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Summation

Copper-64 (T1=2¼ 12.7 hours; b+, 0.653 MeV [17.8 %]; b�, 0.579 MeV [38.4 %]) has decay characteristics that allow
for positron emission tomography (PET) imaging and targeted radiotherapy of cancer. The well-established
coordination chemistry of copper allows for its reaction with a wide variety of chelator systems that can
potentially be linked to peptides and other biologically relevant small molecules, antibodies, proteins, and
nanoparticles. The 12.7-hours half-life of 64Cu provides the flexibility to image both smaller molecules and larger,
slower clearing proteins and nanoparticles. In a practical sense, the radionuclide or the 64Cu-radiopharmaceu-
ticals can be easily shipped for PET imaging studies at sites remote to the production facility. Due to the
versatility of 64Cu, there has been an abundance of novel research in this area over the past 20 years, primarily in
the area of PET imaging, but also for the targeted radiotherapy of cancer. The biologic activity of the hypoxia
imaging agent, 60=64Cu-ATSM, has been described in great detail in animal models and in clinical PET studies.
An investigational new drug application for 64Cu-ATSM was recently approved by the U.S. Food and Drug
Administration (FDA) in the United States, paving the way for a multicenter trial to validate the utility of this
agent, with the hopeful result being FDA approval for routine clinical use. This article discusses state-of-the-art
cancer imaging with 64Cu radiopharmaceuticals, including 64Cu-ATSM for imaging hypoxia, 64Cu-labeled
peptides for tumor-receptor targeting, 64Cu-labeled monoclonal antibodies for targeting tumor antigens, and
64Cu-labeled nanoparticles for cancer targeting. The emphasis of this article will be on the new scientific dis-
coveries involving 64Cu radiopharmaceuticals, as well as the translation of these into human studies.
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Introduction

Asignificant research effort has been devoted to the copper
radionuclides because they offer a varying range of half-

lives and positron energies (Table 1). In addition, the well-
established coordination chemistry of copper allows for its
reaction with a wide variety of chelator systems that can
be linked to antibodies, proteins, peptides, and other biolog-
ically relevant small molecules. This update will focus on 64Cu
radiopharmaceuticals for positron emission tomography
(PET) imaging applications. The longer half-life allows 64Cu to
be produced at regional or national cyclotron facilities and
distributed to local nuclear medicine departments with the

loss of approximately one half-life. In addition, the longer
half-life is compatible with the time scales required for the
optimal biodistribution of slower clearing agents, such as
monoclonal antibodies (mAbs), nanoparticles, and higher
molecular weight polypeptides requiring longer imaging
times.

Production of Copper Radionuclides

The production of no-carrier-added 64Cu via the 64Ni(p,n)
64Cu reaction on a biomedical cyclotron was proposed
by Szelecsenyi et al. In this study, small irradiations were
performed demonstrating the feasibility of 64Cu production
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by this method.1 At present, the most common production
method for 64Cu utilizes the 64Ni( p,n)64Cu reaction,1–4 which
involves the irradiation of enriched 64Ni that has been elec-
troplated on a gold1,2,4,5 or rhodium platform.6 McCarthy
et al. have described the efficient production of high-specific-
activity 64Cu by using a small biomedical cyclotron and a
64Ni-enriched (>95%) target.2 The 64Ni( p,n)64Cu transmuta-
tion reaction is high yielding (2.3–5.0 mCi h�1), and after
purification by using an ion-exchange column, high-specific-
activity samples of [64Cu]-CuCl2g were obtained (95–310 mCi
mg�1). Obata et al., reported yields of 0.6– >3.0 mCi=mAh,
averaging 1.983 mCi=mAh with a radionuclidic purity of over
99% with using a 12 MeV cyclotron,4 while Avila-Rodriguez
et al. improved yields to >7 mCi=mAh with 11.4-MeV pro-
tons.7 Using a tangential target on the National Institutes of
Health (NIH) CS-30 cyclotron, Szajek et al., reported yields of
10.5� 3 mCi=mAh when bombarded with a 12.5-MeV proton
beam, which was comparable to the theoretic yield, and over
3 hours produced >1 Ci of radioactivity.8 The use of 64Cu has
dramatically increased in the past decade9 and its production
and has now been reported by academic sources in the United
States,2,8 Europe,6 and Japan.4

Coordination Chemistry of Copper(II)

The aqueous-solution coordination chemistry of copper is
limited to three oxidation states (I–III).10–12 Due to the lability
of most Cu(I) complexes, they typically lack sufficient kinetic
stability for radiopharmaceutical applications, while Cu(III)
is relatively rare and difficult to attain without the use of
strong p-donating ligands. Copper (II) is a d9 metal of bor-
derline softness, which favors amines, imines, and bidentate
ligands, such as bipyridine to form square planar, distorted
square planar, trigonal pyramidal, square pyramidal, as well
as distorted octahedral geometries. Cu(II) is generally less
labile toward ligand exchange and is the best candidate for
incorporation into radiopharmaceuticals. Jahn-Teller distor-
tions in six-coordinate Cu(II) complexes are often observed
as an axial elongation or a tetragonal compression. Although
Cu(II) is less labile than Cu(I) and 64Cu is a good radionu-
clide for PET imaging, the kinetic stability of Cu(II) com-
plexes in vivo is very different from the thermodynamic
stability in aqueous solution. Therefore, the development of

Cu(II) complexes for radiopharmaceutical applications has
been an active area of research.

Chelators based on cyclam and cyclen backbones

The most widely used chelators for attaching 64Cu to bio-
logic molecules are tetraazamacrocyclic ligands with pendant
arms that utilize both the macrocyclic and chelate effects to
enhance stability. By far, the most extensively used class
of chelators for 64Cu has been the macrocyclic polyamino-
carboxylates shown in Figure 1. Two of the most widely
studied chelators are DOTA (1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid) and TETA (1,4,8,11-tetraazacyclote-
tradecane-1,4,8,11-tetraacetic acid). While DOTA has been
used as a BFC (bifunctional chelator) for 64Cu, its ability to
bind many different metal ions and its decreased stability,
compared to TETA, make it less than ideal.13–18 The tetra-
azamacrocyclic ligand, TETA, therefore, has been extensively
used as a chelator for 64Cu, and successful derivatization of
this ligand has allowed researchers to conjugate it to anti-
bodies, proteins, and peptides.19–26

Although 64Cu-TETA complexes are more stable than
64Cu-DOTA and 64Cu-labeled complexes of acyclic ligands,
their instability in vivo has been well documented by our lab.
Bass et al. demonstrated that when 64Cu-TETA-octreotide
(OC) was injected into normal Sprague-Dawley rats, nearly
70% of the 64Cu from 64Cu-TETA-OC was transchelated to a
35-kDa species believed to be superoxide dismutase (SOD) in
the liver 20 hour postinjection.27 These results are supported by
the observations of Boswell et al.28

Sarcophogine chelators

Another class of ligands that has gained attention as po-
tential 64Cu chelators are the hexaazamacrobicyclic cage-type
ligands, which are based upon the sepulchrate or sarcopha-
gine cage motifs (Fig. 1) and whose syntheses were first de-
scribed by Sargeson.29 Both cage systems are synthesized
by reaction of the inert tris-ethylenediamine cobalt (III) com-
plex with formaldehyde, followed by reaction with ammonia=
formaldehyde or nitromethane=formaldehyde under basic
conditions to generate the sepulchrate or sarcophagine (Sar)
ligands, respectively. Smith et al. investigated a family of Sar

Table 1. Decay Characteristics of Copper Radionuclides

Isotope t1=2 b� MeV (%) bþ MeV (%) EC (%) g MeV (%)

60Cu 23.4 minutes — 2.00 (69) 7.0 0.511 (186)
3.00 (18) 0.85 (15)
3.92 (6) 1.33 (80)

1.76 (52)
2.13 (6)

61Cu 3.32 hours — 1.22 (60%) 40 0.284 (12)
0.38 (3)

0.511 (120)
62Cu 9.76 minutes — 2.91 (97%) 2 0.511 (194)
64Cu 12.7 hours 0.573 (38.4) 0.655 (17.8%) 43.8 0.511 (35.6)

1.35 (0.6)
67Cu 62.0 hours 0.395 (45) — — 0.184 (40)

0.484 (35)
0.577 (20)
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FIG. 1. Structures of macrocyclic chelators for complexing copper radionuclides.
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derivatives with various functional groups at the apical sites,
while the SarAr ligand was used to determine the 64Cu
complexation rates from pH 4 to 9.30 From the data presented,
complexation was 100% complete within several minutes at
258C over the entire pH range. Biodistribution data was col-
lected by using 64Cu-Sar, 64Cu-diamSar, and 64Cu-SarAr in
Balb=c mice. All three complexes cleared from the blood
rapidly, and uptake was low in bone, heart, stomach, spleen,
muscle, lungs, and the gastrointestinal tract. Liver clearance
was observed to be good over the 30-minute time course
of this study, demonstrating that the 64Cu complexes are
initially stable in vivo, but clearance of all three 64Cu com-
plexes is much slower through the kidney. Activity levels
increased in the case of the 64Cu-Sar complex, though this type
of accumulation is not uncommon for positively charged
complexes.

The cross-bridged tetraamine ligands

This class of chelators was first conceived of and synthe-
sized by Weisman et al. in the 1990s,31,32 and they were
originally designed to complex metal cations, such as Liþ,
Cu2þ, and Zn2þ, within their clamshell-like clefts. Numerous
copper complexes of these and related ligands have since
been prepared and studied by the Wong and Weisman
labs as well as other research groups.33–39 The expected cis-
folded coordination geometry of these chelators has been
confirmed in all cases via the available structural data.
The attachment of two carboxymethyl pendant arms to
CB-cyclam to give CB-TE2A (4,11-bis(carboxymethyl)-1,4,8,11-
tetraazabicyclo[6.6.2]hexadecane) further ensures the com-
plete envelopment of a six-coordinate Cu(II).

While the measurement of stability constants of Cu(II)-CB
complexes have been limited by the proton-sponge nature of
these chelators, available data for Cu(II)-CB-cyclam (log
Kf¼ 27.1) revealed very similar values to nonbridged Cu(II)-
cyclam (log Kf¼ 27.2) and related complexes.40 On the other
hand, their kinetic inertness, especially in aqueous solution,
has been shown to be truly exceptional.41,42 Proton-assisted
decomplexation is one indicator of solution inertness. Under
pseudo–first-order conditions of high-acid concentration
(e.g., 5 M HCl), decomplexation half-lives can provide a
comparative gauge. For example, Cu-CB-cyclam is almost 1
order of magnitude more inert than Cu (II)-cyclam in 5 M
HCl at 908C, while Cu(II)-CB-TE2A is 4 orders of magnitude
more inert (T1=2¼ 154 hour). Impressively, the latter complex
resists acid decomplexation even better than the fully encap-
sulated sarcophagine complex, Cu(II)-diamsar (3,6,10,13,16,19-
hexaazabicyclo[6.6.6]eicosane-1,8-diamine) (T1=2¼ 40 hours).43

It was confirmed that both the cross-bridged cyclam backbone
as well as the presence of two enveloping carboxymethyl arms
are required for this unusual kinetic inertness.

Biologic stability of 64Cu-labeled cross-bridged complexes,
including CB-cyclam, 64Cu-CB-TE2A, and CB-DO2A (10-bis
(carboxymethyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane),
has been investigated.28,40 The biodistribution of these 64Cu
complexes in female Sprague-Dawley rats were highly de-
pendent upon the chelator. Based on the rapid clearance
from the blood, liver, and kidney, 64Cu-CB-TE2A was
thought to be the most stable.40 Follow-up metabolism
studies of 64Cu-CB-TE2A and 64Cu-CB-DO2A, compared to
64Cu-DOTA and 64Cu-TETA, demonstrated the robust sta-

bility of 64Cu-CB-TE2A in vivo, with low amounts of trans-
chelation to the liver and blood proteins.28

In order to find chelators that complex Cu(II) with faster
kinetics while retaining the high stability and the significant
inertness observed with CB-TE2A, phosphonic-acid (-CH2-
PO3H2) donor groups were investigated as pendant
arms.44,45 It has been shown previously that chelators with
phosphonic-acid pendant arms have higher selectivity as
well as increased thermodynamic and kinetic stability,
compared to their acetic acid analogs.46 Cross-bridged
1,4,8,11-tetraazacyclotetradecane-1,8-bis(methanephosphonic
acid) (CB-TE2P) and 4,8,11-tetraazacyclotetradecane-1-
(methanephosphonic acid)-8-(methanecarboxylic acid) (CB-
TE1A1P) were synthesized, radiolabeled with 64Cu, and their
in vivo behavior was investigated.47 While CB-TE2P labeling
with 64Cu was complete within 1 hour in buffer at higher
temperatures, radiolabeling yields above 90% were observed
even at 378C. CB-TE1A1P had 100% radiolabeling yields at
378C. Preliminary biodistribution studies showed that the
biodistribution of 64Cu-CB-TE2P and 64Cu-CB-TE1A1P com-
pared favorably to 64Cu-CB-TE2A.

Boswell et al. synthesized a side-bridged monophos-
phonate monoacid chelator, ((8-phosphonomethyl-1,5,8,12-
tetraazabicyclo[10.2.2]hexadec-5-yl)-acetic acid (SB-TE1A1P)),
and labeled it with 64Cu.48 This agent required radiolabeling
conditions of 958C, unlike the cross-bridged phosphonate
chelators. Biodistribution in normal mice showed 64Cu-SB-
TE1A1P to be cleared rapidly through blood and other tissues,
suggesting it is highly stable in vivo, similar to the cross-
bridged chelators.

Imaging Tumor Hypoxia with 64/60Cu-ATSM

There is one class of copper radiopharmaceuticals where
the stability of the Cu(II) complex is not essential for suc-
cessful targeting. Cu(II) thiosemicarbazones have been
evaluated as blood-flow agents and for imaging tumor
hypoxia. In this article, we discuss the most recent devel-
opments for imaging tumor hypoxia with this class of agents.

It is well established that hypoxia is an important determi-
nant of the overall response of the tumor to conventional
therapy. The presence of hypoxia can result in an increase in
tumor aggressiveness, failure of local control, and activation of
transcription factors that support cell survival and migra-
tion.49–51 The ability to locate and quantify the extent of hyp-
oxia within solid tumors by using noninvasive nuclear imaging
would facilitate early diagnosis and help clinicians select the
most appropriate treatment for each individual patient.50

In 1997, Fujibayashi et al. discovered that the neutral,
lipophilic copper(II) complex of the N2S2 tetradentate ligand,
diacetyl-2,3-bis(N4-methyl-3-thiosemicarbazone), commonly
referred to as Cu-ATSM, showed hypoxia-selective uptake in
ex vivo ischemic, perfused, isolated rat-heart models.52,53 Cu-
ATSM was later shown to be hypoxia selective in vitro and
for tumor hypoxia.52,54–59 Recent experimental and compu-
tational work provided the first experimental evidence di-
rectly probing the reduction, reoxidation, and pH-mediated
ligand dissociation reactions of Cu-ATSM and their rela-
tionship to hypoxia selectivity.58

The thiosemicarbazones have been evaluated with the
short-lived copper radionuclides, 60Cu and 62Cu (T1=2¼
0.16 hours, bþ¼ 98%, EC¼ 2%). Takahashi et al.60 reported
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the first human studies of the uptake of 62Cu-ATSM in 10
patients: 4 normal patients and 6 with lung cancer. High tu-
mor uptake was observed (uptake ratio, 3.00� 1.50) in all
patients with lung cancer. Dehdashti et al. reported the first
correlative studies comparing the uptake of 60Cu-ATSM
(T1=2¼ 0.16 hour, bþ¼ 98%, EC¼ 2%) with response to con-
ventional therapies in patients with non-small-cell lung cancer
(NSCLC)61 and cervical cancer.62 In the NSCLC study, response
to therapy was evaluated by using 60Cu-ATSM tumor-to-
muscle (T=M) uptake ratios. Imaging with [18F]-FDG was also
conducted as part of the routine clinical evaluation. Of the 14
patients studied, 8 responded to radiotherapy (5 showed a
complete response with 3 partial responders) and 6 showed no
response. The mean 60Cu-ATSM T=M ratio of nonresponders
(3.4� 0.8) was found to be much larger than uptake observed in
responders (1.5� 0.4) [p¼ 0.002]. However, no significant dif-
ferences were observed in the standardized uptake values
(SUVs) between the tumors of responders (3.5� 1.0) and non-
responders (2.8� 1.1) [p¼ 0.2]. The threshold T=M value of 3.0
was identified as an accurate cut-off value for distinguishing
responders from nonresponders. In contrast to the results with
60Cu-ATSM, no significant differences were observed in either
the mean T=M ratios or SUVs for the uptake of [18F]-FDG (2-
Fluoro-2-deoxy-d-glucose) in responders (12.7� 10.4) and
nonresponders (10.9� 4.1) [p¼ 0.7]. In addition, no statistically
significant correlation between 60Cu-ATSM and [18F]-FDG up-
take was observed.

Before radiolabeled Cu-ATSM could be used for routine
clinical analysis, accurate dosimetry measurements were re-
quired. In 2005, Laforest et al. used the Medical Internal
Radionuclide Dose (MIRD) approach to provided estimates
of human absorbed doses from 60=61=62=64Cu-ATSM by ex-
trapolating data acquired from biodistribution data in rat
models.63 Calculated organ doses for 61Cu, 62Cu, and 64Cu
were extrapolated from the results obtained for 60Cu-ATSM
dosimetry. The estimated human dose for safe injection into
an adult was predicted to lie between 500 and 800 MBq.

Human doses using 64Cu-ATSM have also been estimated
from biodistribution data in non-tumor-bearing hamsters.56

Lewis et al. reported the first clinical comparison between
the imaging characteristics of 60Cu-ATSM and 64Cu-ATSM
(and [18F]-FDG) in cancers of the uterine cervix conducted
after Cu-ATSM was approved for study as an investigational
new drug (IND 62,675) (Figure 2).64 The study concluded that
tumor uptake of Cu-ATSM as measured in images recorded
between 1 and 9 days was reproducible, irrespective of the
radionuclide used. This important result showed that Cu-
ATSM is a marker for chronic tumor hypoxia, as opposed to
acute hypoxia. Pretherapy imaging has also confirmed pre-
vious results indicating that the PET imaging of Cu-ATSM
provides clinically relevant information about tumor oxy-
genation and is predictive of the likelihood of disease-free
survival post-treatment in patients with cervical cancer.65

Copper-64-Labeled Somatostatin Analogs
for Targeting Neuroendocrine Tumors

Somatostatin is a 14-amino-acid peptide that is involved
in the regulation and release of a number of hormones,
and somatostatin receptors (SSRs) are present in many dif-
ferent normal organ systems, such as the central nervous
system (CNS), the gastrointestinal tract, and the exocrine
and endocrine pancreas. Several human tumors of the neu-
roendocrine system, CNS, breast, and lung are SSR posi-
tive, making it a viable disease target. Further, the presence
of SSRs in a tumor is predictive of a good therapeutic
response. An 8-amino-acid analog of somatostatin, octreo-
tide (OC) has a longer biologic half-life and is shown to be
several times more effective than somatostatin in the sup-
pression of growth-hormone secretion in animals.66 Soma-
tostatin analogs that have been conjugated with various
metal chelators and labeled with 64Cu for evaluating SSR-
positive tumors in rodent models and humans are re-
presented in Figure 3.

FIG. 2. Transaxial positron emission tomography=computed tomography (PET=CT) images showing the CT image (top left),
[18F]-FDG (Fluorine-18-2-fluoro-2-deoxy-d-glucose) image, 60Cu-ATSM and 64Cu-ATSM images recorded between 30 and 60
minutes in 2 patients with known cervical cancers. (A) Images recorded for a patient who responded to conventional radiotherapy
and (B) images from a nonresponder. Reprinted by permission of the Society of Nuclear Medicine from reference 64.
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In one of earlier studies with SSRs, in vitro and in vivo
evaluation of 64Cu-labeled OC conjugates was performed.20

OC was conjugated with TETA for labeling with 64Cu,
and this agent was compared with 111In-DTPA-D-Phe1-OC
(111In-DTPA-OC; Octreoscan,� Coviden, Hazelwood, MO), a
single-positron emission computed tomography (SPECT)
imaging agent approved for routine clinical use as a diag-
nostic agent for neuroendocrine cancer in the United States
and Europe.67 64Cu-TETA-OC was evaluated as a PET im-
aging agent in humans (8 subjects) and compared to 111In-
DTPA-OC with gamma scintigraphy and SPECT imaging.22

64Cu-TETA-OC and PET imaged more tumors in 2 patients,
compared to 111In-DTPA-OC and SPECT, and in 1 patient,
111In-DTPA-OC and SPECT weakly imaged a lung lesion
that was not detected with 64Cu-TETA-OC. Overall, 64Cu-
TETA-OC and PET showed greater sensitivity for imaging
neuroendocrine tumors, in part due to the greater sensitivity
of PET, compared to SPECT.

In vitro and in vivo evaluation of a second-generation so-
matostatin analog, 64Cu-TETA-Y3-TATE (Y3-TATE: tyrosine-
3-octreotate), were conducted, where Y3-TATE differs from
OC in that tyrosine (Tyr) replaces phenylalanine (Phe) in the
3-position, and the C-terminal threonine (Thr) is an acid ra-
ther than an alcohol. Y3-TATE previously showed improved
targeting of somatostatin-rich tissues.24,68 64Cu-TETA-Y3-
TATE had high binding affinity to somatostatin in receptor-
positive rat pancreatic tumor-cell membranes, while in rat
pancreatic tumor models, 64Cu-TETA-Y3-TATE had twice as
much uptake as 64Cu-TETA-OC. This reagent demonstrated
superior potential as a radiopharmaceutical for the imaging
and therapy of SSR-positive tissues.

After demonstrating the superiority of CB-TE2A, com-
pared to TETA, for stably chelating 64Cu in vivo,28 CB-TE2A
was conjugated to Y3-TATE and directly compared to the
64Cu-TETA-Y3-TATE conjugate.69 64Cu-CB-TE2A-Y3-TATE
was radiolabeled in high radiochemical purity with specific
activities of 1.3–5.1 mCi=mg of peptide at 958C and pH 8.0.70

Biodistribution studies, using AR42J tumors implanted in
male Lewis rats, revealed that this complex had higher up-
take in somatostatin-positive tissues, compared to the TETA
conjugate. Accumulation of 64Cu-CB-TE2A-Y3-TATE was

lower at all time points, in blood and liver, and less accu-
mulation was observed in the kidney at earlier time points,
when compared to 64Cu-TETA-Y3-TATE. For example, the
tumor-to-blood (T=B) ratio at 4 hours for 64Cu-CB-TE2A-Y3-
TATE was 156� 55; for 64Cu-TETA-Y3-TATE, the T=B ratio
was 8.2� 1.6 ( p< 0.001). These data suggest that the 64Cu-
CB-TE2A-Y3-TATE is more resistant to transchelation than
the TETA analog.

The majority of somatostatin analogs that have been
evaluated for PET and SPECT imaging are somatostatin
agonists, and as such, they are internalized into cells via re-
ceptor-mediated endocytosis and mimic the behavior of so-
matostatin itself. The belief has been that greater cellular
internalization of a radiolabeled somatostatin analog in vitro
is a predictor of improved tumor uptake in vivo. This has
been demonstrated by the group at Rotterdam for 111In-
labeled somatostatin analogs71,72 as well as by our group.24,69

In 2006, Ginj et al. showed that an 111In-labeled somatostatin
receptor type 2 (SSTr2) antagonist, sst2-ANT, had im-
proved uptake, compared to 111In-DTPA-Y3-TATE,73 in
mice bearing SSTr2-transfected HEK-cell tumors. The re-
searchers showed that sst2-ANT was not internalized in the
HEK cells and demonstrated classical antagonist behavior.
64Cu-CB-TE2A-sst2-ANT was compared with 64Cu-CB-
TE2A-Y3-TATE in AR42J tumor-bearing rats.74 64Cu-CB-
TE2A-sst2-ANT showed low levels of internalization in
AR42J cells and similar uptake to 64Cu-CB-TE2A-Y3-TATE
in vivo at early time points. An interesting characteristic of
the SSTr2 antagonist is that it appears to bind to *15-fold
higher number of receptors than the agonist (23,000 versus
1551 fmol=mg protein), but with *17-fold decreased affinity
(26 vs 1.5 nM). However, 64Cu-CB-TE2A-sst2-ANT showed
longer retention in the AR42J tumor, resulting in improved
T=B (72) and T=M (93) ratios at 24 hour postinjection, com-
pared to 64Cu-CB-TE2A-Y3-TATE (T=B, 20; T=M, 45).74

Copper-64-Labeled Integrin-Targeting Peptides

Integrins are transmembrane proteins that regulate cell-cell
and cell-matrix interactions. They are dimers that consist of two
noncovalently bound subunits (a and b) that have an extra-

FIG. 3. Amino-acid sequences of somatostatin analogs used in imaging with 64Cu and the chelators used to complex 64Cu.
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cellular domain arranged in a characteristic way that imparts
different adhesion properties to the cell.75 Integrin proteins
have been found to play important roles in angiogenesis and
tumor metastasis. So far, 24 different integrins have been
identified, constituted by combinations of 18-a and 8-b sub-
units. Alpha v beta 3 (avb3) is one of the most widely studied
integrins, since it is upregulated in endothelial cells involved in
active angiogenesis but not in quiescent endothelial cells,76

making it an ideal biomarker for angiogenesis and tumor im-
aging.77 Tumors where avb3 are found to be highly expressed
include glioblastomas, breast and prostate tumors, malignant
melanomas, and ovarian carcinomas.78–81 The avb3 integrin
binds to extracellular proteins through a specific binding
pocket that recognizes the three-amimo-acid sequence, argi-
nine-glycine-aspartic acid (Arg-Gly-Asp or RGD).82,83 This
discovery has led to the design of many RGD-based imaging
agents,77,84,85 and several investigations involving the 64Cu
radiolabeled complexes have been reported (Figure 4).

Chen et al. conjugated 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA) to c(RGDyK) and labeled it
with 64Cu for breast-cancer imaging studies but found only
moderate uptake in U87MG human glioma tumors [1.44�
0.09 percent injected dose per gram [%ID=g] at 4 hour
postinjection] with relatively high liver and kidney retention
(2.84� 0.17 and 1.98� 0.06 %ID=g at 4 hour postinjection,
respectively).86 In order to improve tumor uptake and in vivo

kinetics, they substituted the monomeric RGD derivative for
dimeric compounds (E[c(RGDyK)2 and E[c(RGDfK)2) and ob-
served improved tumor targeting. However, kidney uptake
remained too high for the compounds to be considered for
further clinical studies.16 In an attempt to modulate kidney
retention, polyethylene glycol (PEG) groups were added to the
monomeric RGD peptide derivative, and it was observed that
64Cu-DOTA-c(RGDyK)-PEG had very similar uptake in brain
tumors, compared to 64Cu-DOTA-c(RGDyK), but a much
lower liver uptake and a faster clearance from blood and kid-
neys.15 By using tetrameric87 and octameric88 RGD derivatives,
binding affinity and tumor uptake in glioblastoma cells im-
proved; however, liver and kidney uptake were also increased.
Shi et al. examined the effects of linkages (Gly-Gly-Gly and
PEG4) between cyclic RGD dimers for agents labeled with 64Cu
by using the DOTA chelator.89 This group showed that these
linkages improved the tumor uptake, compared to simple RGD
dimers, potentially due to having the appropriate distance
between the two RGD peptides that allows binding to two
different receptors simultaneously. This strategy can be applied
to other receptors as well using molecular modeling to deter-
mine the distances between receptors on tumor cells.

In a recent patent, Kimura et al. reported on the conjugation
of DOTA to a library of many ‘‘miniproteins’’ derived from
knottin peptides whose 25–40-amino-acid sequences have
been enriched by an RGD loop.90 After screening for initial

FIG. 4. Structures of c(RGDxK) peptides and proteins used in the imaging of avb3 expression in tumor angiogenesis and
osteoclasts. x, d-Tyr or d-Phe.
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integrin-binding ability, some of the chelators were labeled
with 64Cu. Biodistribution and micro-PET imaging studies
showedgoodspecificuptakeinU87MGtumors(glioblastoma).
However, kidney uptake was consistently higher than tumor
uptake over a 25-hour period.90

Sprague et al. conjugated c(RGDyK) to a different chelator,
CB-TE2A, and found that the corresponding 64Cu complex
was taken up specifically by osteoclasts,91 which are upre-
gulated in osteolytic lesions and bone metastases.92 These
investigations open the possibility of other applications for
imaging avb3 in diseases, such as osteoarthritis or osteopo-
rosis, as well as imaging osteolytic bone metastases.

Wei et al. compared two RGD peptides labeled with two
highly stable chelating systems, CB-TE2A-c(RGDyK) and
diamsar-c(RGDfD), in M21 and M21L human melanoma
tumor-bearing mice.93 This study showed that although both
chelator-peptide conjugates had similar binding affinity for
isolated avb3, the tumor targeting in vivo was better for 64Cu-
CB-TE2A-c(RGDyK) than the diamsar analog. There was
also improved blood and liver clearance for 64Cu-CB-TE2A-
c(RGDyK). Some of these differences could be due to the
differences in the peptides used, as well as the fact that
diamsar had a very short linkage between the aspartic acid in
the 5-position and the chelator.

64Cu-Labeled Antibodies for Tumor Targeting

Targeting epidermal growth factor receptor 1

The epidermal growth factor (EGF) family of membrane
receptors (EGFR) is one of the most relevant targets in the
tyrosine kinase family. EGFR expression is increased in many
human tumors such as breast cancer, squamous-cell carci-
noma of the head and neck, and prostate cancer.94 Activation
of EGFR contributes to several tumorigenic mechanisms, and
in many tumors, EGFR expression may act as a prognostic
indicator, predicting patient survival and=or more of the
presence of diseases in advanced stages.94 At present,
monoclonal antibodies (mAbs), which block the binding of
EGF to the extracellular ligand-binding domain of the recep-
tor, have shown promise from a therapeutic standpoint.
Cetuximab (C225; Erbitux,� Bristol-Myers Squibb, New York,
NY) was the first mAb targeted against the EGFR approved
by the U.S. Food and Drug Administration (FDA) for the
treatment of patients with EGFR-expressing, metastatic colo-
rectal carcinoma. Cetuximab binds competitively to the ex-
tracellular domain of EGFR with an affinity comparable to the
natural ligand (KD¼ 1.0 nM), inhibiting the binding of the
activating ligand to the receptor.95,96

Cai et al. reported the evaluation of 64Cu-DOTA-
cetuximab in several tumor-bearing mouse models.97 Using
Western blot analysis, a positive correlation was shown to
exist between the expression of EGFR and uptake of 64Cu-
DOTA-cetuximab in several different EGFR-expressing
tumor-bearing mouse models. At Washington University,
St. Louis, MO, 64Cu-DOTA-cetuximab was synthesized for
the small-animal PET imaging of EGFR expression in A431
tumor-bearing mice.98 Highly EGFR-expressing A431 and
low-EGFR-expressing MDA-MB-435 cells were compared.
An equilibrium dissociation constant (KD) of 0.28 nM
was obtained with the A431 cells, and the KD and Bmax

(maximum receptor density) were in agreement with the
reported literature values of unlabeled cetuximab with A431

cells.98 In vivo evaluation of 64Cu-DOTA-cetuximab was
performed in A431 and MDA-MB-435 tumor-bearing mice.
Both biodistribution and micro-PET data showed a higher
uptake in the EGFR-positive A431 (Figure 5) tumor than in
the EGFR-negative MDA-MB-435 tumor. Metabolism ex-
periments were also performed to determine the extent of
64Cu transchelation to blood, liver, and tumor proteins in
A431 tumor-bearing mice. The results showed minimal me-
tabolism of 64Cu-DOTA-cetuximab in the blood out to 24
hours postinjection. Liver metabolism studies, using size-
exclusion chromatography, demonstrated that transchelation
of 64Cu to three proteins occurs; these were identified as SOD
and metallothionein, while the third metabolite was believed
to be a protein aggregate.

64Cu-DOTA-cetuximab has also been evaluated for corre-
lating EGFR densities on the surface of five different cervical
cancer lines with the EGFR-messenger RNA (mRNA) ex-
pression. Based on the cellular data, micro-PET imaging was
performed on tumor-bearing mice, using the highest ex-
pressing cervical cancer cell line, CaSki. For the in vitro
analysis, five cervical cancer cell lines were selected after a
screen of 23 human cervical cancer lines, based on their level
of EGFR gene expression by gene-expression microarray
analysis. The five cell lines had different ranges of EGFR
expression with the following order: CaSki (high), ME-180
and DcTc2 4510 (both midrange), HeLa (low), and C-33A
(negative). The cell-surface EGFR expression was evaluated
by conducting saturation binding assays at 48C, and the re-
sults paralleled the levels of EGFR expression determined by
microarray analysis. In vivo biodistribution and small-animal
PET studies with 64Cu-DOTA-cetuximab in CaSki tumor-
bearing nude mice showed relatively high tumor uptake at
24 hour after injection (13.2 %ID=g), with significant reten-
tion of radioactivity in blood and liver as well. Overall, this
study demonstrated that 64Cu-DOTA-cetuximab is a useful
marker of EGFR-expression levels, as well as a potential PET
agent for determining patient-specific therapies and thera-
peutic monitoring.

Other 64Cu-labeled mAbs
for tumor targeting

The SarAr chelator was attached to the anti-GD2 mAb,
14.G2a, and its chimeric analog, ch14.18, that target dis-
ialogangliosides overexpressed on neuroblastoma and mel-
anoma.99 Biodistribution studies in athymic nude mice
bearing subcutaneous (s.c.) neuroblastoma (IMR-6, NMB-7)
and melanoma (M21) xenografts showed that 15%–20% of
the ID=G accumulated in the tumor at 24 hours after injec-
tion, and only 5%–10% of the ID accumulated in the liver, a
lower value than typically seen with other chelators. Uptake
by a GD2-negative tumor xenograft was significantly lower
(<5 %ID=G). This study demonstrates the utility of the
highly stable SarAr chelation system, which enables the
formation of stable 64Cu complexes attached to mAbs by
using mild radiolabeling conditions.

Copper-64-Labeled Nanoparticles

Nanotechnology is an applied science that creates and
studies molecules or aggregates that have an overall size in
the 1–1000-nm range (<1mm). In the last few years, nano-
devices and -particles have been used in biomedical studies
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FIG. 5. (A) Projection micro-PET (positron emission tomography) images of A431 tumor-bearing nude mice after 20 and 46
hours postadministration of 64Cu-DOTA-cetuximab, with and without an injected blocking dose 20 hours prior to the
imaging dose (5.6 MBq, 6 g, left; 5.6 MBq, 1 mg of cetuximab, right). (B) Coronal micro-PET images of 64Cu-DOTA-cetuximab
in A431 [epidermal growth factor receptor (EGFR)-positive] and MDA-MB-435 (EGFR-negative) tumor-bearing mice after 19
and 48 hours postadministration of 64Cu-DOTA-cetuximab. (C) micro-PET=computed tomography coregistration images of
64Cu-DOTA-cetuximab in a mouse bearing both A431 and MDA-MB-435 tumors (arrow) at 24 hours postinjection. Reprinted
by permission of the Mary Ann Liebert, Inc., publishers from reference 98.
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investigating new and improved diagnosis and therapy
agents. Oncology is one of the disciplines that has benefited
the most from nanotechnology. Several nanoparticles are
used in diagnostic assays for cancer, as contrast agents for
MRI, as drug-delivery agents, as tumor visualization agents
during surgery, and as therapeutic agents.100,101 Several types
of nanoparticle platforms have been evaluated for imaging
applications, including iron-oxide nanoparticles,88,102–104 gold
nanoparticles,105–108 liposomes,109,110 emulsions,111,112 den-
drimers,113,114 and nanotubes (see Figure 6 for some ex-
amples).115–117 Nanoparticles conjugated with bifunctional
chelators and targeting ligands are particularly useful for PET
imaging purposes because their higher surface area per vol-
ume allows a higher number of targeting residues and ra-
dionuclides per particle, which, in turn, translates into higher
affinity and higher specific activity, respectively.118

Studies have been performed to determine the pharma-
cokinetics of nontargeted nanostructures labeled with 64Cu
by using the DOTA chelator. Pressly et al. prepared well-
defined amphiphilic copolymers with a predetermined
number of reactive functionalities, with PEG chains of vari-
able length and low polydispersity.119 Upon collapsing in

water, these polymers formed three-dimensional, three-
layered nanoparticles with a hydrophobic inner core sur-
rounded by a hydrophilic shell where the functional groups
are located and, finally, a PEG outer shell. The thickness of
each layer, the number of reactive sites, and the dimension of
the particle are determined by the composition of the initial
linear polymer. When DOTA molecules were conjugated to
these nanoparticles, 64Cu labeling was achieved and biodis-
tribution studies were conducted. Not surprisingly, particles
with longer PEG-chain length had longer circulation in blood
and lower liver uptake.119,120

Sun et al. synthesized shell-cross-linked nanoparticles
(SCKs) by cross-linking to different degree micelles formed
by amphiphilic block copolymers. When TETA was incor-
porated onto the final SCKs, the yield was low and the la-
beling efficiency was unsatisfactory.121 This problem was
solved by preincorporating the copper chelator (DOTA in
this case) into the copolymer before the nanoparticles were
formed.104 Tuning of the pharmacokinetics of these particles
was performed by introducing different numbers and dif-
ferent lengths of PEG chains.104 The extent of cross-linking
and the dimensions of the linker between nanoparticle and

FIG. 6. Structures of nanoparticles used in imaging include DOTA-conjugated quantum dots,123 DOTA- and RGD peptide-
conjugated single-walled carbon nanotube nanoparticles,115 PEGylated DOTA star copolymers,120 and PEGylated DOTA-
shell cross-lined (SCK) nanoparticles.104
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copper chelator were found to have a dramatic impact on the
specific activity of the radiolabeled particle.122

The majority of targeted nanoparticles that have been
evaluated have been conjugated with RGD peptide for the
targeting of avb3 integrin. Cai et al. conjugated c(RGDyK)
and DOTA to quantum dots (QD), obtaining a 20-nm na-
noparticle having about 28 DOTA and 90 RGD residues on
its surface.123 They observed selective targeting of the vas-
culature of avb3-positive tumors, such as U87MG human
glioblastoma, with minimal extravasation, which would be
necessary for high tumor uptake. This led to a lower than ex-
pected tumor uptake, with most of the 64Cu-DOTA-QD-RGD
being taken up by the liver, spleen, and bone marrow. The
researchers concluded that smaller particles would probably
have improved tumor-targeting properties due to easier ex-
travasation and lower reticuloendothelial system uptake.123

Lee et al. reported 5-nm iron-oxide nanoparticles coated with
polyaspartic acid functionalized with an estimated 35 RGD
peptides and 30 DOTA macrocycles per particle.124 PET studies
gave high contrast images of the tumor; however, liver up-
take was still high. This behavior may be explained by the fact
that while the core diameter of the particles was 5 nm, their
hydrodynamic size was much larger (45 nm), so the same
problems observed with the QD nanoparticles persisted.124

One of the most successful examples of tumor targeting
with 64Cu-labeled RGD-conjugated nanoparticles involves the
use of single-walled carbon nanotubes (SWNTs).115 Here, a
comparison of SWNT that contained different sizes of PEG
was evaluated in U87MG human glioblastoma tumor-bearing
mice. The best conjugates were 64Cu-SWNT-PEG5400-RGD,
which showed the lowest liver and highest tumor accumula-
tion that was improved over nontargeted SWNT.

Conclusions

64Cu-based radiopharmaceuticals are being explored as
agents for the delineation of disease in humans. By exploi-
tation of the chemistry of Cu(II) and the decay characteristics
of 64Cu, agents based on small molecules, peptides, and
larger biomolecules, such as antibodies and nanoparticles,
are in development for clinical translation. A diverse array of
highly specific molecular 64Cu-radiopharmaceutical imaging
probes will inevitably lead to improved patient-specific
treatments.
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