Study of the electron kinetics and modeling of discharges used for methane conversion

N. Pinhão, A. Janeco, J. Branco, V. Guerra

Instituto de Plasmas e Fusão Nuclear / Universidade de Lisboa

nuno.pinhao@tecnico.ulisboa.pt

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

通 と く ヨ と く ヨ と

3

Background

- Methane reforming in DBD with admixtures of rare gases
- Experimental results on CH₄/CO₂/He mixtures

2 Study of the electron kinetics

- Cross sections
- Electron kinetics in $CH_4/CO_2/He$ mixtures

3 Modeling the discharge

- A model for breakdown
- A model for CH₄ and CO₂ conversion

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

通 と く ヨ と く ヨ と

3

From the literature:

Effect dilution of methane with rare gases:

- A significant increase in conversion with the rare gas concentration;
- No significant difference between helium, argon and neon;
- Results explained by Penning ionisation.

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

- 4 回 2 4 U 2 4 U

-

Experimental results

Some definitions:

- $\alpha = \phi_{out}/\phi_{in}$
- Conversion of a reactant X: $C_X = \frac{[X]_0 \alpha[X]}{[X]_0}$
- Selectivity for a product Y: $S_Y = \frac{\alpha n_Y[Y]}{\sum_X ([X]_0 \alpha[X])}$
- Specific input energy: $\mathcal{S}=P/q_V$

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

- 4 回 2 4 U 2 4 U

-

Experimental results

Some definitions:

- $\alpha = \phi_{out}/\phi_{in}$
- Conversion of a reactant X: $C_X = \frac{[X]_0 \alpha[X]}{[X]_0}$
- Selectivity for a product Y: $S_Y = \frac{\alpha n_Y[Y]}{\sum_{\chi}([X]_0 \alpha[X])}$
- Specific input energy: $\mathcal{S}=P/q_V$

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/CO_2/He\ mixtures$

Experimental results

Some definitions:

- $\alpha = \phi_{out}/\phi_{in}$
- Conversion of a reactant X: $C_X = \frac{[X]_0 \alpha[X]}{[X]_0}$
- Selectivity for a product Y: $S_Y = \frac{\alpha n_Y[Y]}{\sum_X ([X]_0 \alpha[X])}$
- Specific input energy: $\mathcal{S}=P/q_V$

Conditions:

- DBD, AC power supply, (5–10) kHz, (room temperature);
- Electric diagnostics, GC;

N.Pinhão, A.Janeco and J.Branco Plasma Chem. Plasma Process (2011) 31:427-439

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

CH₄/CO₂/He mixtures: Breakdown voltage

../Figuras/Vbkfit_bw.png

く 同 と く ヨ と く ヨ と

3

Figure : Gas breakdown voltage for CH₄/CO₂/He mixtures and [CH₄]:[CO₂]=1

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

$$CH_4/CO_2/He$$
 mixtures: Conversion

(日) (同) (三) (三)

Ξ.

Figure : Conversion of (a) CH_4 and (b) CO_2 for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH_4]:[CO_2]=1).

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

Ξ.

$$CH_4/CO_2/He$$
 mixtures: Selectivity

Selectivity for H_2 and CO for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH₄]:[CO₂]=1).

Methane reforming in DBD with admixtures of rare gases Experimental results on $\rm CH_4/\rm CO_2/\rm He\ mixtures$

<ロ> <同> <同> < 回> < 回>

2

.../Figuras/S_other1.png .../Figuras/S_other2.png
ivity for
$$C_2H_6$$
 and C_3H_8 for mixtures with different helium mole fractions of

Selectivity for C_2H_6 and C_3H_8 for mixtures with different helium mole fractions 55%, 70%, 80% and 90% ([CH₄]:[CO₂]=1).

通 と く ヨ と く ヨ と

3

Backgroun

- Methane reforming in DBD with admixtures of rare gases
- Experimental results on CH₄/CO₂/He mixtures

2 Study of the electron kinetics

- Cross sections
- Electron kinetics in $CH_4/CO_2/He$ mixtures

3 Modeling the discharge

- A model for breakdown
- A model for CH₄ and CO₂ conversion

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク へ (や)

e-collision cross sections

- ../Figuras/CH4_new.png./Figuras/CO2_new.png./Figuras/He_BeDance_10 Legend:
 - momentum transfer; vibrational excitation; electronic excitation;
 - ionisation; attachment.

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

< 回 > < 回 > < 回 >

Ξ.

Difficulties...

• CH₄, CO₂, CO: large $\sigma_v/\sigma_m \Rightarrow$ higher anysotropy of the *evdf*

(*) *) *) *)

A .

3

Difficulties...

- CH₄, CO₂, CO: large $\sigma_v/\sigma_m \Rightarrow$ higher anysotropy of the *evdf*
- Streamers: high $E/N \Rightarrow$ higher anysotropy of the *evdf*

A B + A B +

3

Difficulties...

- CH₄, CO₂, CO: large $\sigma_v/\sigma_m \Rightarrow$ higher anysotropy of the *evdf*
- Streamers: high $E/N \Rightarrow$ higher anysotropy of the *evdf*
- Polyatomic gases: Intra- and inter-mode v-transitions \Rightarrow Cross sections?

3

Difficulties...

- CH₄, CO₂, CO: large $\sigma_v/\sigma_m \Rightarrow$ higher anysotropy of the *evdf*
- Streamers: high $E/N \Rightarrow$ higher anysotropy of the *evdf*
- Polyatomic gases: Intra- and inter-mode v-transitions \Rightarrow Cross sections?
- Multi-step excitation and ionisation ⇒ Cross sections?

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

프 () () () (

3

Treatment of vibrational levels: Approximations

• We neglect anharmonicity: SHO !

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO):
 Intra-mode: e + A(v, w, p, ...) → e + A(v, w ± 1, p, ...)

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO): Intra-mode: $e + A(v, w, p, ...) \rightarrow e + A(v, w \pm 1, p, ...)$

$$\sigma_{\nu,\nu+1}^{i} = (\nu+1)\sigma_{0,1}^{i}; \ \sigma_{\nu,\nu-1}^{i} = \nu\sigma_{1,0}^{i}$$

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO): Intra-mode: $e + A(v, w, p, ...) \rightarrow e + A(v, w \pm 1, p, ...)$

$$\sigma^{i}_{{m v},{m v}+1}=({m v}+1)\sigma^{i}_{{m 0},1};~\sigma^{i}_{{m v},{m v}-1}={m v}\sigma^{i}_{1,{m 0}}$$

Inter-mode: $e + A(v, w, p, \ldots) \rightarrow e + A(v \mp 1, w \pm 1, p, \ldots)$

化压力 化压力

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO): Intra-mode: $e + A(v, w, p, ...) \rightarrow e + A(v, w \pm 1, p, ...)$ $\sigma_{v,v+1}^{i} = (v+1)\sigma_{0,1}^{i}; \sigma_{v,v-1}^{i} = v\sigma_{1,0}^{i}$ Inter-mode: $e + A(v, w, p, ...) \rightarrow e + A(v \mp 1, w \pm 1, p, ...)$ $\sigma_{v,v+1}^{ij} = (v+1)w\sigma_{0,1,1,0}^{ij}$

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO):
 Intra-mode: e + A(v, w, p, ...) → e + A(v, w ± 1, p, ...)

$$\sigma^{i}_{\mathbf{v},\mathbf{v}+1} = (\mathbf{v}+1)\sigma^{i}_{\mathbf{0},1}; \ \sigma^{i}_{\mathbf{v},\mathbf{v}-1} = \mathbf{v}\sigma^{i}_{1,\mathbf{0}}$$

Inter-mode: $e + A(v, w, p, \ldots) \rightarrow e + A(v \mp 1, w \pm 1, p, \ldots)$

$$\sigma_{v,v+1;w,w-1}^{ij} = (v+1)w\sigma_{0,1;1,0}^{ij}$$

$$\sigma_{\mathbf{v},\mathbf{v}';\mathbf{w},\mathbf{w}'}^{ij} = \frac{\sigma_{\mathbf{v},\mathbf{v}'}^{i} \times \sigma_{\mathbf{w},\mathbf{w}'}^{j}}{\sigma_{0,0;0,0}^{ij}}$$

3

Treatment of vibrational levels: Approximations

- We neglect anharmonicity: SHO !
- Distorted wave theory for molecular collisions (SHO): Intra-mode: $e + A(v, w, p, ...) \rightarrow e + A(v, w \pm 1, p, ...)$

$$\sigma_{v,v+1}^{i} = (v+1)\sigma_{0,1}^{i}; \ \sigma_{v,v-1}^{i} = v\sigma_{1,0}^{i}$$

Inter-mode: $e + A(v, w, p, \ldots) \rightarrow e + A(v \mp 1, w \pm 1, p, \ldots)$

$$\sigma_{v,v+1;w,w-1}^{ij} = (v+1)w\sigma_{0,1;1,0}^{ij}$$

$$\sigma_{\mathbf{v},\mathbf{v}';\mathbf{w},\mathbf{w}'}^{ij} = \frac{\sigma_{\mathbf{v},\mathbf{v}'}^i \times \sigma_{\mathbf{w},\mathbf{w}'}^j}{\sigma_{0,0;0,0}^{ij}}$$

Methane intra- and inter-mode transition cross sections

• • = • • = •

3

Figure : Lowest intra- and inter-mode v-cross sections for CH₄: – A: $\sigma_{0,1;0,1}^{ij}$, B: $\sigma_{1,0;0,1}^{ij}$, C: $\sigma_{0,1;1,0}^{ij}$, D: $\sigma_{1,0;1,0}^{ij}$. σ_m is the momentum transfer cross section and the index *S* identifies superelastic cross sections.

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

▲□→ ▲ □→ ▲ □→ -

2

Multi-step processes

$e + A(v, w, p, \ldots) \rightarrow e + A^{\times} + \ldots$

N. Pinhão,, A. Janeco,, J. Branco,, V. Guerra Electron kinetics and modeling of CH₄ conversion

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

▲□ → ▲ 三 → ▲ 三 → …

Ξ.

Multi-step processes

$$e + A(v, w, p, \ldots) \rightarrow e + A^{\mathsf{x}} + \ldots$$

Defining $\Delta_{w}^{x,i} = \varepsilon_{x}/(\varepsilon_{x} - w\varepsilon_{i})$, we use

$$\sigma_{v}^{\mathbf{x},i}(\varepsilon) = \sigma_{0}^{\mathbf{x}}\left(\varepsilon\Delta_{v}^{\mathbf{x},i}\right) \left[\Delta_{v}^{\mathbf{x},i}\right]^{2(1+\gamma)} \frac{\sum_{w=0}^{w} \left[\Delta_{w}^{\mathbf{x},i}\right]^{-2(1+\gamma)}}{(1+w_{M})}$$

and

Multi-step processes

$$e + A(v, w, p, \ldots) \rightarrow e + A^{\times} + \ldots$$

Defining $\Delta_{w}^{x,i} = \varepsilon_{x}/(\varepsilon_{x} - w\varepsilon_{i})$, we use

$$\sigma_{v}^{x,i}(\varepsilon) = \sigma_{0}^{x}\left(\varepsilon\Delta_{v}^{x,i}\right) \left[\Delta_{v}^{x,i}\right]^{2(1+\gamma)} \frac{\sum_{w=0}^{w} \left[\Delta_{v}^{x,i}\right]^{-2(1+\gamma)}}{(1+w_{M})}$$

and

$$\sigma_{w\dots p}^{\mathsf{x}}(\varepsilon) = \frac{1}{m} \left[\sigma_{w}^{\mathsf{x},i}(\varepsilon) + \dots + \sigma_{p}^{\mathsf{x},m}(\varepsilon) \right]$$

Adapted from Celiberto, R. and Capitelli, M. and Janev, R.K., Chem. Phys. L., 6 (1996) 575-580

2

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Electron kinetics

Gas mixtures:

• Input: $\eta \text{He}/\frac{1}{2}(1-\eta)\text{CH}_4/\frac{1}{2}(1-\eta)\text{CO}_2;$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Ξ.

Electron kinetics

Gas mixtures:

- Input: $\eta \text{He} / \frac{1}{2} (1 \eta) \text{CH}_4 / \frac{1}{2} (1 \eta) \text{CO}_2$;
- ... + Products: H_2 , CO

高 と く ヨ と く ヨ と

э.

Electron kinetics

Gas mixtures:

- Input: $\eta \text{He} / \frac{1}{2} (1 \eta) \text{CH}_4 / \frac{1}{2} (1 \eta) \text{CO}_2$;
- ... + Products: H_2 , CO
- Stoichiometry: $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

・同 ・ ・ ヨ ・ ・ ヨ ・ …

3

Electron kinetics

Gas mixtures:

- Input: $\eta \text{He} / \frac{1}{2} (1 \eta) \text{CH}_4 / \frac{1}{2} (1 \eta) \text{CO}_2$;
- ... + Products: H_2 , CO
- Stoichiometry: $CH_4 + CO_2 \rightarrow 2CO + 2H_2$
- Parameters: initial helium concentration and conversion: (η , C)

Electron kinetics

Gas mixtures:

- Input: $\eta \text{He} / \frac{1}{2} (1 \eta) \text{CH}_4 / \frac{1}{2} (1 \eta) \text{CO}_2$;
- ... + Products: H_2 , CO
- Stoichiometry: $CH_4 + CO_2 \rightarrow 2CO + 2H_2$
- Parameters: initial helium concentration and conversion: (η , C)
- Hydrodynamic regime, non-conservative processes, multiterm;
- Results: f_0 , α/N , $\nu_i/N = [M_i] \times k_e^X$, with $M_i = CH_4$, CO_2 , He;

A.Janeco, N.Pinhão, and V.Guerra Plasma Sources Sci. Tech. (submitted)

Cross sections Electron kinetics in $CH_4/CO_2/He$ mixtures

a) Electron energy distribution function

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ ()

Figure : Isotropic component of the eedf for three values of reduced field, (a) 10 Td, (b) 74 Td and (c) 736 Td, and different combinations of (η, C) : — (0, 0); – - (0.6, 0); – - (0, 0.3); · · · (0.6, 0.3).

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

b) lonization coefficient

../FighFighalphirpqgoniz.png

□ ↓ ↓ = ↓ ↓ = ↓ ∩ Q ∩

Figure : [left] Effective ionization coefficient as a function of E/N and for different values of (η, C) : _____ (0, 0); ____ (0, 0); ____ (0, 0.3); ... (0.6, 0.3). [right] lonization reduced frequencies for _____ He, \Box CH₄, ____ CO_2 , ___ CO_3 and \cdot \cdot \cdot H₂ as a function of the reduced field for a $(\eta, C) = (0.6, 0.3)$.

Cross sections Electron kinetics in $CH_4/CO_2/He$ mixtures

c) Vibrational excitation frequencies

../Figuras/freqVib.png

A B A A B A

3

Figure : Total vibrational reduced collision frequencies in (a) CH₄ and (b) CO₂ as a function of the reduced field and for different values of (η, C) : [same codes as before].

d) Ionization and excitation of He metastable levels

../Figuras/freqHe.png

向下 イヨト イヨト

3

Figure : (a) Electron collision reduced frequencies for helium ionization and (b) excitation of helium metastables as a function of the reduced field and for different values of (η, C) . Ionization or 2 ¹S level: — (1, 0); – – (0.6, 0); – – (0.4, 0). For 2 ³S: dotted curves (· · ·) with the same colors as before.

Cross sections Electron kinetics in CH₄/CO₂/He mixtures

e) Fractional energy losses

../Figuras/powerLosses.png

(四) (日) (日)

3

Figure : Fractional power losses for each type of process and mixtures component: (a) He, (b) CH₄, (c) CO₂ and, (d) the whole mixture. — momentum transfer; — vibrational exc.; – – – electronic exc.; — · — ionization. Calculations made for $(\eta, C) = (0.6, 0)$, with the exception of the dotted curves (· · · ·) in (d), corresponding to $(\eta, C) = (0, 0)$.

通 と く ヨ と く ヨ と

3

Summary

Role of helium:

- Significant shift of the evdf to higher energy;
- Responsible for an increase of the electronic exct. and ionization frequencies in CH_4 and CO_2 ;
- Responsible for a shift of the α/N curve to lower E/N values;
- The excitation and ionization frequencies in He are negligible;
- The results **do not** support the hypothesis of Penning ionization.

< 同 > < 三 > < 三 >

э

Summary

Role of helium:

- Significant shift of the evdf to higher energy;
- Responsible for an increase of the electronic exct. and ionization frequencies in CH_4 and CO_2 ;
- Responsible for a shift of the α/N curve to lower E/N values;
- The excitation and ionization frequencies in He are negligible;
- The results **do not** support the hypothesis of Penning ionization.

Effect of conversion:

- Depends on process and E/N range;
- Process with ε_o low, increase at low E/N and decrease afterwards;
- Process with ε_o high are relatively insensitive and $\nu \propto [M]$;

1 Backgroun

- Methane reforming in DBD with admixtures of rare gases
- Experimental results on CH₄/CO₂/He mixtures

2 Study of the electron kinetics

- Cross sections
- Electron kinetics in $CH_4/CO_2/He$ mixtures

3 Modeling the discharge

- A model for breakdown
- A model for CH₄ and CO₂ conversion

通 と く ヨ と く ヨ と

э

A model for breakdown A model for CH₄ and CO₂ conversion

Breakdown voltage

Model: Townsend regime

- Discharge starts as a Townsend avalanche;
- Selectric field undisturbed: $E(r) \propto U_{bk,g}/r$;
- 3 $1/\nu_{inel} < 0.1 \text{ ns} \Rightarrow f_e(\mathbf{r}, \mathbf{v}, t)$ in local field equilibrium;
- Initial development sustained by photo-electric effect;
- **3** Breakdown criteria: $\int_{r_o}^{R} \alpha_{eff}(E(r)/N) dr = \log(1 + \gamma^{-1})$

高 と く ヨ と く ヨ と

3

A model for breakdown A model for CH₄ and CO₂ conversion

Breakdown voltage

../Figuras/Vbkg0.png

伺 と く ヨ と く ヨ と …

3

Figure : Gas breakdown voltage for $CH_4/CO_2/He$ mixtures and $[CH_4]:[CO_2]=1$. Experimental (points) and model (lines) results.

A model for breakdown A model for CH₄ and CO₂ conversion

Breakdown voltage

../Figuras/Vbkg1.png

伺 と く ヨ と く ヨ と …

3

Figure : Gas breakdown voltage for $CH_4/CO_2/He$ mixtures and $[CH_4]:[CO_2]=1$. Experimental (points) and model (lines) results.

A model for breakdown A model for CH₄ and CO₂ conversion

Breakdown voltage

../Figuras/Vbkg2.png

伺 と く ヨ と く ヨ と …

3

Figure : Gas breakdown voltage for $CH_4/CO_2/He$ mixtures and $[CH_4]:[CO_2]=1$. Experimental (points) and model (lines) results.

A model for breakdown A model for CH_4 and CO_2 conversion

Model for a DBD discharge

What we know

Ilamentary DBD: streamers between a post-discharge region;

伺 ト イヨト イヨト

3

A model for breakdown A model for CH_4 and CO_2 conversion

Model for a DBD discharge

What we know

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;

(*) * (*) *)

A .

3

A model for breakdown A model for CH_4 and CO_2 conversion

Model for a DBD discharge

What we know

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

A B > A B >

э

../Figuras/DBD_simulado.png

イロン イロン イヨン イヨン

2

A model for breakdown A model for CH_4 and CO_2 conversion

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

高 と く ヨ と く ヨ と

3

通 と く ヨ と く ヨ と

э

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

Concept of Equivalent field, $\overline{E/N}$

Sadial and time average model, species dependend on reactor length;

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

Concept of Equivalent field, $\overline{E/N}$

- Sadial and time average model, species dependend on reactor length;
- SIE determines the charge per streamer Q^i ;

< 同 > < 三 > < 三 >

э

A model for breakdown A model for CH_4 and CO_2 conversion

< 同 > < 三 > < 三 >

э

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

Concept of Equivalent field, $\overline{E/N}$

- Sadial and time average model, species dependend on reactor length;
- SIE determines the charge per streamer Q^i ;

< 同 > < 三 > < 三 >

э

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

Concept of Equivalent field, $\overline{E/N}$

- Sadial and time average model, species dependend on reactor length;
- SIE determines the charge per streamer Q^i ;

I_{equiv}
$$\sim v_d(\overline{E/N}) \frac{\delta t_{streamer}}{\delta t_{streamer}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

CH₄ and CO₂ conversion

What we known

- Filamentary DBD: streamers between a post-discharge region;
- ② Streamers occupy a fraction, $f_V \approx 0.01$ of the volume;
- Solution of time the discharge is active: $f_T(U_{bk}/U_{max})$.

How to estimate $n_e(r, t)$ and the rate coefficients K_e^* ?

Concept of Equivalent field, $\overline{E/N}$

- Sadial and time average model, species dependend on reactor length;
- SIE determines the charge per streamer Q^i ;

 $I_{equiv} \sim v_d(\overline{E/N}) \frac{\delta t_{streamer}}{\delta t_{streamer}}$

A model for breakdown A model for CH_4 and CO_2 conversion

Equivalents E/N and discharge length

../Figuras/figure_EbyNLeq.png

伺 とう ほう うちょう

3

Figure : [Left] Equivalent field and [right] equivalent length as a function of helium concentration for two values of conversion.

A model for breakdown A model for CH_4 and CO_2 conversion

Model equations and species

Model species:

CH₄: CH₄*v_i*, CH₃, CH₂, CH, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺, CH₄⁺, CH₃⁺, CH₂⁺, CH⁺; CO₂: CO₂*v_i*, CO₂^{*}, CO₂^{**}, CO, O(¹S), CO₂⁺, O⁺, CO⁺, C⁺

(*) *) *) *)

A .

э

A model for breakdown A model for CH_4 and CO_2 conversion

Model equations and species

Model species:

CH₄: CH₄ v_i , CH₃, CH₂, CH, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺, CH₄⁺, CH₃⁺, CH₂⁺, CH⁺; CO₂: CO₂ v_i , CO₂^{*}, CO₂^{**}, CO, O(¹S), CO₂⁺, O⁺, CO⁺, C⁺ He: He(2³S), He(2¹S)

通 と く ヨ と く ヨ と

3

A model for breakdown A model for CH_4 and CO_2 conversion

通 と く ヨ と く ヨ と

3

Model equations and species

Model species:

CH₄: CH₄
$$v_i$$
, CH₃, CH₂, CH, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺,
CH₄⁺, CH₃⁺, CH₂⁺, CH⁺;
CO₂: CO₂ v_i , CO₂^{*}, CO₂^{**}, CO, O(¹S), CO₂⁺, O⁺, CO⁺, C⁺
He: He(2³S), He(2¹S)

In steady state, for species lost (or produced) on the streamers:

$$\frac{d}{dz}\left[v_{gas}(z)n_{i}(z)\right] = -f_{T}f_{V}n_{i}(z)\left(\frac{Q_{i}}{q_{e}\overline{\alpha}(z)\xi}\right)\sum_{j}\overline{K_{ei}^{j}}(z) + S_{i},$$

A model for breakdown A model for CH_4 and CO_2 conversion

Model results – Densities

・ロ・ ・四・ ・ヨ・ ・ ヨ・

= 990

Figure : Density of selected species along the reactor length for an initial helium concentration of 55% and SIE = 30 kJ/L.

A model for breakdown A model for CH_4 and CO_2 conversion

Model results – Conversion

../Figuras/fig_Ccvib.png

伺 と く ヨ と く ヨ と …

3

Figure : Conversion of CH_4 and CO_2 : [points] experimental results, [lines] model results.

A model for breakdown A model for CH_4 and CO_2 conversion

Model results – Selectivities

../Figuras/figure_S_1order.png

伺 と く ヨ と く ヨ と …

3

Figure : Selectivity for H_2 and CO production as a function of SIE for different values of initial helium concentration.

イヨト・イヨト

-

Conclusions

Conclusions:

- The role of helium in the mixtures was clarified;
- Cross sections for inter- and intra-vibrational excitation and multi-step processes were developed;
- Simple models for the discharge breakdown and the chemical kinetics explain qualitatively the experimental results.

Perspectives:

- Refine the chemical kinetics model;
- More realistic E/N(r, t) and $n_e(r, t)$.

A model for breakdown A model for CH_4 and CO_2 conversion

../Figuras/new_EbyN.png

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Ξ.

Figure : Reduced field along the streamer axis for different instants, dt = 5 ns.