distribution. This enabled eliminate the dependence of the threshold values
on the T/B when subtracting the background.

FIG. 4. Behavior of the Thrmin versus Vnominal for the six spheres of the IEC
phantom, as the algorithm iterates over both the threshold and volume. Each
of the distributions is labeled with the corresponding sphere diameter. As an
example, the arrow points to the point of intersection with the MC model for
the 37 mm diameter sphere, which corresponds to the optimum threshold

and volume for the target in question.
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algorithm provided by the manufacturer. Lesion volumes
were contoured on CT images by a radiologist and consid-
ered as the gold standard.

II.C. Sinogram binning and image reconstruction

The sinograms generated by the Monte Carlo simulations
were binned according to the GE Advance 3D acquisition
format. The sinograms were corrected for attenuation and
then reconstructed with 3D filtered backprojection algorithm
using the software for tomographic image reconstruction
�STIR�.28,29

All PET images, whether resulting from experimental or
simulated scans, or from patient studies, were reconstructed
in a 128�128 matrix and a 50 cm FOV �i.e., voxel dimen-
sions of 3.9�3.9�4.25 mm3�.

III. ANALYSIS

The development of a tool that can be applied to provide
the optimal threshold for patient lesions requires the use of
MC simulations in order to first determine an empirical
mathematical model capable of predicting the appropriate
threshold as a function of the lesion volume.

Once MC data are obtained, finding suitable thresholds
for the MC data is the necessary next step. This must be done
“by hand” with the a priori knowledge on the relevant vol-
umes, which are known exactly since they were required
inputs for the simulation. Once this task was completed, the
empirical model was determined by least-squares fitting
techniques and tested with phantom and clinical data. The
analysis below describes the threshold and background sub-
traction steps, which result in the data, threshold as a func-
tion of volume. The procedure for fitting these data and de-
termine the appropriate equation is then described.

III.A. Threshold estimation

The lesion contours were drawn using the IMAGEJ

software30 on a slice-by-slice basis. In each slice, the region
of interest �ROI� was drawn so as to include some of the
background, while excluding any neighboring regions of
high uptake �Fig. 2�. The voxel coordinates and intensities of
the pixels in each of these ROIs were then written to output
files. The background was estimated individually for each
transaxial slice as described below and then subtracted from
each voxel on a slice-by-slice basis.

The target volume was defined as the volume occupied by
those voxels whose intensities were greater than a predefined
threshold. A threshold is defined as a given percent of the
maximum activity concentration value within the target vol-
ume. The threshold values �resulting in the correct lesions
volumes� determined for the images obtained from the
Monte Carlo simulations were plotted versus the lesions vol-
umes, and model fitting the data was found �Fig. 3�. The
value of the threshold that would result in the correct target
volume was determined using the following steps:

�a� A threshold value was chosen from 0% to 100% of the

maximum activity concentration in increments of 1%.
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�b� For each value of the threshold, the target volume was
calculated by counting the total number of voxels with
intensity satisfying the threshold criterion multiplied by
the voxel volume. The target volume was then com-
pared to the theoretical target volume which was deter-
mined by evaluating the best-fit MC function at this
threshold level. The percent difference between target
and theoretical volumes �%diff�V�� was calculated for
each threshold value.

�c� The threshold �Thrmin� corresponding to the target vol-
ume which had the smallest percent difference
�%diff�V�� was taken as the real lesion volume. The
results from the six spheres of the IEC phantom are
shown in Fig. 4. As an example, the arrow points to the
�Voptimum, Throptimum� point for the 37 m diameter
sphere.

III.B. Background subtraction

It is important to exclude the target volume from the vol-
ume of interest used to estimate the background. On the
other hand, if the above segmentation technique was per-
formed with the assumption of a cold background, the target
volume would then be overestimated �compared to the cor-
rect volume�. Thus, to estimate the background, the above
segmentation procedure was run twice. First, a cold back-
ground was assumed. This results in overestimating the ac-
tual target size. All the voxels lying outside this estimated
target volume which are also still within the ROI are then
used to estimate the background. The average intensity of
these background voxels is then calculated and subtracted.
This procedure was performed on a slice-by-slice basis.
Then, a second run of the segmentation procedure is done on
the background-subtracted ROI to accurately determine the
lesion volume.

III.C. Empirical model

Figure 3 shows a plot of the threshold as a function of the
MC simulated lesion volume for the cases of both lung �T/B:
8/1� and liver �T/B: 4/1�, as well as for the case of a cold
background. A mathematical model was determined using
the CURVEEXPERT �Ref. 31� software, which provides the op-
tion to automate the search for an optimal fitting function for
the available data. This is especially useful when searching
for a mathematical model empirically because it is not pos-
sible to derive one from first principles. The CURVEEXPERT

program compares the data to each model in its database and
chooses the best curve among the fits. This automated pro-
cedure was used to perform least-squares fit on the data set
corresponding to the MC lung data with no background, de-
scribed in Sec. II B 1. The resulting best-fit model was of the
form presented in Eq. �1�, where a0, a, and b are the param-
eters to be determined by the regression,

Threshold � % � = a0 + exp�a+�b/V�+c log V�. �1�
The parameters resulting from the fit are



4807 Nehmeh et al.: PET lesion segmentation 4807
a0 = 5, a = 3.568, b = 0.197, c = − 0.1069.

The fit correlation r was 0.98. These results revealed a de-
pendence of the threshold on T/B. The threshold appears to
increase as the lesion contrast decreases. However, when
background subtraction is performed for both the T /B=8 /1
and T /B=4 /1 cases, the optimum threshold values over-
lapped with the infinite contrast �cold background� curve.

IV. RESULTS

Figure 3 shows the result of �1� the empirical fit and �2�
the effectiveness of this model for all MC data sets regard-
less of T/B once background is subtracted. The MC simula-
tions showed a fluctuation of about 4% in the threshold as a
result of different target activity concentrations �Table I�,
which may be a consequence of statistical noise.

Figure 4 shows the �threshold, volume� point behavior, for
each of the six spheres, as a result of the Vtarget-threshold
iterations. The six curves, from right to left, correspond to
the six spheres, respectively, from the largest to the smallest.
The arrow points to the optimum threshold-volume point for
the 37 mm sphere. In Fig. 5, the CT contour, which was
drawn by the radiologist without looking at PET images, was
copied to the fused PET/CT images. Figures 5�a� and 5�b�
show the PET FDG distribution before and after applying the
segmentation threshold for the slice of the largest lesion
cross section. The PET lesion, defined by the thresholding

TABLE II. The nominal volumes for the six spheres of the NEMA 2001 IEC
phantom, together with the measured volumes and the corresponding ESDs
from the 3D PET images using the iterative method described in the manu-
script are represented. The percent differences between the nominal and
measured ESDs are also summarized.

Phantom Vnominal Vmeas %error

Sphere 26.51 25.91 −2.26
Sphere 11.49 11.25 −2.07
Sphere 5.57 5.253 −5.73
Sphere 2.57 2.53 −1.6
Sphere 1.15 1.07 −3.93
Sphere 0.52 0.55 5.09
Cardiac 195.1 195.9 −0.41
Pepsi can 115 109.23 5.02
Capsule/air 10.5 10.15 −3.33
capsule/lung 10.5 9.61 −8.57
Capsule/liver 10.5 9.825 −6.43
Capsule/brain 10.5 9.91 −5.61

TABLE I. Threshold values for the 37 mm diameter sphere simulated with
different activity concentrations.

Act. Conc.
��Ci /cc�

Threshold
�%�

0.5 38
1 40
1.5 41.5
2 39.5
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algorithm described in this study, appears to perfectly fit
within the CT contour �Fig. 5�b��. However, a discrepancy in
the contoured areas in PET and CT appears in the left pos-
terior area of the lesion, which contributed to the high per-
cent difference between the PET and CT volumes. Figure
5�c� shows another example of discrepancies between PET
and CT volumes. While no FDG uptake appeared in the iliac
bone, CT contour incorporated those volumes. Table II lists
the nominal phantom volumes, together with those measured
in the PET images. In Table III, the volumes of six lesions
measured in both PET and CT are summarized. The percent
errors between the PET and CT volumes are also reported.

V. DISCUSSION

An accurate, robust, and easily implemented lesion seg-

(a)

(b)

(c)

CT

CT

CT

PET

PET

PET

FIG. 5. �a� PET-CT fused image for the slice of the largest cross section of
lesion 6. The CT contour, as it was drawn by the radiologist, without looking
at PET images, is shown. The PET FDG distributions before �a� and after �b�
applying the segmentation threshold are shown. The PET lesion, defined by
the thresholding algorithm described in this study, appears to perfectly fit
within the CT contour �b�. �c� shows an example of discrepancies in the
contoured areas in PET and CT, which contributed to the high percent dif-
ference between the PET and CT volumes. While no FDG uptake appeared
in the iliac bone, CT contour incorporated those volumes.
mentation tool in PET has become a necessity for the con-
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sistent classification of lesion volumes from FDG scans. This
is especially important with the growing emphasis on PET
for the estimation of lesion response to therapy, for radionu-
clide dosimetry, and for the incorporation of FDG-PET in-
formation for in the delineation of target volume in radio-
therapy planning. In this work, we have developed a simple
analytical method to estimate tumor segmentation thresholds,
determined from Monte Carlo simulations of different FDG
configurations with lesions of different shapes and sizes. Our
Monte Carlo based mathematical fit predicts an existing re-
lationship between the PET target volume and the percent of
maximum activity concentration within the target volume
�i.e., threshold�. Based on Monte Carlo simulations, we
showed a dependence of the model on the lesion contrast,
which can be effectively resolved by performing a back-
ground subtraction. We also observed that there was no sig-
nificant dependence between the threshold value and the ac-
tivity concentration within the target volume on the
estimated optimum threshold values.

Our results were within 10% agreement with the nominal
volumes, for both phantom and patients studies �but for pa-
tient 5�, for which CT volumes were assumed the gold stan-
dard. For patient 5, visual inspection of CT contours and
PET FDG distribution confirmed that the high percent differ-
ence between PET and CT segmented volumes was due to
differences between the anatomical and metabolic lesion ge-
ometry. Uncertainties in the CT lesion contours may contrib-
ute to an increased uncertainty between the PET and the CT
measured volumes in the clinical data sets. In a study that
included eight patients, Steen et al. reported a CT-GTV
change up to seven times due to intraobserver variability.32

Another major effect is the difference in the spatial reso-
lution between CT and PET images. PET pixels are 16 times
larger than CT ones, which may jeopardize the accuracy
when determining the PET target boundaries. Our phantom
results showed an increase in percent deviation from the
nominal values for the spheroidal lesion that were artificially
incorporated into the patient’s PET images. Visual inspection
of the registered lesion showed some distortion in the lesion
shape, and thus its volume, possibly due to the interpolation
between pixels during the registration process. This lesion
segmentation method was not limited to regular lesion

TABLE III. Summary of six lesion volumes measured
using the algorithm described in this work. CT volu
ences between the two measurements are also report

Patient Lesion Lesion site

1 1 Lung
2 2 Axilla
3 3 Lung

4 Lung
4 5 Lung
5 6 Iliac bone
shapes �based on which the mathematical fit was derived�. In
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both the ACNP cardiac phantom and the deformed aluminum
can experiments, the targets were accurately segmented to
within 10%.

Extrapolation of the Erdi et al. mathematical fit to large
lesion volumes resulted in increased errors as was discussed
in their manuscript.22 This may be due to the limitation in the
range of spherical volumes they included in their study. Con-
sequently, it was necessary for them to terminate the regres-
sion at a threshold of 29% in the case of large lesions. Erdi et
al. also mentioned that a 30% versus a 42% threshold did not
show any major impact on their results22 for large lesion
volumes. In this study, the mathematical fit yielded a more
accurate description of the �threshold, lesion-volume� rela-
tionship at large lesion volumes. The threshold value de-
creases slowly for lesion volumes greater than 10 cc, which
may suggest an acceptable approximation of the lesion vol-
umes with a fixed threshold of �31%, which corresponds to
a volume of greater than 10 cc.

This algorithm was optimized for the GE Advance PET
scanner. The model fit deduced from MC simulation depends
on the scanner characteristics like resolution, pixel size, and
recovery coefficients. Whether the same model can be used
to segment lesions imaged on different PET scanners needs
to be validated before it can be implemented. This would be
the task for future work.

VI. CONCLUSIONS

In this study, we have developed a novel technique to
estimate the PET target volumes, based on MC simulations,
and an iterative method. The mathematical fit showed a
strong correlation �r=0.98� between the lesion volume and
the corresponding threshold value. Most importantly, this
work also demonstrated that, after background subtraction,
this correlation can be described by one set of fit parameters
which incorporates lesion volumes, thus removing the influ-
ence of lesion contrast on the threshold parameters.
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