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Abstract
Correcting positron emission tomography (PET) images for the partial volume
effect (PVE) due to the limited resolution of PET has been a long-standing
challenge. Various approaches including incorporation of the system response
function in the reconstruction have been previously tested. We present a
post-reconstruction PVE correction based on iterative deconvolution using a
3D maximum likelihood expectation-maximization (MLEM) algorithm. To
achieve convergence we used a one step late (OSL) regularization procedure
based on the assumption of local monotonic behavior of the PET signal
following Alenius et al. This technique was further modified to selectively
control variance depending on the local topology of the PET image. No prior
‘anatomic’ information is needed in this approach. An estimate of the noise
properties of the image is used instead. The procedure was tested for symmetric
and isotropic deconvolution functions with Gaussian shape and full width at
half-maximum (FWHM) ranging from 6.31 mm to infinity. The method was
applied to simulated and experimental scans of the NEMA NU 2 image quality
phantom with the GE Discovery LS PET/CT scanner. The phantom contained
uniform activity spheres with diameters ranging from 1 cm to 3.7 cm within
uniform background. The optimal sphere activity to variance ratio was obtained
when the deconvolution function was replaced by a step function few voxels
wide. In this case, the deconvolution method converged in ∼3–5 iterations
for most points on both the simulated and experimental images. For the 1 cm
diameter sphere, the contrast recovery improved from 12% to 36% in the
simulated and from 21% to 55% in the experimental data. Recovery coefficients
between 80% and 120% were obtained for all larger spheres, except for the
13 mm diameter sphere in the simulated scan (68%). No increase in variance
was observed except for a few voxels neighboring strong activity gradients and
inside the largest spheres. Testing the method for patient images increased the
visibility of small lesions in non-uniform background and preserved the overall
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image quality. Regularized iterative deconvolution with variance control based
on the local properties of the PET image and on estimated image noise is a
promising approach for partial volume effect corrections in PET.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Finite scanner resolution prevents quantification for objects with size comparable and smaller
than about two to three times the full width at half-maximum (FWHM) of the scanner’s
point spread function (PSF). This loss of quantitative accuracy for hot and cold spot contrast
recovery is an effect known as the partial volume effect (PVE) (Hoffman et al 1979, 1982,
Kessler et al 1984). The finite PET scanner resolution is due to the positron range prior
to annihilation, positronium residual momentum at annihilation, which causes annihilation
photon non-colinearity, finite crystal size, inter-crystal scatter, depth of penetration uncertainty
and artifacts introduced by the re-binning and reconstruction algorithms (Phelps et al 1975,
Levin and Hoffman 1999, Sanchez-Crespo et al 2004, Tomic et al 2005, Alessio et al 2006).

Various approaches for correcting the PVE have been previously tested. One possible
classification of these methods was recently published (Soret et al 2007). It divides them
into two large groups depending on whether the correction was applied at regional level
targeting improved quantification for a selected region or on a voxel level, targeting resolution
correction of entire images. On the other hand the methods, which specifically use the PET
system response, can also be divided into two broad categories.

The first category includes methods, which account, and thereby correct, for the point
spread function during the reconstruction. Earlier works in this direction include combining
a Fourier transform of the positron range distribution function with the Fourier transform of
the reconstruction filter in filtered back-projection (FBP) reconstruction (Haber et al 1990).
The penalized maximum likelihood algorithm has been used to correct the projections from
the sinogram for a modeled detector response before filtering in the filtered back-projection
algorithm (Liang 1994). PSF deconvolution of re-binned 3D data prior to 2D reconstructions
has also been performed (Alessio et al 2006). One of the recent and most comprehensive
methods incorporates an accurate model of the overall spatially variant PET system response
in the projection matrix of a statistical reconstruction algorithm (Alessio and Kinahan 2006).
In an even more recent paper, deconvolution was performed prior to each subsequent
iteration during ordered sub-sets expectation maximization (OSEM) reconstruction (Rizzo et al
2007).

The second category includes methods, which apply a resolution correction to the PET
images post-reconstruction. Most of these methods calculate in one way or another the PET
signal spill-over from one structure to another and then attempt to correct for it (Rousset et al
1998). Such methods either use prior anatomic information to define the volumes of elevated
activity and to control variance within the rest of the image (Boussion et al 2006, Turkheimer
et al 2008) or do not address the increase in variance (Teo et al 2007). However, the
assumption that the regions with elevated PET tracer concentration (TC) conform to the
anatomical structures is not correct for oncologic studies, where the metabolically active
tumor often may not fill an entire organ as defined by computer tomography (CT) or magnetic
resonance imaging (MRI) or may protrude in the neighboring tissues.
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Therefore, such methods are vulnerable to some degree to one of the following
disadvantages, which decrease their potential for clinical use: (i) unacceptable increase
of variance in the image; (ii) bias due to image registration or biology/metabolism-based
mismatch between TC and the anatomical information from CT or MRI.

In this paper, we present a PVE correction method that is based upon post-reconstruction
iterative deconvolution. We tested deconvolution functions with shapes different from the
scanner’s point spread function. In order to avoid an increase in variance, we applied and
modified the one step late (OSL) regularization procedure (Alenius and Ruotsalainen 1997). It
was modified to impose variable penalty based on the local topology of the PET signal, avoiding
in this way any dependence upon tracer uptake conformity with anatomical information. The
method was tested on simulated and real PET phantom scans.

While this paper was in review, a conference report (Boussion et al 2007), describing a
PVE correction method operating at the voxel level, which also does not depend on anatomical
information and is based on a different, fully automatic, wavelet-based de-noising approach,
appeared.

2. Methods and materials

2.1. Deconvolution algorithm

The iterative three-dimensional deconvolution program is obtained by replacing the projection
kernel in a MLEM algorithm for SPECT (Wallis and Miller 1993) by a user-defined point
spread function (Kirov et al 2005). The tracer concentration (TC) estimated from the PET
scan, Ca , is a result of a 3D convolution:

Ca(�u) = P(�u|�r) ⊗ Cb(�r), (1)

where �r and �u are the three-dimensional coordinates in the measurement space, P(�u|�r) is the
point spread function (PSF) value for the displacement vector, �r − �u, and Cb(�r) is the true
TC distribution to be retrieved. The non-negativity of the TC and the point spread function
allows us to use Csiszar’s I-divergence (Csiszar 1991) as a discrepancy measure within MLEM
(Snyder et al 1992). The estimate of the true TC, Ĉb(�r), after k+1 iterations is then given by

Ĉk+1
b (�r) = Ĉk

b (�r)
1∑

�u∈A(�r,RPSF) P (�u|�r)
∑

�u∈A(�r,RPSF)

[
Ca (�u)∑

�r ′∈B(�u,RPSF) P (�u|�r ′)Ĉk
b (�r ′)

]
P(�u|�r), (2)

where Ĉk
b (�r ′) is the TC distribution estimate after k iterations. By comparing the terms in (2) to

those in (1), one can see that the next estimate of the TC in each voxel is obtained by multiplying
the current estimate by the sum of the inaccuracy ratios for each of the neighboring voxels
from the current estimate weighted by the corresponding PSF values P(�u|�r). A measure,
ε (�u), of the inaccuracy of the kth estimate at voxel �u can be expressed using the term in (2)
representing this ratio:

ε (�u) =
[

Ca (�u)∑
�r ′∈B(�u,RPSF) P (�u|�r ′)Ĉk

b (�r ′)

]
− 1. (2a)

The effect of the PSF to each voxel �u is limited to a cubic region with side 2Rpsf + 1 voxels
centered at �u, where Rpsf is a user-defined parameter.

Since the direct implementation of (2) results in a limited contrast recovery accompanied
with a strong variance increase (Snyder et al 1987), in this paper we depart from the common
assumption that the PSF, P(�u|�r), needs to match the scanner point spread function, which is
often approximated by a Gaussian-type function. In fact, we suggest using a function that is
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more slowly varying than the scanner PSF. From now on we will refer to it as the deconvolution
function (DF). We expect that using such a slowly varying DF will

(1) limit the variance increase throughout the image by calculating the inaccuracy ratios
1 + ε(�u) in (2) with respect to the activity closer to the mean activity of the region
B(�u,RPSF) around the voxel, rather than with respect to the activity estimate for voxel �u,
which it represents when the scanner PSF is used,

(2) reduce variance in the uniform activity regions by more equally weighted averaging of the
inaccuracy ratios 1 + ε(�u) of the previous (kth) activity estimate within the region around
each voxel (a Gaussian-shaped PSF will give larger weight to the inaccuracies closer to
the center of the Gaussian, which may be noisier) and

(3) enhance the deconvolution for the regions that have stronger activity variation (i.e. tumor
edges), where the inaccuracy measure 1 + ε(�u) is expected to have both larger values and
variation.

This modification of the deconvolution procedure has a strong theoretical background.
In general any deconvolution of noisy data is an attempt to solve an ill-posed mathematical
problem if the solution is being searched among all possible functions. In the case of PET that
would be all mathematically possible activity distributions (Fedorenko 1994). Real activity
distributions are expected to be smoother than PET images with limited statistics, which are
noisy. Therefore, the correctness can be improved if the solution is limited to a narrower
space of smoother functions. This is what, we expect, the substitution of the scanner PSF
with a more slowly varying function will accomplish: using a more uniform, i.e. broader
width, PSF will effectively impose stronger smoothness on the solution and thereby improve
the correctness of the problem. In this way, it is introducing additional regularization to the
one step late regularization described in section 2.2.

To show this, we varied the point spread function’s FWHM. We tested the Gaussian shape
DFs with FWHM of 6.31 mm, 18.93 mm (= 6.31 × 3), 31.55 mm (= 6.31 × 5) and an infinite
value (i.e. a step function).

To enhance convergence, a median root prior (MRP) filter (Alenius and Ruotsalainen
1997) is implemented (Piao and Kirov 2001, Kirov et al 2005) using a one step late (OSL)
MRP algorithm:

Ĉk+1
b (�r) = Ĉ

k+1,dec
b (�r)

1 + β
Ĉk

b (�r)−MR

MR

. (3)

Here, Ĉ
(k+1),dec
b (�r) is the (k + 1)th estimate of the emission density in voxel at position �r after

the PSF deconvolution (1) but before MRP regularization, Ĉ(k)
b (�r) and Ĉ

(k+1)
b (�r), respectively,

are the kth and (k + 1)th estimates of the emission density at position �r after the MRP
regularization, MR = Med

(
Ĉk

b , �r, R)
is the median voxel value in a small neighborhood with

radius R, around the voxel at �r , and β is the weight of the prior.

2.2. Topology adaptive regularization

The regularization parameters in (3) are the weight β and the radius of the neighborhood R for
calculating MR. In order to restrict the variance increase in the images we varied the weight β,
so that stronger regularization is applied to background parts of the image. Regions close to
the image edges were also assigned stronger regularization (β1) to suppress the known edge
artifacts of the ML algorithm. Regions with activity variations larger than the background
noise, which could reveal potential lesions, were assigned weaker regularization (β2).
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To do this we select two more neighborhoods around each point in which to check the
minimum activity and the variation of activity against fractions (k1 and k2) of the background
value. These two neighborhoods would generally have different radii (R1 and R2), smaller
than R, in order to preserve the gradients in these regions of the image.

For a neighborhood with radius R1 around each voxel, we find the minimum activity
voxel, Pmin,R1 , and for a neighborhood with radius R2 we find the minimum, Pmin,R2 , and
the maximum, Pmax,R2 , voxel values. Let Mbkg be a rough estimate of the entire image’s
background level (note that Mbkg is not the same as MR used above and can be visually
determined by observing activity profiles through the images). Then the PET image data set
can be effectively divided into three parts: regions of interest in which the activity undergoes a
change above a certain threshold (regularized with weight β2), background regions (regularized
with β0) and regions around the image edges (regularized with β1) following these conditions:

β =

⎧⎪⎨
⎪⎩

β0 elsewhere

β1 for Pmin,R1 < k1 · Mbkg

β2 |Pmax,R2 − Pmin,R2 | > k2 · Mbkg

⎫⎪⎬
⎪⎭ , (4)

where R1, R2, k1, k2 and Mbkg as well as β0, β1 and β2 are parameters set by the user.
While these parameters seem many, they do represent a clear example of how one can

intuitively adapt the strength of the regularization to the image topology. In fact these
parameters represent an efficient approach to assign an appropriate value for the regularization
weight, β, in different parts of the image. As shown in section 3.1.2 they turned to have stable
values for the tested images.

The algorithm proceeds as follows. A weight value β = β0 is initially assigned for the
entire data set for each PET scan. This value is relatively high (∼0.9) and is set to control
variance in the background portions of the images, where the increase of variance due to the
deconvolution needs to be suppressed most.

Next, a check corresponding to the second line of (4) may change β if it is close to the
regions with PET signal significantly lower than the average image background (k1 ∼ 0.3), i.e.
around air cavities or outside the patient. This check imposes an even higher regularization
weight (β ∼ 1), which is necessary to penalize the so-called ‘edge artifacts’ (Snyder et al 1987)
of the MLEM algorithm. This artifact usually manifests as elevated activity at the surface of
the patient’s skin.

Finally, a check corresponding to the third line of (4) may reduce β to a lower value, β2,
for regions in which the PET signal fluctuations exceed an empirically determined fraction of
the background signal, Mbkg. These regions would correspond to noticeable activity changes
for which the weaker penalty allows stronger deconvolution.

The user selects what fraction, k2, of the background activity level would be considered
noise. For activity changes larger than k2 · Mbkg, the regularization is relaxed since they
would be considered significant. For both the simulated and experimental phantom scans,
the magnitude of these ‘noticeable’ activity variations was determined to be close to the
magnitude of the background signal (k2 ∼ 0.9). In the clinic, this threshold value will be
probably determined by a radiologist.

2.3. Scanner and phantoms

The deconvolution program was applied to the simulated and real images of the NEMA NU 2
image quality phantom obtained using the GE Discovery LS PET/CT (DLS) scanner.

The simulated data were obtained with the GATE (Geant4 Application for Tomographic
Emission) Monte Carlo (MC) code for the case of higher (14.98 kBq mL−1) activity
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concentration in the 10, 13, 17 and 22 mm diameter spheres, no activity in the 28 and 37 mm
diameter spheres and lower (3.98 kBq mL−1) activity concentration in the rest of the phantom.
We used a previously validated GATE MC model of this scanner in 3D mode (Schmidtlein
et al 2005, 2006). The data were reconstructed with MLEM using the software for tomographic
image reconstruction (STIR). The images contained 256 × 256 voxels with 2.148 44 mm size
in the x and y directions and 4.25 mm in the z direction.

The experimental data were obtained using 2D high-resolution mode using our clinical
settings on a GE Discovery LS PET/CT scanner. In the experiment, all six spheres were
filled with an activity concentration of 21.98 kBq mL−1 and the background activity was
5.5 kBq mL−1. The data were collected using a 15 min acquisition and reconstructed with the
MLEM algorithm of the scanner. The images contained 128 × 128 voxels with 4.6875 mm
size in the x and y directions and 3.27 mm in the z direction.

The mean contrast recovery coefficients (RC) were calculated as outlined in the NEMA
NU 2 protocol (NEMA 2001) using circular regions inside the spheres in the central slice and
60 circular regions for the background around them.

The method was also tested for a patient PET scan obtained in our clinic on the Discovery
LS PET/CT scanner using 18F-fluoro-deoxyglucose (FDG) in 2D mode. The images contained
128 × 128 voxels with 3.906 25 mm size in the x and y directions and 4.25 mm in the z direction.

2.4. Deconvolution and regularization parameters

For the deconvolution weighting function we tested a symmetric 3D Gaussian with full width
at half-maximum (FWHM) varying from 6.31 mm (the approximate mean PSF of the scanner)
to infinity. The radius of this function was varied from 2 to 3 voxels for the experimental scans
and from 3 to 6 voxels for the simulated data to reflect the difference in voxel size between
the two images.

Alenius (1999) suggested that the radius R of the monotonicity neighborhoods should be
selected to approximate the width of the smallest detail to be preserved. We selected R1 and
R2 to approximate the width of the high gradient regions at the edges of the image and spheres.

The regularization weights, β0, β1 and β2, were optimized to satisfy the following criteria:
(i) to reach convergence; (ii) to obtain recovery coefficients closest to unity for all spheres;
(iii) to control the increase of variance in the background regions and the phantom edges
and thereby to obtain smoother images with better visible lesions and less artifacts. For
monotonicity neighborhoods 3 voxels wide, β ∼ 0.3 was previously suggested (Alenius 1999)
and we tested similar values for the areas of interest in the image containing elevated activity.
Values for β0 and β1 closer to 1.0 (Alenius and Ruotsalainen 1997) were experimented for
the background and edge regions to suppress variance. Alenius and Ruotsalainen (1997) have
shown convergence for this range of values.

The background activity parameter Mbkg was obtained by a visual estimate of an activity
profile observation (figure 2) to approximate the average PET image background level. It
is specific for each image and was selected to be 3800 and 5000, which approximate
the background activity levels in Bq mL−1 for the simulated and experimental images,
respectively.

The fractions k1 and k2 of the background TC, Mbkg, were selected by observing the image
to give TC threshold values of less than a fraction (∼1/3) of Mbkg, for k1, and exceeding the
maximum TC variance (∼35%) in the background part of the image, for k2. The optimal
parameters found are given in table 1.

The PVE correction (we did not need to test more than 14 iterations) takes about 15–
20 min for the simulated 256 × 256 pixel images and less than 5 min for the experimental
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Table 1. Selected deconvolution and regularization parameters used for the simulated (top row)
and experimental scans (bottom row).

Regularization parameters
Deconvolution

function Image Edges Peaks

FWHM RDF R β k1 R1 β1 k2 R2 β2

Infinite 4 4 0.9 0.3 3 1.1 0.9 2 0.35
Infinite 3 4 0.9 0.3 3 1.1 0.9 2 0.35

128 × 128 mm images on a 3.2 GHz CPU. The computation time depends upon the
deconvolution and regularization parameters used.

3. Results

PET images and activity profiles before and after applying the PVE correction are presented in
figures 1, 2, 4 and 6. The effects of the FWHM of the deconvolution function on the recovery
of peak activity and on the signal to background fluctuations are presented in figure 3. The
effect of the PVE correction on the recovery coefficients calculated following the NEMA NU
2 protocol is presented in figure 5.

3.1. Parametric study

3.1.1. Deconvolution function. Without regularization (equation (3)) no convergence of
the iterative procedure (equation (2)) is observed for any of the different deconvolution
functions (DF) used. With regularization and using a Gaussian-shaped DF approximating,
the experimental PSF of the scanner (FWHM = 6.31 mm) resulted in insufficient recovery of
the activity of the two smallest spheres accompanied by a strong increase of variance, which
reached the intensity of the smallest sphere at ∼15 iterations. Increasing the width of the DF
enhanced the contrast recovery (figures 2(b) and 3). To investigate this we calculated the (peak
activity in sphere)/(peak activity in background fluctuations) ratios along the profile shown in
figure 2(b). In figure 3 is plotted this ratio divided by the true signal over background ratio of
3.57 (=14.2 kBq mL−1/3.98 kBq mL−1).

The cut-off radius of the DF was also found to affect the strength of the deconvolution—
larger radius leads to stronger deconvolution for both sets of data. Using radii of 4, 5 and
6 voxels for the simulated scan and radii of 2 and 3 voxels for the experimental scan (i.e.
cubes with sides 5 and 7 voxels) resulted in similar quality images. Images with optimal
contrast recovery and minimum image distortions with identical regularization parameters
were observed when radii of 4 and 3 voxels were used for the two data sets, respectively.

3.1.2. Regularization parameters. Imposing regularization on the deconvolution process
enforced convergence within 3–5 iterations for both the simulated and experimental data and
brought the maximum activity in the spheres and the peak sphere to background ratios closer
to those of the true values (figure 3). Additional iterations (up to 14) were found to have
negligible effect on the result as shown in figure 4. A set of regularization parameters found
to work optimally for both data sets is shown in table 1.

Applying an MRP penalty of β = 0.9 to the entire image limits the variance increase
caused by deconvolution in the parts of the images with small activity changes. Such a
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(a) (d)

(b) (e)

(c) (f)

Figure 1. PET images (in pixels and in Bq/pixel) of the NEMA NU 2 image quality phantom
before (a), (d) and after PSF deconvolution for the simulated (left) and experimental scans (right)
with 5 (b), (e) and 15 iterations (c), (f). The arrow in (a) indicates the approximate position of the
profiles drawn through the images and presented in figure 2.

strong regularization was imposed on all voxels, which do not exceed Mbkg by more than 90%
(k2 = 0.9). The 90% value was chosen to include all background regions with noise-related
fluctuations up to that threshold. Above that, a much weaker MRP regularization penalty of β2

= 0.35 allows a stronger, but yet controlled, deconvolution in the peak activity regions close
to the spheres. Selecting a layer of 3 voxels around the edges (R1 = 3) of the phantom with
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(a) (b)

Figure 2. (a) Recovered activity concentration profiles across the smallest two spheres of
the simulated PET scan (see the arrow in figure 1), before and after deconvolution, and after
deconvolution with the described regularization, when a deconvolution function (DF) with infinite
full width at half-maximum (FWHM) was used; (b) effect of the FWHM of the DF on the same
profile when the same regularization parameters were used. Fourteen iterations were used in all
cases. The crosses indicate the true activity levels.
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Figure 3. Measured over true ratios of the peak activity (triangles) and (peak sphere)/(peak of
background fluctuation) (squares) in the smallest, 10 mm diameter sphere, as a function of the
FWHM of the deconvolution function. Some of the data points correspond to the profiles displayed
in figure 2(b).

even stronger regularization (β1 = 1.1) allows us to control the MLEM edge artifacts (Snyder
et al 1987).

As is illustrated in figures 1, 2(a) and 4, applying such topology-dependent regularization
allows the reduction of the variance in background regions and PVE correction improvement
in high gradient regions.

3.2. Recovery of activity profiles and mean contrast

The recovery of the activity profiles is illustrated in figures 2, 4(a) and (b) for the 10, 13, 22
and 28 mm spheres for the simulated scan and in figure 4(c) for the 10 and 37 mm spheres of
the experimental scan.
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(a) (b)

(c)

Figure 4. Recovery of activity profiles passing through the center of the 13 and 10 mm (a) and
the 22 and 28 mm (b) diameter spheres in a simulated scan, and of the 10 and 37 mm spheres in a
measured scan (c) of the NEMA image quality phantom (figure 1). The crosses indicate the true
activity levels and their approximate location.

Mean Recovery Coefficients: 14 iterations
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Figure 5. Mean contrast recovery before (solid) and after regularized deconvolution (dashes) for
the simulated (squares) and experimental scans (triangles) of the NEMA image quality phantom.

The profiles of the spheres after the PVE correction are in general closer to the true activity
profiles with the following exceptions: (i) the central profile across some of the spheres may
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(a) (b)

(c)

Figure 6. Transaxial PET slices of a lung cancer patient before (a) and after PVE correction
(b) using the described method. A fixed inverse gray scale was used. Profiles through the two
mediastinal potential lesions with and without the correction are shown in (c).

overestimate the true activity (figure 4(b)); (ii) non-uniform uptake inside the larger spheres is
amplified by the deconvolution (figure 4(c)). Both of these artifacts are natural consequences
of the deconvolution, and if the regularization parameters are not carefully chosen this may
lead to a substantial loss of mean contrast recovery accuracy.

In the background regions, due to the stronger regularization imposed in this portion of
the image, the activity profile differs very little from the activity profiles prior to the PVE
correction. An exception is presented by few voxels around the spheres and inside the largest
spheres, in which a moderate increase in the variance is observed. Also a small increase of
the edge artifacts occurs at the periphery of the phantom (figure 4(c)). However, these are
controlled by the regularization weight, β1, and are difficult to see in the images (figure 1).

For the spheres with diameters between 10 and 22 mm a significant improvement of the
RC is seen (figure 5). For these spheres the RC improves from the pre-correction values of 13%
to 60% before to 36% to 92% after PVE correction for the simulated data and from 21% to 71%
before to 54% to 118% after the correction for the experimental scan. In both cases, the PVE
correction presented in this paper reduces the bias in the RC to less than 20% for all spheres
except for the 10 mm diameter sphere in the experiment and the 10 and 13 mm diameter
spheres in the simulated data. For the largest spheres with diameters of 28 and 37 mm,
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there is no improvement of the mean RC. This is independent of whether they are hot
(experiment) or cold (simulation).

3.3. Test on a patient PET scan

Although the goal of this paper is to show the proof of concept for the presented PVE correction
method using phantom data, we present also a result for a FDG patient PET scan obtained in
our clinic on the Discovery LS PET/CT scanner in 2D mode (figure 6). The same parameters
as for the phantom case were used except for the background activity, Mbkg, which was set to
roughly approximate the middle of the background signal, 4000 Bq, and the coefficient k2, for
which a value of 3 was selected due to the stronger background variation and stronger uptake
in the potential lesions. At four iterations the algorithm has converged. The corrected image
shows enhanced uptake in certain parts of the image. Some of them could be potential lesions.
The variance is not increased in the rest of the image.

Performing the correction with different values for these two parameters, k2 = 4 for
Mbkg = 4000 Bq, limits the uptake enhancement to the two mediastinal lesions and the chest
wall only. Selecting the background to match the highest background in the vicinity of these
lesions (Mbkg = 7000 Bq) and k2 = 2 results in the enhancement of only the more laterally
positioned lesion and the chest wall.

4. Discussion

4.1. Main features of the method

There are two main features of the post-reconstruction PVE correction method described in
this paper, which make it different from previously published methods:

(i) We changed the shape of the deconvolution function. In addition to a PSF approximating
that of the scanner, we tested significantly broader functions with FWHM ranging to
infinity. The last one, a step function over a cubic region centered at the voxel being
corrected provided the best results.

(ii) We adapted the regularization procedure to the topology (activity levels and activity
variance) of the images, rather to prior ‘anatomic’ information about the sphere size and
position.

We have shown (figures 2(b) and 3) that the first feature (i) leads to an improved activity
and contrast recovery. This result can be explained in the following way. The factor [1 +
ε(

⇀

u)] (2a) updates the activity estimate in the iteration formula (2) relative to the mean activity
for the neighborhood of a voxel, rather than relative to the activity weighted closer to that
of voxel �u, which would be the case for a sharper DF. This dampens the variance increase
in the background. Also using a more uniform DF, P(�u|�r), which multiplies [1 + ε(

⇀

u)] in
(2) reduces the variance in the uniform activity regions by more equally weighted averaging
of the inaccuracies (2a) of the previous activity estimate over the selected region. A more
uniform DF would also enhance deconvolution for the regions with stronger activity change
due to giving more weight to the expected larger inaccuracy in such regions.

The above result is a direct consequence of improving the correctness of the mathematical
problem by introducing additional regularization within the iterative sequence (Fedorenko
1994). While one can argue that replacing the scanner PSF with a step function results in the
loss of inherent information about the scanner, it turns out that regularization of the problem is
more critical. The specifics of the scanner enter in the PVE correction through the truncation
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width of the deconvolution function (DF) and through the regularization parameters, which
are tailored to the type of PET images being corrected.

The second feature, topology-adapted regularization, is important in oncology where PET
tracer uptakes do not necessarily conform to that of the anatomical structures identified with
CT or MRI. Tumors may occupy only part of an anatomic structure or may protrude in the
tissues between such structures or into neighboring organs.

4.2. Comparison to other methods

For uniform activity spheres, the presented method yields activity and contrast recovery
accuracy similar to methods that incorporate the position- and direction-dependent detection
system response into the reconstruction (Alessio and Kinahan 2006). However, while these and
also other methods (Soret et al 2007) use anatomical information to govern the penalty term,
the method presented here does not. Higher recovery coefficient accuracy is demonstrated in
a method based on the ‘regional geometric transfer matrix’ (Rousset et al 1998) and also with
a multiresolution image-based approach acting at a voxel level (Boussion et al 2006). Both
of these methods use high resolution anatomical images in order to achieve that. Another
post-reconstruction PVE correction method (Teo et al 2007) also produced higher recovery
coefficient accuracy acting at voxel level, but in this paper the problem of variance increase
throughout the image was left for future studies.

In the Soret et al classification, the PVE correction methods are divided in two groups,
which both have disadvantages: (a) correction methods applied at regional level which improve
local contrast recovery, but are not suitable for visual image analysis and (b) correction methods
applied at voxel level, which rely on the joint use of anatomic information. The method
presented here has the potential to resolve these problems: it simultaneously improves local
contrast recovery (quantification), provides improved images for visual analysis and does not
rely on anatomic information.

According to a recent conference report, such capabilities were shown also for a different
approach (Boussion et al 2007). The main difference between the two methods is that in the
method of Boussion et al, the noise suppression is wavelet-based and fully automatic. In our
method the user would need to select few regularization parameters based on the properties
of the PET images. In that respect, it could be used to selectively enhance the PVE correction
for parts of the image with physician-selected levels of activity concentrations and activity
concentration variations.

4.3. PVE correction for realistic cases with non-uniform background

The topology adaptive regularization algorithm presented in this paper allows the selective
enhancement of deconvolution in the areas of elevated activity and successfully controls
variance increases within the rest of the image, without using any prior anatomic information
from CT or MRI studies. This was demonstrated also for a patient PET scan containing strong
TC non-uniformity and potential mediastinal lung lesions.

For the presented patient image only two parameters are needed to be changed with respect
to the phantom cases: the background activity Mbkg and the factor k2, which determines the
variation threshold above which the TC would be considered to be above the noise fluctuations.
As pointed in section 3.3, the modification of these parameters allows limiting the PVE
correction to medically significant parts of the image. Other regularization parameters, e.g.
the regularization weight β2, may also need to be changed for large tumors with non-uniform
uptake in order to limit the variance increase within such lesions. We consider it prudent to
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leave the selection of the threshold separating noise from significant activity changes to the
physician.

We foresee two possible ways of using the described PVE correction method: (1) by
user selection of the regularization parameters, which can limit the strength and the threshold
for enhancing TC variations to medically relevant regions and limits; (2) by using fixed
parameters, previously optimized to give the highest quantification accuracy for PET scans
with similar properties. The successful implementation of either of these approaches requires
further investigation. For the first approach, a large data base of PET scans will need to be
analyzed together with radiologists and radiation oncologists for different tumor sizes, tumor
locations and uptake uniformity distributions. For the second approach, an extensive validation
of the method using optimized parameters against experimental or numerical phantoms with
non-uniform uptake in known lesions needs to be performed.

Special attention to validation will be needed also when the PVE correction is applied to
large tumors with heterogeneous uptake or lesions with steep boundaries, since the method
will increase the variance for such regions. This is seen in the increased dip in the profile of
the large sphere in figure 4(c) and in the small edge artifacts around the spheres in figure 1.
No such artifacts are however expected for small lesions due to more gradual uptake increase
(figures 6(b) and (c)).

5. Conclusion

Introducing a deconvolution function with a step function shape and topology adaptive
regularization in maximum-likelihood-based iterative deconvolution lays the basis of a novel
approach for controlling image variance. Applying this method to a phantom with uniform
activity spheres improved quantification accuracy without increasing the variance in the rest
of the image. Testing the method for patient images increased the visibility of small lesions
in non-uniform background, while in the same time preserving image quality.

Two ways for clinical implementations are possible: (1) by user selection of the
regularization parameters, which can limit the strength and threshold for enhancing activity
variations to medically important regions; (2) by using fixed parameters, previously optimized
to give highest quantification accuracy for PET scans with similar properties. Both
implementations depend on further evaluation and validation with extensive image sets and
realistic phantoms with known lesions.
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