Plasma–assisted conversion of methane and carbon dioxide: myths, challenges and opportunities

<u>N. Pinhão</u>, A. Janeco, J. Branco, L. Redondo V. Guerra, A. Moura

Técnico/Universidade de Lisboa

npinhao@ctn.ist.utl.pt

< ∃ > < ∃ >

Outline

Background

- Energy: An urgent problem to mankind
- An opportunity for plasma systems?

2 Conversion of CH_4 in a DBD

- Experimental results with CH₄/CO₂/He mixtures
- Application of over-voltages

3 A model of the discharge

- Electron kinetics in CH₄/CO₂/He mixtures
- A model for breakdown
- A model for CH₄ and CO₂ conversion

Summary

< 3 > < 3 >

A B > A B >

< 17 ▶

Background

- Energy: An urgent problem to mankind
- An opportunity for plasma systems?

Conversion of CH₄ in a DBD

- Experimental results with CH₄/CO₂/He mixtures
- Application of over-voltages

3 A model of the discharge

- Electron kinetics in CH₄/CO₂/He mixtures
- A model for breakdown
- A model for CH₄ and CO₂ conversion

Summary

Energy: An urgent problem to mankind An opportunity for plasma systems?

Availability of conventional fuels

World:

- Oil: peak in 2015 (?)
- Gas: peak in 2030–2035 (?); \approx 100 years of consumption
- 85% of global energy is transported by liquid fuels

Z.Jian et al. Petr. Sci. (2010)7:136-146

-

Figure: Hubbert peak of US oil production

Energy: An urgent problem to mankind An opportunity for plasma systems?

Storage of Energy: energy density

- Electrical
 - Batteries
 - Super capacitors

How to store it Chemicals like gasoline and ethanol store energy at much higher densities than batteries. With scientific advances, the gap can be filled with electro-chemical storage where chemical energy is converted to electricity in fuel cells.

- Chemical storage
 - H₂
 - Fuels (>10 more energy density)

< 17 >

A B > A B >

Energy: An urgent problem to mankind An opportunity for plasma systems?

Chemical conversion of methane

- CH_4 + oxidant (O₂, CO₂, H₂O) \rightarrow H₂ + CO (Syngas)
 - $\bullet \ \text{Syngas} \to H_2$
 - Syngas \Rightarrow Fisher-Tropsch \Rightarrow synthetic fuels
- $CH_4 + oxidant \Rightarrow CH_3OH (methanol)$

A B + A B +

< 17 ▶

 $\begin{array}{c} & \text{Outline} \\ \textbf{Background} \\ \text{Conversion of } CH_4 \text{ in a DBD} \\ \text{A model of the discharge} \\ & \text{Summary} \end{array}$

Energy: An urgent problem to mankind An opportunity for plasma systems?

Chemical conversion of methane

- CH_4 + oxidant (O₂, CO₂, H₂O) \rightarrow H₂ + CO (Syngas)
 - $\bullet \ \text{Syngas} \to H_2$
 - Syngas \Rightarrow Fisher-Tropsch \Rightarrow synthetic fuels
- $CH_4 + oxidant \Rightarrow CH_3OH (methanol)$

Perspectives

- Conversion of natural gas into liquid fuels \rightarrow large-scale plants;
- Hydrogen for fuel cells → compact and small syngas units.

< ロ > < 同 > < 三 > < 三 >

 $\begin{array}{c} & \text{Outline} \\ \textbf{Background} \\ \text{Conversion of } CH_4 \text{ in a DBD} \\ \text{A model of the discharge} \\ & \text{Summary} \end{array}$

Energy: An urgent problem to mankind An opportunity for plasma systems?

< ロ > < 同 > < 三 > < 三 >

Non-thermal plasmas for conversion of CH₄

Main plasma sources used in the conversion of CH₄:

• Dielectric Barrier Discharges

- Atmospheric pressure (normally in the filamentary mode);
- e High electron density and energy;
- Easy to scale up;
- Coupling between the plasma and a catalyst facilitated.
- But... works at low gas flux
- But...low electrode spacing
- Gliding arc: $T_e = 1 3 eV \gg T_g \sim 2000 K$ and $T_v \sim 2T_g$.
- Microwave discharges

<> ≥ > < ≥ >

____ ▶

Background

- Energy: An urgent problem to mankind
- An opportunity for plasma systems?

2 Conversion of CH_4 in a DBD

- Experimental results with CH₄/CO₂/He mixtures
- Application of over-voltages

3 A model of the discharge

- Electron kinetics in CH₄/CO₂/He mixtures
- A model for breakdown
- A model for CH₄ and CO₂ conversion

4 Summary

Experimental results with $\rm CH_4/\rm CO_2/\rm He\ mixtures$ Application of over-voltages

Experimental set-up

Diagnostics:

- Conversion and selectivity: GC-FID/TCD
- Power, breakdown voltage: Q-V plots

< 17 >

A B + A B +

Experimental results with $CH_4/CO_2/He$ mixtures Application of over-voltages

A ►

()

$CH_4/CO_2/He$ mixtures: Breakdown voltage

Figure: Gas breakdown voltage for CH₄/CO₂/He mixtures and [CH₄]:[CO₂]=1

Experimental results with $CH_4/CO_2/He$ mixtures Application of over-voltages

$CH_4/CO_2/He$ mixtures: Conversion

Figure: Conversion of (a) CH_4 and (b) CO_2 for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH_4]:[CO_2]=1).

-

Experimental results with $CH_4/CO_2/He$ mixtures Application of over-voltages

-

-

$CH_4/CO_2/He$ mixtures: Selectivity

Selectivity for H_2 and CO for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH₄]:[CO₂]=1).

Experimental results with $CH_4/CO_2/He$ mixtures Application of over-voltages

3

CH₄/CO₂/rare gas mixtures: Summary

Table: Products and energy efficiency for CH_4 conversion in a DBD

Reference value^a (H₂): 1.13 eV/molec.

Admixture		pure CH ₄	+ O ₂ or CO ₂	+ He, Ar, Ne
Products		H_2 , $C_x H_y$, solid-C	H_2 , CO, CO_2^{a} ,	CH ₃ OH, $C_x O_y H_z$
Conv. ab.	[total]	40	8.6	5.7
(MJ/mol)	[CH4]	40	15	9
	[CO ₂]	-	20	14
E. eff. (H ₂)	eV/molec.	-	-	17
Comment		C-deposits	H_2O^b , liquid products	

^aGutsol et al., *J. Phys. D: Appl. Phys.* **44** (2011) 274001 ^bwith O₂ N.Pinhão, A.Janeco and J.Branco *Plasma Chem Plasma Process* (2011) 31:427-439

Experimental results with $\rm CH_4/\rm CO_2/\rm He\ mixtures$ Application of over-voltages

$CH_4/CO_2/rare$ gas mixtures: Summary

Table: Products and energy efficiency for CH_4 conversion in a DBD

Reference value^a (H₂): 1.13 eV/molec.

Admixture		pure CH ₄	+ O ₂ or CO ₂	+ He, Ar, Ne
Products		H_2 , $C_x H_y$, solid-C	H_2 , CO, CO_2^{a} ,	CH ₃ OH, $C_x O_y H_z$
Conv. ab.	[total]	40	8.6	5.7
(MJ/mol)	[CH4]	40	15	9
	[CO ₂]	-	20	14
E. eff. (H ₂)	eV/molec.	-	-	17
Comment		C-deposits	H_2O^b , liquid products	

Challenge:

How to explain the results?

How to increase the energy efficiency?

^aGutsol et al., *J. Phys. D: Appl. Phys.* **44** (2011) 274001 ^bwith O₂ N.Pinhão, A.Janeco and J.Branco *Plasma Chem Plasma Process* (2011) 31:427-439

Experimental results with $\rm CH_4/\rm CO_2/\rm He\ mixtures\ Application\ of\ over-voltages$

* 注入 * 注入

э

A ►

Results with a rectangular power supply

Figure: Voltage and current signals with a rectangular power supply on mixtures of CH_4/CO_2 with 60% He.

Experimental results with $\rm CH_4/\rm CO_2/\rm He\ mixtures\ Application\ of\ over-voltages$

Results with a rectangular power supply

Figure: Conversion and selectivity results obtained with sinusoidal or rectangular power supplies on mixtures of CH₄/CO₂ with 80% He. Conversion ability: $(5.7 \rightarrow 1.8) MJ/mol (H_2 : 6 \, eV/molec.)$

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

<> ≥ > < ≥ >

A ▶

Background

- Energy: An urgent problem to mankind
- An opportunity for plasma systems?

2) Conversion of CH₄ in a DBD

- Experimental results with CH₄/CO₂/He mixtures
- Application of over-voltages

A model of the discharge

- Electron kinetics in CH₄/CO₂/He mixtures
- A model for breakdown
- A model for CH₄ and CO₂ conversion

4 Summary

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Electron kinetics

Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH₄ and CO₂;

э

 $\begin{array}{l} \mbox{Electron kinetics in CH_4/CO_2/He mixtures} \\ \mbox{A model for breakdown} \\ \mbox{A model for CH_4 and CO_2 conversion} \end{array}$

Electron kinetics

Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH₄ and CO₂;

Gas mixtures:

• Input: $He/CH_4/CO_2$, with $[CH_4]/[CO_2] = 1$;

3

 $\begin{array}{l} \mbox{Electron kinetics in CH_4/CO_2/He mixtures} \\ \mbox{A model for breakdown} \\ \mbox{A model for CH_4 and CO_2 conversion} \end{array}$

Electron kinetics

Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH₄ and CO₂;

Gas mixtures:

- Input: $He/CH_4/CO_2$, with $[CH_4]/[CO_2] = 1$;
- ... + Products: H_2 , CO

3

 $\begin{array}{l} \mbox{Electron kinetics in CH_4/CO_2/He mixtures} \\ \mbox{A model for breakdown} \\ \mbox{A model for CH_4 and CO_2 conversion} \end{array}$

Electron kinetics

Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH₄ and CO₂;

Gas mixtures:

- Input: $He/CH_4/CO_2$, with $[CH_4]/[CO_2] = 1$;
- ... + Products: H_2 , CO
- \bullet Stoichiometry: CH_4 + CO_2 \rightarrow 2CO + $2H_2$

3

 $\begin{array}{l} \mbox{Electron kinetics in CH_4/CO_2/He mixtures} \\ \mbox{A model for breakdown} \\ \mbox{A model for CH_4 and CO_2 conversion} \end{array}$

・ロン ・回と ・ヨン

3

Electron kinetics

Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH₄ and CO₂;

Gas mixtures:

- Input: $He/CH_4/CO_2$, with $[CH_4]/[CO_2] = 1$;
- ... + Products: H_2 , CO
- \bullet Stoichiometry: CH_4 + CO_2 \rightarrow 2CO + $2H_2$
- Parameters: initial helium concentration and conversion: (η, C)

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

a) Electron velocity distribution function

Figure: Isotropic component of the $F^{[0]}$ expansion coefficient of the electron velocity distribution function for $E/N = 5 \cdot 10^{-16} Vcm^2$. The vertical lines are the thresholds for inelastic processes in methane.

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

ıſī

æ

b) lonization coefficient

Figure: Ionisation coefficient in CH₄/CO₂/He mixtures as a function of the initial helium concentration (η) and methane conversion, *C*.

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

c) Dissociation frequencies

Figure: Dissociation frequencies in CH₄/CO₂/He mixtures as a function of the initial helium concentration (η) and methane conversion (*C*).

2

- 4 回 > - 4 回 > - 4 回 >

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

d) Excitation of helium metastable levels

Figure: Comparison of ionization frequencies and excitation frequencies for the helium metastable levels in $CH_4/CO_2/He$ mixtures, as a function of the initial helium concentration.

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

< 17 >

(*) *) *) *)

e) Fractional energy losses

Figure: Fractional electron energy losses per type of process in $CH_4/CO_2/He$ mixtures with [He]=60%.

2

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

- 4 同 6 4 日 6 4 日 6

э

Breakdown voltage

Model: Townsend regime

- Discharge starts as a Townsend avalanche;
- ⁽²⁾ Electric field undisturbed: $E(r) \propto U_{bk,g}/r$;
- 3 $1/\nu_{inel} < 0.1 \text{ ns} \Rightarrow f_e(\mathbf{r}, \mathbf{v}, t)$ in local field equilibrium;
- Initial development sustained by photo-electric effect;

9 Breakdown criteria:
$$\int_{r_o}^R \alpha_{eff}(E(r)/N) dr = \log(1 + \gamma^{-1})$$

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Breakdown voltage

Figure: Gas breakdown voltage for $CH_4/CO_2/He$ mixtures and $[CH_4]:[CO_2]=1$. Experimental (points) and model (lines) results.

2

N. Pinhão,, A. Janeco,, J. Branco,, L. Redondo, V. Guerra,, A. Moura Plasma conversion of CH₄ and CO₂

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Breakdown voltage

Figure: Gas breakdown voltage for $CH_4/CO_2/He$ mixtures and $[CH_4]:[CO_2]=1$. Experimental (points) and model (lines) results.

2

N. Pinhão,, A. Janeco,, J. Branco,, L. Redondo, V. Guerra,, A. Moura Plasma conversion of CH₄ and CO₂

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Breakdown voltage

$$U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g}$$
$$Q_{gas} = \sum_{i}^{m} Q^i$$

with^a: $Q^i(\delta t) = (C_d + C_g)\Delta U^i_{fs} + C_d(U^i_e(t + \delta t) - U^i_e(t))$

^aLiu and Neiger, J. Phys. D: Appl. Phys. 36 (2003) 3144

3

・聞き ・ ほき・ ・ ほき

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Breakdown voltage

$$U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g}$$
$$Q_{gas} = \sum_{i}^{m} Q^i$$

with^a: $Q^i(\delta t) = (C_d + C_g)\Delta U^i_{fs} + C_d(U^i_e(t + \delta t) - U^i_e(t))$

^aLiu and Neiger, J. Phys. D: Appl. Phys. 36 (2003) 3144

3

・聞き ・ ほき・ ・ ほき

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

< 同 > < 三 > < 三 >

Breakdown voltage

$$U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g}$$
$$Q_{gas} = \sum_i^m Q^i$$

with^a: $Q^i(\delta t) = (C_d + C_g)\Delta U^i_{fs} + C_d(U^i_e(t + \delta t) - U^i_e(t))$

$$Q^i = Q^j, \ \Delta U^i_{fs} = \Delta U^j_{fs} \qquad \forall i, j$$

- ² Consecutive microdischarges: $U_e^{i+1}(t) = U_e^i(t + \delta t)$;
- Seach point in space has a maximum of one microdischarge.

^aLiu and Neiger, J. Phys. D: Appl. Phys. 36 (2003) 3144

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

< 同 > < 三 > < 三 >

Breakdown voltage

$$U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g}$$
$$Q_{gas} = \sum_i^m Q^i$$

with^a: $Q^i(\delta t) = (C_d + C_g)\Delta U^i_{fs} + C_d(U^i_e(t + \delta t) - U^i_e(t))$

$$Q^{i} = Q^{j}, \ \Delta U^{i}_{fs} = \Delta U^{j}_{fs} \qquad \forall i, j$$

- ⁽²⁾ Consecutive microdischarges: $U_e^{i+1}(t) = U_e^i(t + \delta t)$;
- Seach point in space has a maximum of one microdischarge.

$$\Rightarrow Q_{gas}(T/2) = (C_d + C_g) m \Delta U_{fs} + C_d (U_{max,e} - U_{bk,e})$$

^aLiu and Neiger, J. Phys. D: Appl. Phys. 36 (2003) 3144

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Breakdown voltage

2

N. Pinhão,, A. Janeco,, J. Branco,, L. Redondo, V. Guerra,, A. Moura Plasma conversion of CH4 and CO2

Electron kinetics in $\rm CH_4/\rm CO_2/\rm He$ mixtures A model for breakdown A model for $\rm CH_4$ and $\rm CO_2$ conversion

< 17 ▶

A B M A B M

CH₄ and CO₂ conversion

Model

Onsumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;

э

Electron kinetics in $\rm CH_4/\rm CO_2/\rm He$ mixtures A model for breakdown A model for $\rm CH_4$ and $\rm CO_2$ conversion

< 17 ▶

A B M A B M

CH₄ and CO₂ conversion

Model

- Onsumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;
- Radial average model;

э

Electron kinetics in $\rm CH_4/\rm CO_2/\rm He$ mixtures A model for breakdown A model for $\rm CH_4$ and $\rm CO_2$ conversion

< 17 ▶

A B > A B >

CH_4 and CO_2 conversion

Model

- Onsumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;
- Radial average model;
- **③** Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;

э

Electron kinetics in $\rm CH_4/\rm CO_2/\rm He$ mixtures A model for breakdown A model for $\rm CH_4$ and $\rm CO_2$ conversion

CH_4 and CO_2 conversion

Model

- Sonsumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;
- Radial average model;
- Solution Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
- Time average model in T: $f_T(U_{bk}/U_{max,e})$.

- 4 同 6 4 日 6 4 日 6

ıft

æ

<ロ> <同> <同> < 回> < 回>

Electron kinetics in $\rm CH_4/\rm CO_2/\rm He$ mixtures A model for breakdown A model for $\rm CH_4$ and $\rm CO_2$ conversion

CH_4 and CO_2 conversion

Model

- Sonsumption of CH₄ and CO₂ only by e-collisions or Penning ioniz.;
- Radial average model;
- Solution Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
- Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?

- 4 聞 と 4 注 と 4 注 と

Electron kinetics in CH_4/CO_2/He mixtures A model for breakdown A model for CH_4 and CO_2 conversion

- 4 回 > - 4 回 > - 4 回 >

э

CH_4 and CO_2 conversion

Model

- Sonsumption of CH₄ and CO₂ only by e-collisions or Penning ioniz.;
- Radial average model;
- Solution Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
- Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?

Equivalent field

Electron kinetics in CH_4/CO_2/He mixtures A model for breakdown A model for CH_4 and CO_2 conversion

- 4 回 > - 4 回 > - 4 回 >

э

CH_4 and CO_2 conversion

Model

- Onsumption of CH₄ and CO₂ only by e-collisions or Penning ioniz.;
- Radial average model;
- Solution Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
- Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?

Equivalent field

•
$$Q^i \propto \exp(\overline{\alpha} \times I_{equiv})$$

$$\ 2 \ \overline{\alpha} \Rightarrow \overline{E/N} \Rightarrow \overline{K_e^*};$$

Electron kinetics in CH_4/CO_2/He mixtures A model for breakdown A model for CH_4 and CO_2 conversion

- 4 回 > - 4 回 > - 4 回 >

э

CH_4 and CO_2 conversion

Model

- Onsumption of CH₄ and CO₂ only by e-collisions or Penning ioniz.;
- Radial average model;
- Solution Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
- Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?

Equivalent field

$$\ \, {\bf 0} \ \ \, {\cal Q}^i \propto \exp(\overline{\alpha} \times {\it I_{equiv}})$$

$$a \Rightarrow \overline{E/N} \Rightarrow \overline{K_e^*};$$

$$I_{equiv} \sim \overline{v_d} \, \delta t_{microdisc.}$$

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Model equations and species

Products involved in conversion:

 $\begin{array}{l} \mathsf{CH}_4\colon \mathsf{CH}_3, \,\mathsf{CH}_2, \,\mathsf{CH}, \,\mathsf{CH}_3^+, \,\mathsf{CH}_2^+, \,\mathsf{CH}^+, \,\mathsf{C}^+, \,\mathsf{H}_2^+, \,\mathsf{H}^+, \,\mathsf{H}^-, \,\mathsf{CH}_2^-; \\ \mathsf{CO}_2\colon \,\mathsf{O}(^1\mathsf{S}), \,\mathsf{O}^+, \,\mathsf{CO}^+, \,\mathsf{C}^+, \,\mathcal{O}^- \end{array}$

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

Model equations and species

Products involved in conversion:

CH₄: CH₃, CH₂, CH, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺, H⁻, CH₂⁻; CO₂: O(¹S), O⁺, CO⁺, C⁺, O⁻ He: He(2³S), He(2¹S)

э

- 4 回 ト - 4 回 ト

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

- 4 回 ト - 4 回 ト

э

Model equations and species

Products involved in conversion:

CH₄: CH₃, CH₂, CH, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺, H⁻, CH₂⁻; CO₂: O(¹S), O⁺, CO⁺, C⁺, O⁻ He: He(2³S), He(2¹S)

In steady state:

$$\begin{aligned} \frac{d\rho v_{gas}}{dz} &= 0\\ \frac{d}{dz} \left[n^{i}(z)(v_{gas} + V_{D}) \right] &= -f_{T}f_{V}\frac{Q_{gas}}{q_{e}}c^{i}(z)\sum_{j}\frac{\overline{K_{e}^{ij}}(z)}{\overline{\alpha}(z)/N\xi}\\ &-K_{P}^{i}n^{i}(z)n_{He^{*}}(z), \qquad i = CH_{4}, CO_{2} \end{aligned}$$

Electron kinetics in $CH_4/CO_2/He$ mixtures A model for breakdown A model for CH_4 and CO_2 conversion

ıſi

æ

Model results

Background

- Energy: An urgent problem to mankind
- An opportunity for plasma systems?

2) Conversion of CH₄ in a DBD

- Experimental results with CH₄/CO₂/He mixtures
- Application of over-voltages

3 A model of the discharge

- Electron kinetics in CH₄/CO₂/He mixtures
- A model for breakdown
- A model for CH₄ and CO₂ conversion

4 Summary

A B M A B M

____ ▶

Conclusions

• Significant change of the electron kinetics along the discharge;

< 17 >

A B + A B +

Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the *eedf* to higher energy;
 - responsible for an increase of e-collision frequencies on CH₄ and CO₂;
 - low He excitation or ionization rates: Negligible Penning ionization

э

A >

Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the *eedf* to higher energy;
 - responsible for an increase of e-collision frequencies on CH₄ and CO₂;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;

э

* E > * E >

A 1

Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the *eedf* to higher energy;
 - responsible for an increase of e-collision frequencies on CH₄ and CO₂;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH₄ and CO₂ by electron collisions;

* E > * E >

A 1

Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the *eedf* to higher energy;
 - responsible for an increase of e-collision frequencies on CH₄ and CO₂;

A B M A B M

- low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH₄ and CO₂ by electron collisions;
- Model based on the measured charge and an "equivalent field" is useful to explain the conversion results;

Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the *eedf* to higher energy;
 - responsible for an increase of e-collision frequencies on CH₄ and CO₂;

(本部) (本語) (本語)

- low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH₄ and CO₂ by electron collisions;
- Model based on the measured charge and an "equivalent field" is useful to explain the conversion results;
- Use of DBD discharges for dry reforming of CH_4/CO_2 is not yet competitive for *Syngas* production.