ORIGINAL ARTICLE

Evaluation of ⁶⁴Cu-labeled DOTA-D-Phe¹-Tyr³-octreotide (⁶⁴Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors

Hirofumi Hanaoka · Hideyuki Tominaga · Keiich Yamada · Pramila Paudyal · Yasuhiko Iida · Shigeki Watanabe · Bishnuhari Paudyal · Tetsuya Higuchi · Noboru Oriuchi · Keigo Endo

Received: 9 March 2009/Accepted: 12 May 2009/Published online: 6 June 2009 © The Japanese Society of Nuclear Medicine 2009

Abstract

Objective In-111 (¹¹¹In)-labeled octreotide has been clinically used for imaging somatostatin receptor-positive tumors, and radiolabeled octreotide analogs for positron emission tomography (PET) have been developed. Cu-64 (⁶⁴Cu; half-life, 12.7 h) is an attractive radionuclide for PET imaging and is produced with high specific activity using a small biomedical cyclotron. The aim of this study is to produce and fundamentally examine a ⁶⁴Cu-labeled octreotide analog, ⁶⁴Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-D-Phe¹-Tyr³-octreotide (⁶⁴Cu-DOTA-TOC).

Methods 64 Cu produced using a biomedical cyclotron was reacted with DOTA-TOC for 30 min at 45°C. The stability of 64 Cu-DOTA-TOC was evaluated in vitro (incubated with serum) and in vivo (blood collected after

H. Hanaoka (⊠) · Y. Iida

Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Japan e-mail: hhanaoka@med.gunma-u.ac.jp

H. Tominaga

Department of Molecular Imaging, Gunma University Graduate School of Medicine, Maebashi, Japan

K. Yamada

Department of Chemistry and Chemical Biology, Gunma University Graduate School of Engineering, Kiryu, Japan

P. Paudyal · B. Paudyal · T. Higuchi · N. Oriuchi · K. Endo Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan

S. Watanabe

Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Takasaki, Japan

administration) by HPLC analysis. Biodistribution studies were performed in normal mice by administration of mixed solution of ⁶⁴Cu-DOTA-TOC and ¹¹¹In-DOTA-TOC and somatostatin receptor-positive U87MG tumor-bearing mice by administration of ⁶⁴Cu-DOTA-TOC or ⁶⁴Cu-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid-octreo-tide (⁶⁴Cu-TETA-OC). The tumor was imaged using ⁶⁴Cu-DOTA-TOC, ⁶⁴Cu-TETA-OC, and FDG with an animal PET scanner.

Results ⁶⁴Cu-DOTA-TOC can be produced in amounts sufficient for clinical study with high radiochemical yield. ⁶⁴Cu-DOTA-TOC was stable in vitro, but time-dependent transchelation to protein was observed after injection into mice. In biodistribution studies, the radioactivity of ⁶⁴Cu was higher than that of ¹¹¹In in all organs except kidney. In tumor-bearing mice, ⁶⁴Cu-DOTA-TOC showed a high accumulation in the tumor, and the tumor-to-blood ratio reached as high as 8.81 ± 1.17 at 6 h after administration. ⁶⁴Cu-DOTA-TOC showed significantly higher accumulation in the tumor than ⁶⁴Cu-TETA-OC. ⁶⁴Cu-DOTA-TOC PET showed a very clear image of the tumor, which was comparable to that of ¹⁸F-FDG PET and very similar to that of ⁶⁴Cu-TETA-OC.

Conclusions ⁶⁴Cu-DOTA-TOC clearly imaged a somatostatin receptor-positive tumor and seemed to be a potential PET tracer in the clinical phase.

Keywords 64 Cu \cdot DOTA-D-Phe¹-Tyr³-octreotide (DOTA-TOC) \cdot Somatostatin receptor

Introduction

Somatostatin receptors are expressed on neuroendocrine tumors, including carcinoid tumor, pituitary adenoma,

pheochromocytoma, and medullary thyroid carcinoma. Somatostatin receptors are also positive on the cell surfaces of other types of tumors, such as small cell lung carcinoma, meningioma, astrocytoma, and neuroblastoma. Recently, radiolabeled somatostatin analogs have been clinically and widely used, and In-111 (¹¹¹In)-labeled diethylenetriaminepentaacetic acid-octreotide (¹¹¹In-DTPA-OC) has been approved and is routinely used for the localization and staging of neuroendocrine tumors [1, 2]. Octreotide analogs

advantage of positron emission tomography (PET) [3–6]. Cu-64 (⁶⁴Cu; half-life, 12.7 h) is an attractive radionuclide for PET imaging, which decays by electron capture (41%), β^- (0.573 MeV, 40%) and β^+ (0.656 MeV, 19%). ⁶⁴Cu can be produced with high specific activity using a small biomedical cyclotron installed in hospitals or PET centers [7, 8]. Furthermore, ⁶⁴Cu is also potentially applicable to therapy, either by itself or replaced by another copper radionuclide, copper-67 (⁶⁷Cu; half-life, 61.7 h), which emits β^- rays (0.395–0.577 MeV) and γ rays (0.091–0.185 MeV). Therefore, ⁶⁴Cu-labeled octreotide analogs are promising tracers for PET imaging in patients with somatostatin receptor-positive tumors. ⁶⁴Cu-TETA-OC or its analogs (where TETA is 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) showed high tumor accumulation in tumor-bearing mice or rats [9, 10]. In a study of humans, more lesions were reported to be seen with ⁶⁴Cu-TETA-OC PET than with ¹¹¹In-DTPA-OC SPECT [4].

have also been labeled with positron emitters because of the

1,4,7,10-Tetraazacvclododecane-1,4,7,10-tetraacetic acid (DOTA) is one of the most useful chelators and has been widely used for the labeling of many radiometals, including ⁶⁴Cu. However, it has been reported that ⁶⁴Cu-DOTA complexes are not so stable, since ⁶⁴Cu tends to dissociate from the chelator followed by binding to copperbinding proteins [11, 12]. Thus, TETA has been extensively used as a stable chelator [4, 13], and more stable chelators have been developed [14, 15]. However, these new chelators are still in the research phase and are difficult to use routinely in the clinical phase. On the other hand, yttrium-90 (⁹⁰Y)-labeled DOTA-D-Phe¹-Tyr³-octreotide (DOTA-TOC) has been evaluated in phase 1 and phase 2 clinical trials for therapy, meaning that radiolabeled DOTA-TOC would be easy and safe to apply to the clinical phase. In this study, ⁶⁴Cu-DOTA-TOC was prepared and its stability, biodistribution, and metabolism were evaluated and compared with those of ¹¹¹In-DOTA-TOC. The tumor accumulation of ⁶⁴Cu-DOTA-TOC in somatostatin receptor-positive tumor-bearing mice was compared with that of ⁶⁴Cu-TETA-OC. Finally, ⁶⁴Cu-DOTA-TOC PET imaging of tumor-bearing mice was performed. Based on the results, the usefulness and clinical applicability of ⁶⁴Cu-DOTA-TOC were discussed.

Materials and methods

General

¹¹¹InCl₃ (74 MBq/mL in 0.02 N HCl) was purchased from Nihon Medi-Physics (Nishinomiya, Japan). ⁶⁴Cu was produced with a biomedical cyclotron CYPRIS HM-18 (Sumitomo Heavy Industries Ltd., Tokyo, Japan) at our university hospital. ¹⁸F was also produced at our hospital using the same cyclotron, and then ¹⁸F-FDG was synthesized using an automated apparatus. DOTA-TOC was purchased from Bachem (Bubendorf, Switzerland). For the preparation of TETA-OC, octreotide was constructed using Fmoc-based solid-phase synthesis and TETA was conjugated to it as previously described [10]. Human glioblastoma cell line U87MG, expressing somatostatin receptor [16], was purchased from American Type Culture Collection (ATCC, Manassas, VA). Reversed-phase HPLC (RP-HPLC) analyses were performed with a C18 column (Capcell Pak C18 MG-II, 4.6 × 150 mm, Shiseido Co. Ltd., Tokyo, Japan) eluted with a linear gradient of a 20-30% mixture of acetonitrile and 0.1% aqueous TFA. Sizeexclusion HPLC (SE-HPLC) analyses were performed with a TSKgel Super SW3000 column (4.6×300 mm, Tosoh, Tokyo, Japan) eluted with 0.1 M phosphate buffer (pH 6.8). TLC analyses were performed with silica plates (Silica gel 60, Merck, Darmstadt, Germany) with 10% aqueous ammonium acetate-methanol (1:1) as the developing solvent. Other reagents were of reagent grade and used as received.

Radiolabeling

For the preparation of ¹¹¹In-DOTA-TOC, 40 μ L of ¹¹¹InCl₃ (1.5 MBq) was incubated in 60 μ L of 0.25 M acetate buffer (pH 5.5) for 5 min at room temperature, then DOTA-TOC (20 μ g/20 μ L of 0.25 M acetate buffer) was added and incubated for 30 min at 45°C. ⁶⁴Cu (200–300 MBq) was provided in a dry state and was dissolved in 100 μ L of 0.25 M acetate buffer. Then DOTA-TOC (50 μ g/150 μ L of 0.25 M acetate buffer) or TETA-OC (50 μ g/150 μ L of 0.25 M acetate buffer) was added and incubated for 30 min at 45°C. The radiochemical purities of ⁶⁴Cu-DOTA-TOC, ⁶⁴Cu-TETA-OC, and ¹¹¹In-DOTA-TOC were determined by RP-HPLC and TLC. Rf values of ⁶⁴Cu-DOTA-TOC and ⁶⁴Cu were 0.5 and 0, respectively, by TLC analysis.

In vitro and in vivo stabilities

For the evaluation of in vitro stability, 64 Cu-DOTA-TOC (100 ng/20 μ L of 0.1 M phosphate buffer) was added to 180 μ L of murine serum, and the solution was incubated at

37°C for 6 h. The radioactivity of the sample was analyzed by SE-HPLC and RP-HPLC. For the evaluation of in vivo stability, blood was drawn from the hearts of mice at 5 min, 1 h, and 6 h after the administration of ⁶⁴Cu-DOTA-TOC (200 ng/100 μ L). After centrifugation at 3,000 rpm for 10 min at 4°C, the resultant serum samples were filtered through a polycarbonate membrane with a pore diameter of 0.45 μ m. The radioactivity of the sample was analyzed by SE-HPLC. RP-HPLC analysis was performed after filtering through a 10-kDa cutoff ultrafiltration membrane (VIVA-SPIN 500; Sartorius, Goettingen, Germany). Bovine serum albumin (BSA) was used as a molecular weight marker of SE-HPLC and eluted at 17 min.

Biodistribution study

The animals were cared for and treated in accordance with the guidelines of the animal care and experimentation committee of our university. Tumor-bearing mice were prepared by implanting U87MG tumor cells (5×10^6 cells) into the flanks of BALB/c nude mice. When tumors were

Fig. 1 Radioactivity profiles of ⁶⁴Cu-DOTA-TOC after incubation in murine serum. After incubation in murine serum at 37°C for 0 and 6 h, the radioactivity of the sample was analyzed by SE-HPLC and RP-HPLC. Retention time of ⁶⁴Cu-DOTA-TOC was 26 min by SE-HPLC and 16 min by RP-HPLC

palpable, the mice were used for biodistribution studies. A mixed solution of ⁶⁴Cu-DOTA-TOC (10 kBq) and ¹¹¹In-DOTA-TOC (30 kBq) (volume: 100 µL, total peptide dose: 200 ng) was administered to normal ddY mice, and ⁶⁴Cu-DOTA-TOC (10 kBg) or ⁶⁴Cu-TETA-OC (10 kBg) (volume: 100 µL, total peptide dose: 100 ng) was administered to U87MG tumor-bearing nude mice. At selected time points after administration, animals were killed and tissues of interest were excised and weighed. Their radioactivity was then measured with a well-type gamma counter (ARC-7001; Aloka Co. Ltd., Tokyo, Japan). Briefly, the total radioactivity of ⁶⁴Cu and ¹¹¹In was measured. The radioactivity of ¹¹¹In was measured 6 days after first measurement, since the count of ⁶⁴Cu was negligible at that time. The radioactivity of ⁶⁴Cu was calculated using these two measurements.

Urine and feces samples were collected using metabolic cages (Metabolica TYPE MM-ST; Sugiyama-Gen Iriki Co. Ltd., Tokyo, Japan) at 6 and 48 h after administration of ⁶⁴Cu-DOTA-TOC alone or mixed with ¹¹¹In-DOTA-TOC. Urine samples were also drawn from the bladder at 30 min

and 6 h after administration. The radioactivity of urine was analyzed by SE-HPLC.

PET imaging

PET imaging was performed using an animal PET scanner (Inveon; Siemens AG, Munich, Germany). After fasting for about 12 h, U87MG tumor-bearing mice were injected intravenously with ¹⁸F-FDG (20 MBq) and imaged at 1 h after administration. Two days after ¹⁸F-FDG PET, mice were injected intravenously with ⁶⁴Cu-DOTA-TOC (20 MBq) or ⁶⁴Cu-TETA-OC (20 MBq) and imaged at 6 and 24 h after administration.

Statistical analysis

Data are expressed as means \pm standard deviations where appropriate. Results were analyzed using the unpaired *t* test. Differences were considered statistically significant when *p* values were less than 0.05.

Results

Radiolabeling

The radiolabeling yield of 64 Cu-DOTA-TOC was more than 95% for all five times radiolabeling. The radiolabeling yields of 64 Cu-TETA-OC and 111 In-DOTA-TOC were also more than 95%.

In vitro and in vivo stabilities

All radioactivities were recovered after filtration through a polycarbonate membrane. After the incubation in murine serum at 37°C for 6 h, ⁶⁴Cu-DOTA-TOC existed only as the intact form, and the retention times of SE-HPLC and RP-HPLC were 26 and 16 min, respectively (Fig. 1). In contrast, time-dependent transchelation to protein (retention time 18–19 min) was observed after administration to mice (60.6 ± 3.8 and $95.2 \pm 1.4\%$ at 1 and 6 h, respectively) (Fig. 2).

Biodistribution study

⁶⁴Cu-DOTA-TOC showed rapid blood clearance and renal accumulation, similar to that of ¹¹¹In-DOTA-TOC in normal mice at an early time point after administration (Table 1). However, ⁶⁴Cu-DOTA-TOC showed retention in the blood after 1 h, and consequently the radioactivity of ⁶⁴Cu in all organs except kidney was much higher than that of ¹¹¹In. ⁶⁴Cu-DOTA-TOC showed significantly high accumulation in the liver and intestine compared with

Fig. 2 Radioactivity profiles in the blood after administration of ⁶⁴Cu-DOTA-TOC to mice. Blood was drawn from the hearts of mice at 5 min, 1 h, and 6 h after the administration of ⁶⁴Cu-DOTA-TOC and the radioactivity was analyzed by SE-HPLC

¹¹¹In-DOTA-TOC (p < 0.001 at all time points). ⁶⁴Cu-DOTA-TOC showed steady clearance from the kidney.

⁶⁴Cu-DOTA-TOC showed high accumulation and retention in the tumors of U87MG tumor-bearing mice, resulting in a tumor-to-blood ratio of 8.81 ± 1.17 at 6 h after administration (Table 2). The tumor-to-muscle ratios were as high as 38.9 ± 13.8 and 45.1 ± 12.5 at 3 and 6 h, respectively.

By 48 h after administration with 64 Cu-DOTA-TOC, 67.0 ± 5.3 and $12.8 \pm 9.3\%$ of radioactivity were excreted

 Table 1
 Biodistribution of
⁶⁴Cu-DOTA-TOC and ¹¹¹In-DOTA-TOC in normal mice

	Time after injection							
	10 min	30 min	1 h	3 h	6 h			
⁶⁴ Cu-DOTA	A-TOC							
Blood	3.37 ± 0.13	1.35 ± 0.31	$0.60 \pm 0.03^{**}$	$0.48 \pm 0.09^{**}$	$0.46 \pm 0.02^{**}$			
Liver	$2.15 \pm 0.20^{**}$	$2.68 \pm 0.73^{**}$	$2.53 \pm 0.63^{**}$	$3.26 \pm 0.51^{**}$	$2.61 \pm 0.36^{**}$			
Kidney	16.53 ± 2.77	11.76 ± 2.70	7.60 ± 0.76	$4.18 \pm 0.74^{**}$	$3.88 \pm 0.53 **$			
Intestine	$1.06 \pm 0.02^{**}$	$1.16 \pm 0.17^{**}$	$1.40 \pm 0.27^{**}$	$2.40 \pm 0.21^{**}$	$1.71 \pm 0.18^{**}$			
Spleen	0.84 ± 0.37	0.51 ± 0.27	0.33 ± 0.20	0.34 ± 0.14	0.26 ± 0.12			
Pancreas	$2.48 \pm 0.13^{**}$	$1.79 \pm 0.07^{**}$	$1.75 \pm 0.13^{**}$	$1.11 \pm 0.16^{**}$	0.49 ± 0.16			
Lung	3.49 ± 0.25	2.40 ± 0.41	$1.92 \pm 0.58^{*}$	$2.67 \pm 0.25^{**}$	$2.36 \pm 0.33 **$			
Heart	1.59 ± 0.14	0.81 ± 0.42	0.47 ± 0.24	$0.61 \pm 0.21*$	0.49 ± 0.18			
¹¹¹ In-DOT	A-TOC							
Blood	3.30 ± 0.22	1.27 ± 0.43	0.34 ± 0.04	0.08 ± 0.06	0.04 ± 0.00			
Liver	0.92 ± 0.04	0.48 ± 0.11	0.26 ± 0.03	0.24 ± 0.05	0.16 ± 0.02			
Kidney	15.41 ± 3.14	11.78 ± 3.03	9.72 ± 1.59	11.91 ± 1.50	9.51 ± 1.11			
Intestine	0.79 ± 0.04	0.42 ± 0.08	0.27 ± 0.08	0.38 ± 0.25	0.35 ± 0.20			
Spleen	1.21 ± 0.11	0.50 ± 0.09	0.23 ± 0.05	0.13 ± 0.03	0.13 ± 0.01			
Pancreas	1.50 ± 0.07	1.01 ± 0.12	0.61 ± 0.07	0.37 ± 0.04	0.27 ± 0.01			
Lung	3.46 ± 0.23	1.46 ± 0.41	0.52 ± 0.08	0.21 ± 0.03	0.20 ± 0.05			
Heart	1.38 ± 0.03	0.60 ± 0.22	0.17 ± 0.06	0.08 ± 0.03	0.06 ± 0.02			

Each value represents the mean
% injected dose/g of
organ \pm SD of 4 animals
Significant difference from
¹¹¹ In-DOTA-TOC (* $p < 0.01$,
** $p < 0.001$)

Table 2 Biodistribution of ⁶⁴ Cu-DOTA-TOC in U87MG		Time after injection					
tumor-bearing mice		30 min	1 h	3 h	6 h		
	Blood	1.53 ± 0.09	0.80 ± 0.01	0.59 ± 0.14	0.52 ± 0.14		
	Liver	3.69 ± 0.53	4.27 ± 1.23	3.51 ± 0.83	3.43 ± 0.69		
	Kidney	16.95 ± 2.02	15.12 ± 0.97	9.83 ± 1.18	6.52 ± 0.89		
	Intestine	1.27 ± 0.03	1.65 ± 0.20	2.17 ± 0.34	2.21 ± 0.52		
Each value represents the	Muscle	0.34 ± 0.04	0.20 ± 0.05	0.12 ± 0.03	0.11 ± 0.04		
mean \pm SD of three animals.	Tumor	2.51 ± 0.13	3.43 ± 1.03	4.43 ± 0.43	4.50 ± 0.76		
Mean tumor weight was 23 mg	Tumor-to-blood ratio ^a	1.64 ± 0.07	4.31 ± 1.31	7.70 ± 1.30	8.81 ± 1.17		
^a Expressed as % injected	Tumor-to-muscle ratio ^a	7.5 ± 1.2	17.7 ± 3.3	38.9 ± 13.8	45.1 ± 12.5		

Each value repres mean \pm SD of th Mean tumor weig ^a Expressed as % dose/g of organ

in urine and feces, respectively. There was no significant difference between ⁶⁴Cu-DOTA-TOC and ¹¹¹In-DOTA-TOC in the radioactivity of urine at 30 min or 6 h after injection (Fig. 3a). Radioactivity was not observed in the protein fraction in the urine at 30 min or 6 h after administration of ⁶⁴Cu-DOTA-TOC, and about 60-70% of radioactivity was the intact peptide (Fig. 3b), similar to the case with ¹¹¹In-DOTA-TOC (data not shown).

PET imaging

The tumors were clearly visible with both ⁶⁴Cu-DOTA-TOC and ¹⁸F-FDG (Fig. 4). ⁶⁴Cu-DOTA-TOC showed heterogeneous accumulation in the tumor, and accumulation of radioactivity was observed in the same region at 6-24 h. Relatively uniform uptake of ¹⁸F-FDG was seen throughout the tumor. ⁶⁴Cu-DOTA-TOC showed high accumulation in the liver and bladder at 6 h, and the radioactivity was retained in the liver and was cleared from the bladder at 24 h after administration.

Comparison studies with ⁶⁴Cu-TETA-OC

⁶⁴Cu-DOTA-TOC showed significantly higher accumulation than ⁶⁴Cu-TETA-OC in the tumor, and also in the blood, liver, kidney, and intestine (Fig. 5a). The tumor-toorgan ratios were almost the same in all organs except for muscle (Fig. 5b). The tumors were clearly visible with both ⁶⁴Cu-DOTA-TOC and ⁶⁴Cu-TETA-OC (Fig. 5c), and the whole body images were very similar.

30

30

Fig. 3 Radioactivity analysis in the urine after administration of ⁶⁴Cu-DOTA-TOC and ¹¹¹In-DOTA-TOC. **a** Radioactivity of ⁶⁴Cu and ¹¹¹In excreted into the urine at 30 min and 6 h after administration of mixed solution of ⁶⁴Cu-DOTA-TOC and ¹¹¹In-DOTA-TOC.

Each value represents the mean % injected dose \pm SD of three animals. **b** Radioactivity profiles of urine at 30 min and 6 h after the administration of ⁶⁴Cu-DOTA-TOC by SE-HPLC and RP-HPLC

Discussion

The final goal of this study was to do a preclinical study of ⁶⁴Cu-DOTA-TOC as a PET imaging agent for somatostatin receptor-positive tumors. ⁶⁴Cu-DOTA-TOC required no purification, since the radiolabeling yield was more than 95% with 200–300 MBq of ⁶⁴Cu. Furthermore, the radioactivity of ⁶⁴Cu-DOTA-TOC, produced using a small hospital-installed cyclotron, would be sufficient for use in clinical studies, since Anderson et al. [4] showed that clear PET images of patients with neuroendocrine tumors were obtained with a 107–130 MBq injection of ⁶⁴Cu-TETA-OC.

In contrast to the high in vitro stability, the transchelation of ⁶⁴Cu to protein, slightly lower size than that of BSA, was observed in vivo as described previously [11, 12]. In a biodistribution study, ⁶⁴Cu-DOTA-TOC showed retention in the blood after 1 h and high accumulation in the liver and intestine, the same results as previously described [17]. Since liver is the critical organ involved in the regulation of copper homeostasis [18], ⁶⁴Cu transchelated to protein might accumulate in the liver and result in biliary excretion. Recently, a combined PET/CT system has been developed that provides detailed morphological information [19]. Therefore, accumulation in nontarget organs is not so critical, but high tumor accumulation is the most important property for the development of PET tracer. In U87MG tumor-bearing mice, ⁶⁴Cu-DOTA-TOC showed high accumulation and retention in the tumor, and the tumor-to-blood and tumor-to-muscle ratios reached 8.81 ± 1.17 and 45.1 ± 12.5 at 6 h after administration, respectively, indicating that ⁶⁴Cu-DOTA-TOC would be a potential PET tracer for imaging of somatostatin receptor-positive tumors.

In comparison studies with ⁶⁴Cu-TETA-OC, ⁶⁴Cu-DOTA-TOC showed significantly higher accumulations than ⁶⁴Cu-TETA-OC in the blood, liver, kidney, and intestine, since the Cu-DOTA complex undergoes more transchelation than the Cu-TETA complex [12]. On the other hand, the accumulation of ⁶⁴Cu-DOTA-TOC in the tumors was also significantly higher than that of ⁶⁴Cu-TETA-OC, and the tumor-to-organ ratio of ⁶⁴Cu-DOTA-TOC was almost the same as that of ⁶⁴Cu-TETA-OC in all organs except for muscle. It was reported that ¹¹¹In-labeled or ^{99m}Tc-labeled TOC showed higher accumulation in the tumor than that of ¹¹¹In-labeled or ^{99m}Tc-labeled OC, respectively [20, 21]. So, due to the high affinity toward somatostatin receptor, ⁶⁴Cu-DOTA-TOC accumulated to a high level in the tumor before transchelation occurred. Although comparison studies are needed in humans, ⁶⁴Cu-DOTA-TOC is potentially useful for PET imaging of tumors instead of ⁶⁴Cu-TETA-OC.

⁶⁴Cu-DOTA-TOC PET images showed the tumors very clearly, comparable to ¹⁸F-FDG PET, indicating the possibility of its use in clinical studies. Interestingly, tumor accumulation of ⁶⁴Cu-DOTA-TOC was heterogeneous despite the relatively uniform accumulation of ¹⁸F-FDG, which might provide valuable information about the characteristics of individual tumors. Because of the lower spatial resolution of SPECT compared to PET, the **Fig. 4** PET images of U87MG tumor-bearing mice with 64 Cu-DOTA-TOC or 18 F-FDG. Four mice were imaged at 6 and 24 h after administration of 64 Cu-DOTA-TOC and at 1 h after administration of 18 F-FDG. Photographs (Photo) of mice were taken just before 6 h imaging of 64 Cu-DOTA-TOC and superimposed on corresponding PET image (Photo + 6 h). Arrows point to flank tumors

Fig. 5 Comparison of biodistribution and PET image between ⁶⁴Cu-DOTA-TOC and ⁶⁴Cu-TETA-OC in U87MG tumor-bearing mice. a % Injected dose/g of organ and b tumor-to-organ ratio at 6 h after administration of ⁶⁴Cu-DOTA-TOC or ⁶⁴Cu-TETA-OC. Each column represents 4 mice, and significant differences were determined (*p < 0.05, **p < 0.005). Mean tumor weight was 218 mg. c PET images were performed at 6 h after administration of ⁶⁴Cu-DOTA-TOC or ⁶⁴Cu-TETA-OC (not the same mouse)

approved radiolabeled octreotide analog, ¹¹¹In-DTPA-OC, would not be able to provide such information. Furthermore, ⁶⁴Cu-DOTA-TOC PET would be more useful than ¹¹¹In-DTPA-OC SPECT for choosing the appropriate case of therapy with non-radiolabeled or radiolabeled octreotide analogs. The ⁶⁴Cu-DOTA-TOC PET image was very similar to that of ⁶⁴Cu-TETA-OC. Since clear PET images of patients with neuroendocrine tumors were obtained with ⁶⁴Cu-TETA-OC [4], ⁶⁴Cu-DOTA-TOC is a potential PET tracer in the clinical phase.

⁶⁴Cu-DOTA-TOC showed steady clearance from the kidney, as previously described [17], and was also reported in case of other ⁶⁴Cu-labeled peptide [22-24]. Therefore, ⁶⁴Cu and ⁶⁷Cu would be suitable radionuclides for the therapy, since renal clearance could reduce renal toxicity, which is the major problem of radionuclide therapy using radiolabeled peptides or small proteins. Since the levels of radioactivity of ⁶⁴Cu and ¹¹¹In excreted in the urine were almost equal. ⁶⁴Cu would be released into the circulation from the kidney. One of the key copper-binding proteins, superoxide dismutase (SOD), is highly distributed in the kidney cytosol [18], leading to the hypothesis that 64 Cu is transchelated to the SOD in kidney cytosol, released into the blood, accumulated in the liver, and finally excreted in feces. Although the radioactivity levels of blood and liver were slightly high, they were much lower than radiolabeled antibodies, which have been efficiently used in the clinical phase as a treatment for malignant lymphoma [25, 26].

Conclusion

⁶⁴Cu-DOTA-TOC was prepared in high radiochemical yield sufficient for clinical practice. ⁶⁴Cu-DOTA-TOC showed high levels of accumulation in tumors and clear PET images in U87MG tumor-bearing mice. These findings indicated that ⁶⁴Cu-DOTA-TOC is a potential PET tracer for imaging somatostatin receptor-positive tumors in the clinical phase.

Acknowledgment The authors would like to thank Sumitomo Heavy Industries Ltd., for assistance with the production of 64 Cu.

References

- Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WAP, Kooij PPM, Oei HY, et al. Somatostatin receptor scintigraphy with [¹¹¹In-DTPA-D-Phe¹]- and [¹²³I-Tyr³]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31. doi:10.1007/BF00181765.
- Rambaldi PF, Cuccurullo V, Briganti V, Mansi L. The present and future role of ¹¹¹In pentetreotide in the PET era. Q J Nucl Med Mol Imag. 2005;49:225–35.
- Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of ⁶⁸Ga-DOTATOC PET and ¹¹¹In-

DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imag. 2007;34:1617–26. doi: 10.1007/s00259-007-0450-1.

- Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, et al. ⁶⁴Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42:213– 21.
- Meisetschläger G, Poethko T, Stahl A, Wolf I, Scheidhauer K, Schottelius M, et al. Gluc-Lys([¹⁸F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [¹¹¹In]DTPA-octreotide. J Nucl Med. 2006;47:566–73.
- Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, et al. ⁸⁶Y-DOTA⁰-D-Phe¹-Tyr³-octreotide (SMT487)—a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imag. 2003;30:510–8.
- McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity ⁶⁴Cu using a biomedical cyclotron. Nucl Med Biol. 1997;24:35–43. doi:10.1016/S0969-8051(96)00157-6.
- Obata A, Kasamatsu S, McCarthy DW, Welch MJ, Saji H, Yonekura Y, et al. Production of therapeutic quantities of ⁶⁴Cu using a 12 MeV cyclotron. Nucl Med Biol. 2003;30:535–9. doi: 10.1016/S0969-8051(03)00024-6.
- Anderson CJ, Pajeau TS, Edwards WB, Sherman EL, Rogers BE, Welch MJ. In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med. 1995;36:2315–25.
- Lewis JS, Srinivasan A, Schmidt MA, Anderson CJ. In vitro and in vivo evaluation of ⁶⁴Cu-TETA-Tyr³-octreotate. A new somatostatin analog with improved target tissue uptake. Nucl Med Biol. 1999;26:267–73. doi:10.1016/S0969-8051(98) 00105-X.
- Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem. 2000;11:527–32. doi: 10.1021/bc9901671.
- Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem. 2004;47:1465–74. doi:10.1021/jm030383m.
- Lewis MR, Boswell CA, Laforest R, Buettner TL, Ye D, Connett JM, et al. Conjugation of monoclonal antibodies with TETA using activated esters: biological comparison of ⁶⁴Cu-TETA-1A3 with ⁶⁴Cu-BAT-2IT-1A3. Cancer Biother Radiopharm. 2001; 16:483–94. doi:10.1089/10849780152752083.
- Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, et al. Preparation and biological evaluation of copper-64-labeled Tyr³-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res. 2004;10:8674–82. doi:10.1158/1078-0432.CCR-04-1084.
- Voss SD, Smith SV, DiBartolo N, McIntosh LJ, Cyr EM, Bonab AA, et al. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with ⁶⁴Cu-SarAr immunoconjugates. Proc Natl Acad Sci USA. 2007;104:17489–93. doi: 10.1073/pnas.0708436104.
- Kiaris H, Schally AV, Nagy A, Sun B, Szepeshazi K, Halmos G. Regression of U-87 MG human glioblastomas in nude mice after treatment with a cytotoxic somatostatin analog AN-2381. Clin Cancer Res. 2000;6:709–17.
- Lewis JS, Laforest R, Lewis MR, Anderson CJ. Comparative dosimetry of copper-64 and yttrium-90-labeled somatostatin analogs in a tumor-bearing rat model. Cancer Biother Radiopharm. 2000;15:593–604. doi:10.1089/cbr.2000.15.593.
- Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63:7978–811S.

- Beyer T, Townsend DW, Brun T, Kinahan PE, Chamon M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.
- De Jong M, Bakker WH, Breeman WA, Bernard BF, Hofland LJ, Visser TJ, et al. Pre-clinical comparison of [DTPA⁰] octreotide, [DTPA⁰, Tyr³] octreotide and [DOTA⁰, Tyr³] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer. 1998;75:406–11. doi:10.1002/ (SICI)1097-0215(19980130)75:3<406::AID-IJC14>3.0.CO;2-6.
- 21. Storch D, Béhé M, Walter MA, Chen J, Powell P, Mikolajczak R, et al. Evaluation of [^{99m}Tc/EDDA/HYNIC⁰]octreotide derivatives compared with [¹¹¹In-DOTA⁰, Tyr³, Thr⁸]octreotide and [¹¹¹In-DTPA⁰]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med. 2005;46: 1561–9.
- 22. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of glioma integrin $\alpha_v\beta_3$ expression using ⁶⁴Cu-labeled tetrameric RGD peptide. J Nucl Med. 2005; 46:1707–18.

- 23. Wei L, Butcher C, Miao Y, Gallazzi F, Quinn TP, Welch MJ, et al. Synthesis and biologic evaluation of 64 Cu-labeled rhenium-cyclized α -MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med. 2007;48:64–72.
- 24. Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, et al. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using ⁶⁴Cu bombesin analogs: sideby-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med. 2007;48:1327–37. doi:10.2967/jnumed.107.039487.
- Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR. Preclinical evaluation of ⁹⁰Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin's lymphoma. Int J Oncol. 1999;15:1017–25.
- Witzig TE, Molina A, Gordon LI, Emmanouilides C, Schilder RJ, Flinn IW, et al. Long-term responses in patients with recurring or refractory B-cell non-Hodgkin lymphoma treated with yttrium 90 ibritumomab tiuxetan. Cancer. 2007;109:1804–10. doi:10.1002/ cncr.22617.